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Abstract— Spreading is used to provide diversity in frequency
and results in a number of benefits. However, recent literature has
shown that for a channel that decorrelates in time and frequency,
the capacity of a wideband system in a fading channel goes to
zero in the limit of infinite bandwidth (given second and fourth
moment constraints that decay with the spreading bandwidth).
We first extend to the multiple-access case the upper bound from
Médard and Tse [5]. Together with a lower bound based on
binary transmission, meaningful bounds to the optimal spreading
bandwidth using DS-CDMA are obtained. Given typical system
and channel parameters, the minimum spreading bandwidth
behaves as a linear function of channel strength. We will show
that this result can be meaningfully applied as guidelines in the
design of future communication systems.

I. I NTRODUCTION

The information theoretic study of wideband fading chan-
nels dates back to the 1960’s when Kennedy [2] showed
that the capacity of an infinite bandwidth Rayleigh fading
channel is equal to that of an infinite bandwidth additive
white Gaussian noise (AWGN) channel. In [6], M´edard and
Gallager showed that very large bandwidths could not be
effectively utilized by spread spectrum systems such as DS-
CDMA that distribute the available power uniformly over both
time and frequency. By expressing the input process as an
expansion localized in time and frequency of orthonormal
set of functions, the fourth moment of each coefficient of
this expansion was uniformly constrained. Such a uniform
constraint of the fourth moment forced the mutual information
to decay to zero inversely with increasing bandwidth. Related
to the result of [6] are those of [7], where Subramanian
and Hajek showed an alternate derivation using the theory of
capacity per unit cost for fourthegy.

Other related results include [8], where Telatar and Tse
consider a wideband multipath fading channel and showed
that, subject to energy constraint, the capacity of the channel is
inversely proportional to the number of resolvable paths. While
in this case bandwidth does not directly affect capacity, if the
number of paths is very large and the delays between paths
are significant, then the number of resolvable paths increases
with bandwidth. As the number of resolvable paths increase,
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capacity suffers. Furthermore,the above result holds even if
the receiver is able to perfectly track the timing of the different
paths. If the receiver does not have perfect timing knowledge,
then the capacity of the channel goes to zero as bandwidth
increases to infinity irrespective of the number of resolvable
paths.

All of the results above consider the upper limit to capacity
and do not offer a range for the optimal spreading bandwidth.
Despite the detrimental asymptotic performance of wideband
systems, practical experience shows that there may still be an
appropriate range within which employing spread spectrum
techniques are advantageous. However, none of the existing
upper bounds to capacity provide the resolution to study in
detail the capacity around practical bandwidths. It is motivated
by this desire to study the behavior of DS-CDMA systems
in the practical regime that we derive new upper and lower
bounds to capacity. In this paper, we will combine an upper
bound with a suitable lower bound to capacity to obtain a
lower bound for the optimal spreading bandwidth.
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Fig. 1. Bounds to the Optimal Spreading Bandwidth

A. Optimal Spreading Bandwidth

We now demonstrate how to use an appropriate upper and
lower bound to derive a bound for the optimal spreading
bandwidth. Suppose that we have a pair of upper and lower



bounds as in Figure 1. We see that the lower bound achieves
the maximum rate at point C. Drawing a horizontal line from
the maximum of the lower bound, we see that the upper bound
achieves this data rate at bandwidths A and B. If we transmit
at a bandwidth below A or above B, the upper bound tells
us the maximum rate we can achieve is less than at point C.
In such cases it is more advantageous to use the signaling
scheme that achieves the lower bound and transmit at point
C. Therefore, points A and B in Figure 1 are bounds to the
optimal spreading bandwidth.

We will discuss our channel model in Section II. In Sections
III and IV, we find the upper and lower bounds to capacity.
We analyze in Section V the capacity bounds in the two-user
multiple access scenario for various ranges of parameters and
the resulting optimum spreading bandwidth.

II. CHANNEL MODEL

Our channel model is a standard Rayleigh channel that
undergoes block fading in time and frequency. Each chan-
nel over distinct coherence bandwidths are independent, and
transmission occurs over� distinct coherence bandwidths.
The propagation coefficient for each coherence band remains
constant for� , the coherence time, after which it changes to a
new independent value. These random propagation coefficients
are modeled as IID, zero mean, complex circularly symmetric
Gaussian random variables. The bandlimited Additive White
Gaussian Noise (AWGN) is similarly modeled but normalized
to unit variance.

Each coherence band is of size� , and samples are obtained
at the Nyquist rate of� samples per second. For each received
sample in the��� coherence band at sample time�, � ���� �
��������������������������	����. Thus within the coherence
time� there are a total of�� samples and the received vector
in the ��� coherence band over the
�� coherence time is:
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There is an average power constraint imposed on the��������
where a limited amount of power� is distributed equally
to each of the� coherence bands, yielding an upper bound
on the second moment given by�

�
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�

. Addi-
tionally, the peak amplitude is upper bounded by�������� �
�

�
�
� �������� �, where
 is defined as the peakiness.

