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Abstract— This paper studies the optimal spatial multi-
plex scheme in a downlink multiple-antenna environment
with perfect transmitter and receiver channel knowledge.
Using recent results on the sum capacity of the Gaussian
vector broadcast channel, the optimal number of precoded
data streams in a downlink channel is characterized. The
main result is the following: the sum-capacity achieving
transmission strategy in a random downlink channel with n
transmit antennas at the base-station and K receivers each
equipped with m antennas involves between n to %n(n +1)
data streams in total, with each user receiving between m
to %m(m + 1) data streams. This gives a dimension count-
ing interpretation for multiuser diversity. In particular, it
shows that the throughput maximizing transmission strat-
egy in a downlink channel with n transmit antennas should
involve between n to %n(n + 1) active users at any time.

I. INTRODUCTION

Multiple antennas provide an effective way to enhance
the performance of a wireless system. Multiple antennas
create extra dimensions in the spatial domain, and these
dimensions can be used in many different ways. Multi-
ple spatial dimensions can carry duplicate copies of the
same information, thus increasing the reliability of infor-
mation transmission, or the extra spatial dimensions can
carry independent information in multiple data streams,
thus increasing the data rate. The former technique is
known as spatial diversity, the latter spatial multiplex.
In general, there is a tradeoff between the two [1] [2].

The concept of diversity and spatial multiplex is also
applicable to multiuser systems. Consider a cellular sys-
tem with one base-station and many remote terminals
geographically scattered in a single cell. Diversity in this
multiuser system may be understood as follows: since not
all remote terminals are likely to experience deep fades at
the same time, the total throughput of the multiuser sys-
tem is resilient to channel fading. Thus, diversity occurs
not only across the antennas within each user, but also
across the different users. This type of diversity is re-
ferred to as multiuser diversity [3]. It should be noted
that multiuser diversity differs from single-user spatial
diversity in one crucial aspect. In a single-user system,
spatial diversity refers to the ability for the multiple an-
tennas to transmit or receive the same information across
several paths, while in a multiuser system, independent
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information is transmitted and received by different users.
Thus, a multiuser system necessarily operates in a spatial
multiplex mode whenever more than one users are active
at the same time. This gives rise to the following question
which was first raised in [4]. In a downlink spatial multi-
plex system with multiple transmit antennas, how many
users should the base station accommodate at any given
time? This question is important particularly for the de-
sign of the medium-access-control (MAC) protocols in a
wireless network. The purpose of this paper is to develop
a rigorous theory to tackle this question.

The concept of multiuser diversity appeared in Tse’s
work [3] on the downlink scheduling of Qualcomm HDR
(High Data Rate) system. Information theoretical analy-
sis shows that the sum-rate maximizing transmission
strategy in a downlink channel with a single antenna at
the base-station is the one where only a single user is ac-
tive at the same time. Thus, [3] concentrated on how to
best select the transmitting user. The goal of this paper
is to generalize this idea to multi-antenna systems. For
a downlink channel with n transmit antennas, it is rea-
sonable to postulate that the optimal transmission strat-
egy should involve only m users receiving at the same
time. However, this is not true. In [4], Caire and Shamai
exhibited a counter-example in which the sum-capacity
achieving strategy involves more users than transmit an-
tennas. The main result of this paper is to show that the
maximum number of users that can be accommodated is
bounded above. In particular, the rate sum maximizing
transmission strategy in an n-antenna downlink channel
can involve up to $n(n+1) active users at the same time.

In the uplink direction, Knopp and Humblet [5] showed
that in a single-antenna multiuser fading channel, the
optimal transmission strategy is a TDMA-like scheme
with a single user transmitting at a time. This result
has since been generalized to the multi-antenna case in
[6] [7], where it is shown that up to n(n + 1) multiple
users should transmit simultaneously if the base-station
is equipped with n antennas. The main result of this pa-
per is a counter-part in the downlink channel. It relies on
recent information theoretical results on the sum capacity
of Gaussian vector broadcast channels [8] [9] [10] [11], and
on a duality of the uplink and downlink channels [12] [11].
The main result also provides insights on the interaction
between spatial diversity and multiuser diversity.



