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Abstract—1t is known that the Alamouti code is the only
complex orthogonal design (COD) which achieves capacity and
that too for the case of two transmit and one receive antenna
only. Damen et al., gave a design for 2 transmit antennas, which
achieves capacity for any number of receive antennas, calling
it an information lossless STBC. In this paper, we construct
capacity achieving designs using cyclic division algebras for
arbitrary number of transmit and receive antennas. For the
STBCs obtained using these designs we present simulation results
for those number of transmit and receive antennas for which
Damen et al. also give and show that our STBCs perform better
than their’s.

I. INTRODUCTION

A Space-Time Block Code (STBC) C over a complex signal
set S, for n transmit antennas, is a finite set of n x [, (n <)
matrices with entries from S or complex linear combination
of the elements of S and their complex conjugates. An
important performance criteria for C is the minimum of ranks
of difference of any two codewords (n x [ matrices) of C,
called the rank of C. The code C is said to be of full-rank
if the rank is » and minimal delay if n = [. We call C, a
rate-R (in complex symbols per channel use) STBC, where

A rate-k/n, n X n design over a field F, is an n X n matrix
with entries as functions of %k variables which are allowed to
take values from the field F'. If we restrict the k variables to
take values from a finite subset of F', we get a STBC over
that finite subset. For example, the Alamouti code [1] is a
rate-1 design over the complex field C, where the entries are
functions of two variables and we get a STBC when we restrict
these two variables to some finite set, say QAM or PSK signal
set. Similarly, the 4 x 4 real orthogonal design is a design
over the real field. Complex Orthogonal Designs and their
variations have been extensively studied in [2]-[6]. In the next
section we construct rate-n, n X n designs over subfields F' of
the complex field C and obtain full-rank, rate-n STBCs over
finite subsets of F'.

In [7], it is shown that among the orthogonal designs, the
Alamouti code is the only one which maximizes the mutual
information and that too only for one receive antenna only.
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In the same paper, codes called Linear-Dispersion codes that
have maximum mutual information are constructed by solving
a nonlinear optimization problem using gradient approach.
For less number of transmit and receive antennas, the mutual
information of their codes is very close to the actual channel
capacity, but as the number of antennas increase, the difference
increases. Damen e al., in [8], have proposed a STBC for 2
transmit antennas, which maximizes the mutual information
for any number of receive antennas. However, this STBC is of
full-rank only over QAM signal constellations. In [9], iterative
decoding techniques are used to achieve near-capacity perfor-
mance on a multiple-antenna system. Galliou and Belfiore, in
[10], have constructed full rate, fully diverse STBCs for QAM
constellations only using Galois theory, and claim that these
codes maximize mutual information.

In this paper we present capacity achieving designs (in-
formation lossless) for arbitrary number of transmit and
receive antennas using division algebras for any a priori
specified arbitrary complex constellation. Familiarity with
prior results obtained using division algebras available in [11]—
[15] will be helpful (in particular, in [13] it is shown that
the Alamouti code is obtainable using division algebra and
has certain algebraic uniqueness). However, the presentation
in this paper is self-contained.

II. MAIN PRINCIPLE

A division ring D is a ring in which every nonzero element
has an inverse. Let F' be the center of the division ring D.
Then F'is a field, and D is an algebra over F' and hence D is
also called an F'-division algebra. The vector space dimension
of D over F is called the degree of the division algebra, and
is denoted [D : F]. It is well known that when [D : F] is
finite, it is always a perfect square [16]. The square root of
[D : F] is called the index of D. By a subfield K of D, we
mean a field K such that F C K C D. Let [D : F] = n? and
K be a maximal subfield of D. Then, it is well known that
[K : F] = n, the index of the division algebra D. We call D
a cyclic division algebra if it has some maximal subfield K
such that K/ F is a cyclic extension. For examples of division
algebras see [13], [15].

Throughout this paper we consider cyclic division algebras
to construct our STBCs. Let D be a cyclic division algebra
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with center F', of index n, and with maximal cyclic subfield
K. Let the Galois group G'x/ be generated by o, so 0™ = 1.
We have the following well known decomposition of D [16]:

D=Ka&:K®z K& - ®"'K
where z is some element of D which satisfies the relations
kz zo(k) Vke K (2)
z" = ¢, for some § € F* 3)

where F* is the set F\{0} and 2°K denotes the set
{z'k|k € K}. Then, we have the following theorem proved
in [13], [15].

Theorem 1: Any finite set of matrices of the form

ko 5U(kn—1) 50'2(kn_2) 50’”71(l€1)

kq U(ko) 602(kn_1) 50”71(162)

ko J(kl) 0'2(]{?0) 50”71(1€3) 4)
knot (ko) 0*(ka o) o1 (ko)

where k; € K, for i = 0,1,...,n — 1, has the property that
the difference of any two matrices has full rank.