III. U PPERBOUND TO WIDEBAND CAPACITY

The capacity region of a multiple access channel [1], [3] is
the closure of the convex hull of:
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From this result, Lemma 1 gives the capacity region of the
upper bound in the two user scenario.

Lemma 1: The upper bound to wideband capacity for the
two user scenario based on the channel model described
previously in Section II is, for� � ��� 	�:
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Proof:
The proof to (2) is as follows, for� � �:
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(a) follows from the properties of conditional entropy.
(b) follows from the same line as that given in the proof of

the upper bound to capacity given in [5].
To prove (3), we begin with the definition of capacity as

mutual information.
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(4)

The fourth central moment of������ is �
��

and its average
power constraint is�

�
. Since there are no sender channel



side information and all the bandwidth slices are independent,
applying the concavity of mutual information in the input
distribution results in selecting all the inputs to be IID to
maximize the righthand side (RHS) of (4).

First we rewrite mutual information in terms of entropy:
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Now we find a suitable upper bound to (5). First let us upper
bound��� �
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(a) follows because entropy is maximized by a Gaussian
distribution for a given covariance matrix. Expression
(6) gives the entropy of a zero mean complex circularly
symmetric Gaussian random vector.

(b) follows from Hadamard’s inequality.
(c) follows from the average power constraint.

Next we find a suitable lower bound to��� ���� ���

�

�
�
�
� ���

�������
����� � �����

�������
����� � �����

�������
�����



�
�
�

�

�
��

�

��
�
������

��
� �	�

�������

�����
��

�
�	�

�������

�����
��

�
�	�

�������

�����

�
��

���

	 �

�
��

�

��
�
������

�
��
 �
��
� � 
��
�� � �

���
� � 
������ �

�

�
��

�

��
�
��
 �
��
� � 
��
�� � �

��
(8)

(a) results from the fact that conditioned on�����
�������
�����

and�����
�������
����� , � ���

�������
����� is a zero mean, complex

circularly symmetric Gaussian random vector.
(b) follows from taking the determinant of the conditional

covariance matrix and lower bounding it by:
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Owing to the concavity of entropy, we can further restrict
our signaling scheme to binary on-off keying where within a
coherence time, either all ones or all zeros are transmitted.
Therefore, a suitable lower bound to (8) can be obtained
by using such a binary signal constellation that satisfies
the second moment constraint with equality and subject to

the peak amplitude constraint.� is therefore distributed as
follows:
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thus, using this distribution and applying the concavity of the
log function, (8) can be lower bounded as:
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Substituting (7) and (9) into (5) and taking the limit in (4)
yields the desired result. Q.E.D

A. Tightness of the Upper Bound

We know from [5], [6], [7], [8] that in the limit of infinite
bandwidth, capacity should converge to zero from above.
Therefore, having derived an upper bound in Lemma 1, we
now show that (2) and (3) do indeed converge to zero as
���. For (3), the proof is as follows:
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and applying L’Hospital’s rule:
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Therefore, the above derivation shows that (3) does indeed
provide a sufficiently tight upper bound to the wideband
capacity. The asymptotic tightness of (2) can be shown in a
similar manner.

IV. L OWER BOUND TO WIDEBAND CAPACITY

The upper bound to wideband capacity in the two user case
provides little information by itself. Having derived the upper
bound, it is now necessary to develop an appropriate lower
bound. There are many different possible lower bounds to
capacity. We select as our lower bound the achievable rate of a
binary signaling scheme with low duty cycle. The transmitter
sends binary signals, one of which is located at the origin.
As in the upper bound, let each element of�����

�������
�����

be chosen IID, and������ � ��� �� with the following
distribution:
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The above distribution satisfies the second moment con-
straint with equality and the peak amplitude constraint. Be-
cause
 does not directly factor into the second moment
constraint, varying
 in this distribution gives us one extra
degree of freedom in adjusting the resulting achievable rate.
Since this is a multiple access scenario, the received signal
is the sum of all the users’s signal, each corrupted by their
independent fading coefficient, plus the additive Gaussian
noise.



Once transmitted, the receiver performs MAP detection
to recover the transmitted signal. In attempting to decode a
particular user’s signal, the receiver accounts for the presence
of the other user by treating its signal as noise. Lemma 2 gives
a lower bound to capacity.

Lemma 2: The lower bound to wideband capacity based on
the channel model described in Section II and the particular
signaling scheme with MAP detection is:
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where
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Proof:
Let � denote the signal transmitted and� the signal

received. During transmission, the signal is corrupted by the
multiplicative and additive noise. Applying MAP detection
reduces the channel to a discrete binary channel with cross-
over probabilities�	 � � �� � ��� � �� and�� � � �� �
��� � ��.