II. MULTI-ANTENNA WIRELESS ENVIRONMENT

Consider a cellular wireless environment, with a base-
station equipped with n antennas and K remote terminals
each equipped with m antennas. The base-station-to-
remote-terminal transmission is modeled as follows:

yr(i) = Hi())x(i) + ng(i), k=1---K, (1)

where 4 denotes the time index, x(i) is a n-dimensional
vector representing the transmitted signal from the base-
station, yg(¢) is a m-dimensional vector representing
the received signal for kth user, and ng(i) is the ii.d.
Gaussian noise. Hy(4) is an n X m matrix, and it de-
notes the channel for user k£ at time instant . Note that
the base-station jointly encodes independent information
for all users, as all transmitting antennas are co-located.
Remote terminals are scattered geographically, so they
cannot coordinate.

Intuitively, as each user experiences a different channel,
it is sensible to select only a subset of good channels at
each time instant. The objective of this paper is to give
a rigorous information theoretical analysis on how many
users should be active at any given time. The main result
is the following:

Theorem 1: Consider a Gaussian broadcast fading
channel with n transmit antennas, K remote terminals
each equipped with m receive antennas and with i.i.d.
Gaussian fading coefficients. With probability one, the
sum-capacity achieving transmission scheme involves at
most $n(n + 1) data streams in total, with each remote
terminals using at most %m(m—i— 1) data streams. In par-
ticular, at most $n(n -+ 1) remote terminals can be active
at any given time.

Two simplifying assumptions are made in deriving the
above result, First, perfect and instantaneous channel
state information is assumed to be available at both the
base-station and remote terminals. Second, the sum rate
is used as the criterion in the analysis. Although a real
system design has to take into account channel estima-
tion error and the performance tradeoff among the users,
these two assumptions provide an amenable framework
under which theoretical analysis can be made.

III. BROADCAST CHANNEL SUM CAPACITY

Consider the downlink channel illustrated in Fig. 1:

yk =Hpx+ng, k=1---K (2)
where x, yx and ny are vector valued, and Hy,--- Hg
are matrices. The transmitted signal is subject to a power
constraint E[x?x] < P. Independent information is to be
transmitted to each user. The capacity region refers to
the set of rate tuples (Rq, - - - , Rk ) simultaneously achiev-
able by users 1 to K with arbitrarily small probabili-
ties of error. This paper concentrates on the rate sum
Ry +---+ Rg.
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Fig. 1. The vector broadcast channel

The broadcast channel capacity is a long-standing open
problem in network information theory. The capacity
region for a broadcast channel is known only in several
special cases (such as the degraded broadcast channel.)
The Gaussian vector broadcast channel considered in this
paper where the transmitter and receivers are equipped
with multiple antennas is not necessarily degraded, and
the capacity region is still not known completely. How-
ever, several recent work [8] [9] [10] [11] has successfully
solved the sum capacity case.

There are two simultaneous and independent solutions
to the sum capacity problem. A key ingredient in both
solutions is a connection between the broadcast channel
and channels with side information, first published in [8].
In a classic result known as “writing on dirty paper”,
Costa [13] showed that if a Gaussian channel is corrupted
by an interference signal s that is known non-causally to
the transmitter but not to the receiver, i.e.

y=Xx+s+n, (3)

the capacity of the channel is the same as if s does
not exist. Thus, in a broadcast channel, if we let x =
X1+ - -+Xg, where xi, is intended for the kth user, the ca-
pacity of the channel from x to yj is as large as if multi-
user interference xi,- -+ ,Xgx_1 can all be pre-subtracted.
This precoding strategy turns out to be optimal for sum-
capacity in a Gaussian broadcast channel. This is proved
for the 2-antenna case by Caire and Shamai [8], and has
since been generalized by several authors [9] [10] [11] using
two different approaches. In the rest of this section, the
decision-feedback approach [9] is reviewed first. Then, a
new derivation for the duality approach (which was orig-
inally given in [10] and [11]) is presented.