From the above theorem, it is clear that we get full-rank, rate-
one STBCs for n antennas, over any finite subset of K. If we
write every k; in the matrix of (4) as an F'-linear combination
of some fixed basis of K, we get a full-rank, rate-n STBC
over any finite subset of F'. Equation (1) gives an example of
such codewords in the special case when K has an F'-basis the
set {1,¢,¢%,...,¢""1} for some t € K*. Here, f; ; € S C F,
fori,j =0,1,...,n—1, where S is some finite subset of F'.

In the rest of this section, we will construct a class of cyclic
division algebras which will give us full-rank, rate-n STBCs
for any, n, number of transmit antennas.

Let F' be a field and K an extension of F', such that
[K : F] n. Also, let the extension K/F be a cyclic
extension, i.e., the Galois group of the extension be a cyclic
group generated by some o. Let § be a transcendental element
over K. Then, K(9)/F(9) is also cyclic, with o acting as
identity on §. Consider the following algebra:

(K(8)/F(68),0,0) = K(0)®zK(8)®22K(8)®- - -@2" 1K (5)

where z is some symbol which satisfies the relations

kz = zo(k) for all k € K and 2" = 6.
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The above algebra has F'(J) as its center, K (0) as a maximal
subfield and has no nontrivial two sided ideals, but it is not
a priori obvious that it is a division algebra. However, from
[13], [15], we have the following theorem.

Theorem 2: With F, K ,n,z,§ and o as above, the algebra

D = (K(5)/F(6),0,0) is a cyclic division algebra.
We will always assume that J lies on the unit circle and since
there are infinite transcendental numbers on the unit circle (e7%
lies on the unit circle and is transcendental for any algebraic
u [17]), we always have at least one such d. Henceforth, we
will assume ¢ to be such transcendental element over K unless
specified explicitly. So, the task now is to construct the field
F(6) and its cyclic extension K (J), where 0 is a transcendental
element over K. To do this, we use the following theorem from
[18].

Theorem 3: Let F be a field containing a primitive n'* root
of unity. Then, K/F is cyclic of degree n if and only if K is
the splitting field over F' of an irreducible polynomial 2" —a €
In the following subsection, we use some algebraic extensions
of the field of rational numbers, Q to construct designs and in
the next section we show that these designs achieve capacity.
In Section III, we present simulation results for the STBCs
obtained from these designs and compare with the known
curves.

A. STBCs from algebraic extensions of Q

Throughout, wy, stands for e2milk g primitive k-th root of

unity. Let S be the signal set of interest, i.e., we want STBCs
over S. Then, we take F' = Q(S, wy, ), where m is a multiple
of n, in such a way that £ —w,, is irreducible in F'[z]. Clearly,
F has a primitive n'” root of unity. Let K = F(wy,). To be
able to use Theorem 3 it is sufficient to show that K is the
splitting field of 2™ — w,,. The roots of this polynomial are
Wmnwt, for i = 0,1,...,n — 1. Since K contains wy,,, all
these roots also lie in K. Thus, K contains the splitting field
of " — wy,. Since K is the smallest subfield containing F
and wy,,, K itself is the splitting field of ™ — w,,. Thus, by
Theorem 3 K/ F is a cyclic extension. We give some examples
to illustrate the above construction.

Example 1: Let n = 2 and F = Q(j), K = F(/9).
Clearly, K is the splitting field of the polynomial 22 —j € F|x]
and hence K/F is cyclic of degree 2. Note that 2% — j is
irreducible over F, since its only roots are ++/7 and none of
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them is in F'. The generator of the Galois group is given by
o :\J— —/j. Then, (K(8)/F(5),0,0) is a cyclic division
algebra. Thus, we have the STBC C given by

e-{[

However, viewing K as a vector space over I, with the basis
{1,/4}, we have a STBC over any finite subset of F with
codewords as follows

1 [ foo + foavi do(fro+ fi1v7) }
fro+ firvi  o(foo+ fo1vi)

V2
1 [fo,o+fo,1\/j 5(f1,0—f1,1\/.7)]

V2 | frot v (foo — foavi)

where f;; € S C F for 4,5 = 0,1 and the scaling factor
1/4/2 is to ensure that the average power transmitted by each
antenna per channel use is one. Note that from Theorem 1,
the STBC with codewords as above is of full-rank over any
finite subset of F'.