Let 
 ��� ��� represent the PDF of a zero mean, complex
circularly symmetric Gaussian random variable with variance
��. For the two user case, the additive noise is the sum of
additive receiver noise plus the corruption that results from the
presence of the other user’s signal. Let�	���� be the sum of the
contributing additive noise effects, then for a receiver trying to
decodeuser one’ssignal,� ���� � ������������� �	����, where
�	���� is the sum of AWGN and the other user’s signal
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 � �, then we have:
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Because of the circular symmetry of the PDF, the detection
threshold is determined solely by its magnitude and can be
calculated by solving the following equations:
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solving the above equation and letting� be the detection
threshold:
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Having determined the detection threshold as given in (14),
the crossover probabilities can be calculated by integrating
over the corresponding decision regions. Since only the mag-
nitude factors into the decision regions, the conditional PDF
of themagnitude � of the received signal, by a simple change
of variable plus accounting for the phase, is the scaled sum of
Rayleigh distributed random variables given by the following:
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Using the detection threshold given by (14), the crossover
probabilities�	 and�� are:
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Given the crossover probabilities, the probability� of re-
ceiving an� can be easily calculated:
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Let �� � �  
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��
 , the mutual infor-
mation of a single use of the discrete binary channel is given
by:

��� ��� � !�� ���� �!�� �� � ���

��� ��� � ���� � ������� ��� �����	� (18)

Substituting�, �	, �� from (17), (15), and (16), respectively,
into (18), and multiplying by�� to account for the�� uses
of the channel per second yields the capacity in bits/second
as given in (11). Q.E.D.

V. A NALYSIS OF RESULTS

Because we derived the lower bound by treating the other
user’s signal as noise, both users achieve the same rate in the
lower bound. To make for meaningful comparison, for the rest
of the paper, let us compare the upper and lower bounds for
the case where"� � "�.



A. Lower Bound to Optimal Spreading Bandwidth

Having derived suitable upper and lower bounds to capacity,
we now try to determine the optimal spreading bandwidth
using the method outlined in Section I-A. Figure 2 is a plot, in
log-log scale, of the upper and lower bounds using common
channel parameters (� � ��� KHz, ��
 � ��, 
 � ���,
� � �#� sec, � � 	�, and � � �#��). We see that the
maximum rate achievable with the binary signaling scheme is
approximately 4.2 Mbits per second. By drawing a horizontal
line from the maximum of the lower bound, the upper bound
achieves this data rate between spreading bandwidths� � ��
and� � �� coherence bands, equal to 1.6 Mbits/sec for the
lower bound to the optimal spreading bandwidth. Because
the upper bound decays very slowly, the maximum spreading
bandwidth is so large that it is not of any practical value.
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Fig. 2. Multi User Upper and Lower Bound

B. Sensitivity to ��


The parameter��
 represents the energy of the propagation
coefficient, and is particularly significant in the determining
the capacity of the lower bound. In the lower bound, because
MAP detection is used,��
 determines detection threshold and
therefore determines the crossover probabilities. As can be
seen from the equation of� as a function of��
 , a greater��

yields a lower probability of error. Therefore, the lower bound
to capacity would be expected to increase significantly as��

increases.

To see how the minimum spreading bandwidth varies with
��
 , we run a number of trials using the same parameters in
Section V-A, but varying��
 . As the plot of the minimum
number of coherence bands� to spread to vs.��
 in Figure 3
shows, there is a linear relationship between the energy of the
fading coefficient��
 and minimum speading bandwidth�.

One way to interpret this graph is to view the energy of the
propagation coefficient��
 as a metric of the channel power.
Since the additive noise power has already been normalized to
unity, Figure 3 says that given the user transmits with the above
parameters, the minimumnumber of coherence bands� to

spread is a linear function of��
 . As an example, for��
 � �	,
the minimum number of coherence bands to spread is� � �	.
Since each coherence bandwidth is of size� � ��� KHz,
that means given the system parameters, the system should
be spread to�#	 MHz. Considering that the commercial DS-
CDMA system IS-95 transmits at a bandwidth of�#	� MHz,
these results serve as meaningful guidelines for designing
future communication systems.
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VI. CONCLUSION

By deriving a suitable upper and lower bound to capacity,
we show in this paper that the minimum speading bandwidth
(manifested as�) is a linear function of the energy of
the propagation coefficient��
 . The example in Section V-
B shows that given those channel parameters, the minimum
spreading bandwidth is�#� MHz, which is very close to the
�#	�MHz at which the commercial DS-CDMA system IS-95
transmits. This shows that this result can meaningfully applied
as guidelines in the design of future communication systems.
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