A. Decision-Feedback Equalization Approach

The approach in [9] is based on the observation that
multiuser interference pre-subtraction at the transmit-
ter is similar to a decision-feedback equalizer at the re-
ceiver. The interference cancellation operation can in ef-
fect be “moved” to the transmitter. However, although
the decision-feedback structure achieves the capacity of
a Gaussian vector channel, it also requires coordination
among the receivers because the DFE structure has a



feedforward matrix that operates on all of y1, -+ ,yx.
Clearly, such coordination is not possible in a broadcast
channel. However, precisely because yi,---yx cannot
coordinate, they are also ignorant of the noise correla-
tion between ny,--- ,ng. Thus, the sum capacity of the
broadcast channel must be bounded by the cooperative
capacity with the worst possible noise correlation, i.e.

Coum <min I[(X;Y1, - Yk), (4)

where S,,,, is the covariance matrix for n = [nT ... nL |7
and the minimization is over all S,,, whose kth block
diagonal term is the covariance matrix of ny. This outer
bound is due to Sato [14]. Sato’s outer bound can be
evaluated explicitly by writing down the Karush-Kuhn-
Tucker (KKT) condition for the minimization problem:

)

Uy 0
S;r% - (HSMHT + Snn)71 = , (5)
0 5%

where W, are the Lagrangian dual variables correspond-
ing to the diagonal constraints. Interestingly and surpris-
ingly, St — (HS,.HT 4+ S,,,) "1 also corresponds to the
feedforward matrix of the decision-feedback equalizer! So,
if the noise covariance happens to be the worst-case noise,
the feedforward matrix of the decision-feedback equalizer
would be diagonal. Thus, after moving the feedback op-
eration to the transmitter, the entire equalizer de-couples
into independent receivers for each user, and no coordi-
nation is needed whatsoever. Consequently, Sato’s outer
bound is achievable. Now, this achievable rate may be
further maximized over all S, subject to the power con-
straint. Therefore, the sum capacity of a Gaussian vector
broadcast channel is:

L, |HS, e HT + Sy

e g Son] (6)
subject to S,(fr)l: , 1=1,--- K,
trace(Sgz) < P,
Szay Snn 2> 0,

where H = [HI HT --- HL]T and SY) refers to the ith
block-diagonal term of S,,,,.

B. Duality Approach

The sum capacity of a Gaussian vector broadcast chan-
nel can be solved using a completely different method. In
[12], it was observed that the achievable region of a broad-
cast channel using the precoding technique is exactly the
same as the capacity region of a dual multiple access chan-
nel with the channel matrix transposed and a sum power
constraint applied to all inputs. This uplink-downlink
duality is closely related to convex duality. Based on the
duality, [10] and [11] showed that the sum capacity of

the broadcast channel is precisely the sum capacity of
the dual multiple access channel. The proof also relies
on Sato’s outer bound. Duality is essential in our char-
acterization of the structure of the optimal transmission
strategy in the broadcast channel. In the rest of the sec-
tion, we give a new derivation of duality that is different
from that of [12] and [11].

To simplify matters, assume that H is square and in-
vertible. (The derivation can be generalized to arbitrary
channels. See [15] and [16] for details.) The starting
point of the new derivation is the minimax optimization
problem (6). The objective function of the problem is
concave in S, and convex in Sy, so its KKT conditions
completely characterize the saddle points. The KKT con-
ditions are:

HT(HS HT + S,n) tH = \I (7)
Sk = (HSuu HT + Spp) ™t =W (8)

where A is the dual variable associated with the power
constraint and ¥ = diag(¥y, - - , ¥g) is the dual variable
associated with the diagonal constraint. Multiple (8) by
HT on the left and H on the right, substitute in (7), we
obtain:

HTS'H = H'UH + AL (9)

The above is equivalent to the following condition:

HH"VH + XI)"'HT = S, (10)
where the transmit covariance matrix is a diagonal matrix
W, and the dual variable associated with the constraint
has 1’s on the diagonal (as the worst noise Sy, has 1’s
on the diagonal.) This condition is precisely the KKT
condition for a sum-power multiple access channel. After
a proper scaling of the power constraint, ¥, A and Sy,
it can be shown that the KKT condition of the following
optimization problem is exactly (10):

1 T
510g|H DH + 1| (11)

max

s.t. D is diagonal
trace(D) < P,
D >0,

(where D = ¥/X.) Thus, the solution to the minimax
problem (6) is just the solution to a maximization prob-
lem (11). This establishes the duality of a multiple access
channel and a broadcast channel.

IV. OpTiIMUM DOWNLINK TRANSMISSION STRATEGY

The proof of the main theorem of the paper is now
given. The strategy is to solve the sum power maximiza-
tion problem (11) first, then show that the rank of the
solution D is at most %n(n +1). Since D is a scaled ver-
sion of ¥, and ¥ is the diagonal matrix which corresponds



to the feedforward section of the decision-feedback equal-
izer, we conclude that the decision-feedback equalizer for
the broadcast channel can process at most £n(n+1) data
streams.

The key step in the argument is the characterization of
the optimal D in the sum-power multiple access channel
capacity problem (11). The characterization is derived
from its KKT condition. The KKT condition is:

Hy(H'DH + 1) 'H}F = vl + &, (12)

where k = 1--- K, and ® is the slack variable for which

trace(®, D) = 0. (13)
Here, D) denotes the block diagonal entries of D (i.e.
D = diag(Ds, -+, Dk)).

Our goal is to derive an upper bound on the number of
non-zero diagonal entries of D. For simplicity, let’s first
consider the case where the receivers of the broadcast
channel are each equipped with a single antenna only.
Let the number of transmit antennas be n. Since Hy, is
1 xn, the matrix (HT DH+1)~! is nxn. But this matrix
is common for each user, and it has at most %n(n +1)
degrees of freedom. This limits the maximum number of
active users.

Lemma 1: Fix positive v, let Hi,--- ,Hg be 1 X n
random vectors with ii.d. Gaussian entries. If K >
in(n + 1), then with probability 1, there does not ex-
ists a positive definite symmetric matrix M such that
HMHI'=vVk=1---K.

This lemma is similar to an argument used in [6], where
a detailed proof is given. Intuitively, a positive semidef-
inite matrix M has $n(n 4 1) degrees of freedom, but
K equations need to be satisfied simultaneously. This is
possible only if K < in(n + 1). The proof can be made
rigorous by recognizing that Hj are i.i.d. Gaussian, so
with probability 1, the K equations are independent.

Now consider a fading environment with the base-
station equipped with n antennas. To maximize the sum
capacity, water-filling must be done across the fading
states. Such water-filling in time fixes the water level v.
Now, apply Lemma 1. Set M = (HTDH +1)~!. Lemma
1 implies that ®; = 0 for at most $n(n + 1) users. So,
Dy, (and thus Uy) is positive for at most 2n(n+ 1) users.
Therefore, the rate-sum maximizing strategy must have
at most £n(n + 1) active users at the same time.

Lemma 1 can be generalized to the case of multiple re-
ceive antennas in the same way as done in [6]. Parallel to
the previous development, we ask whether there exists a
positive semidefinite matrix M that satisfies H, M H] =
vl + @y foreach k =1,--- | K. The idea is again to count
the number of independent equations and the number of
unknowns. The matrix equation has 2m(m+1) indepen-
dent entries for each k, so there are in total %m(m—i— 1) in-
dependent equations. The number of unknown variables

is counted as follows. The matrix M introduces %n(n—l— 1)
degrees of freedom. The number of unknowns introduced
by the slack variable ®; depends on its rank. An m x m
matrix with rank r has gm(m+1) — 3(m —7r)(m—r+1)
unknowns. (To see this, recall that a positive semidefi-
nite symmetric matrix can be represented by its Cholesky
factorization as LL*. If a m X n matrix is of rank r, its
Cholesky factor is a m x r triangular matrix, with exactly
sm(m + 1) — $(m —r)(m — r + 1) independent entries.)
Now, the slack variables need to satisfy the complemen-
tary slackness condition (13). So, if the transmit signal
Dy, is rank r, the rank of ®, is at most m—rg. Therefore,
each @y, introduces at most $m(m+1) — 2ry(r, + 1) ex-
tra degrees of freedom. The total number of unknown
variables is then In(n + 1) from the matrix M plus
im(m+1) — $ri(re +1) from each of ;. Now, since the
channel realization Hy is random, the equations are inde-
pendent. Thus, for a solution to exist, there must be at
least as many unknown variables as there are equations.

So,

n(n+1 m(m+1 Krr+1
(2 )+K (2 )_; k(k2 )
ZKW. (14)

Then, it follows that >, 7 (rx +1) < n(n+1). Since the
rank 7, is bounded by the number of receive antennas
m, we conclude that in a random downlink environment
with n transmit antennas, K remote terminals with m
receive antennas each, with probability one, the sum-rate
optimal transmission scheme uses at most %n(n—i— 1) data
streams in total, with each remote terminals using at most
im(m+1) data streams. In particular, at most 3n(n+1)
remote terminals can be active at the same time.

Finally, we remark that when there are sufficient
amount of transmit power and sufficient number of re-
ceivers, uplink-downlink duality also implies that the
minimum number of data streams is lower bounded by
n. Thus, the optimal number of data streams is between
n and in(n+1).

V. SIMULATION RESULTS

Theorem 1 is an upper bound on the total number of
active receivers in a downlink multi-antenna broadcast
channel. This upper bound is not necessarily tight. Fig.
2 and Fig. 3 show simulation results on a Rayleigh fad-
ing broadcast channel with multiple receivers each with
a single-antenna and a base-station with varying number
of transmit antennas. The optimization problem (11) is
solved using a numerical approach called dual decompo-
sition [17]. Fig. 2 plots the number of active users vs the
number of transmit antennas over several realizations of
the channel. It is seen that although the theoretical upper
bound on the number of active users goes up quadrati-
cally with the number of antennas, the actual number of
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Fig. 2. The number of active users vs the number of transmit
antennas over random realizations of the channel.

active users goes up roughly linearly. Fig. 3 shows a his-
togram of the number of active users over 100 random
realizations of the channel for the cases of 2, 4, 8 and 16
transmit antennas.

VI. CONCLUDING REMARKS

When the base-station in a downlink cellular system
is equipped with a single antenna, the sum rate maxi-
mizing transmission strategy should transmit to the user
with the best channel. Thus, only one user is served at
a time. The main point of this paper is to show that
with multiple antennas at the base-station, the sum-rate
optimal transmission strategy consists of multiple users
being served simultaneously. Theorem 1 makes a precise
dimension counting argument that ties in spatial diversity
and multiuser diversity. In a random propagation envi-
ronment, a downlink broadcast channel with n transmit
antennas has about n to in(n + 1) spatial dimensions.
These dimensions are divided among the remote termi-
nals. A remote terminal with m receive antennas can
utilize about m to im(m + 1) dimensions. The dimen-
sions are additive, and the total number of dimensions is
roughly between n and in(n + 1).

There is an interesting interplay between spatial di-
versity and multiuser diversity. Spatial dimensions are
discrete resources. Multiple antennas at the base-station
create dimensions which allow more than one remote ter-
minals to transmit and receive simultaneously. Multiple
antennas at the remote terminals, however, has the oppo-
site effect. They improve the performance of each remote
terminal at the expense of crowding out other users from
transmitting and receiving at the same time.

Fig. 3. Histograms of the number of active users over 100 random
realizations of the channel. Top-left, top-right, bottom-left and
bottom-right figures correspond to the cases of 2, 4, 8 and 16
transmit antennas respectively.
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