In the above example S can be any finite subset of F' and
hence, we have an STBC over any QAM constellation (since
F = Q(j)). From the structure of this STBC, we can see
that it has a structure similar to the STBC proposed in [8].
Indeed, these two are similar in the sense of their capability
of achieving the capacity, which will be shown in the next
section. The code presented in [8] is of full-rank for QAM
constellations, as is the case with our code. However, we
get STBCs for 2 antennas over any signal set, by choosing
appropriate m. Say for instance, we want codes over SPSK.
In this case, we can take m = 8. However, the restriction on
the choice of m affects the coding gain. This restriction on m
is due to the signal set and n. And moreover, finding m such
that the polynomial ™ — wy, is irreducible over F’ depends on
S, which might turn out to be involved sometimes. So, in the
next subsection, we give constructions which do not depend
on the signal set and n.

Example 2: Let n = 3 and suppose, we want S to be a
QAM signal constellation. So, let ' = Q(j,ws) and K =
F(wy). Clearly, K is the splitting field of the polynomial x> —
w3 € F[z]. The polynomial z® — ws is irreducible in F[z]
because, otherwise, it would have linear factor in F'[x], which
would correspond to a root of 2% — ws, but this polynomial
has no roots in F. Thus, K/F is cyclic and ¢ : wg — wows
is a generator of the Galois group. Then, (K (0)/F(¢),0,0)
is a cyclic division algebra. Thus, we have a full-rank STBC
C with codewords as follows (obtained in a similar way as in
the previous example)

50’(kl)

o (ko) ] lko, k1 € K}

1 90,0 59172 592,1
—= | 90,1 g1 592,2
\/§ go2 91,1 92,0

2 7 2 3+1i)l
where g;; = 31 fiu(wiws)! = S fruw$ T and fij €
ScCFfori,j=0,1,2.
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B. STBCs from transcendental extensions of Q

In the last subsection, we have seen that the STBC con-
structions depend on the signal set and the number of antennas,
which affects the coding gain of the STBCs. In this subsection,
we use transcendental extensions of Q to overcome this
restriction to a large extent. First, we have the following
corollary to Theorem 3.

Corollary 1: Let F = Q(S,t,wy,), where t is a transcen-

dental element over Q(S). Then, K = F(t, = t'/") is a
cyclic extension of F', and the degree of extension is n.
The above corollary gives us a cyclic extension for any n
and signal set S. The irreducible polynomial used to obtain
the extension in the above corollary is ™ — ¢ and that this
is a irreducible polynomial over F' is easy to prove [15].
So, the difficulty of finding an irreducible polynomial over
F' of degree n is overcome. Notice that the selection of ¢
still depends on the signal set S, but this dependence is of
little effect as there are infinite transcendental elements over
Q and S is a finite signal set. However, in the case when F’
is an algebraic extension of QQ, any transcendental number is
a valid 9, i.e., any transcendental number is a transcendental
element over K. But in the case when F' is a transcendental
extension of Q, any transcendental number need not be a
valid 0. The value § can take now is that of a transcendental
number algebraically independent of ¢. But this restriction is
very small, as there are infinite transcendental numbers and
any two transcendental numbers of the form e/%1 and e/“2 are
algebraically independent if u; and usy are algebraic numbers
that are linearly independent over Q.

Using the above corollary, we give some examples.

Example 3: Let n = 2 and F = Q(S,t), where t is
transcendental over Q(S). Then, K = F(t, = /1) is a cyclic
extension of F' of degree 2. The generator of the Galois group
is given by o : to — —ty. Then, (K (0)/F(9),0,0) is a cyclic
division algebra. Thus, we have a full-rank STBC C with the
codewords as follows (obtained in a similar way as in the
previous examples):

11 foo+ foitz

V2 | fro+ fiate

11 foo+ foate
fi0+ fiit2

V2

where fo0, fo,1, f1,0, f1i1 € SCF.
In the STBC of the above example, we have two degrees
of freedom, namely ¢ and 4. On the other hand the STBC
of Example 1 has only one degree of freedom, namely .
Thus, the STBC of the above example will have a coding
gain at least that of the STBC obtained in Example 1. This
is another advantage of using the transcendental extensions of
Q for obtaining STBCs.

Example 4: Let n =4 and S be the signal set. Then, with
F = Q(wy = j,8,t) and K = F(ty = t'/*), we have K/F
cyclic and o : t4 — jt4 is a generator of the Galois group.

do(fi0+ fi,1t2) ]
o(fo,0 + fo1t2)

d(f1,0 — fi1t2) ]
(fo,0 — fo,1t2)
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Thus, we have a full-rank STBC for 4 antennas as follows :

90,0 591,3 592,2 593,3

c—) L |91 910 0923 Ogs2
Vi | 902 911 920 0933
90,3  di1,2 92,1 93,0

where g¢; ; = Z?:o fi1(Gts)! and fi; € S C F fori,j =
0,1,2,3.

Example 5: Let n =5 and S be the signal set. Then, with
F = Q(ws, S,t) and K = F(t5 = t'/%), we have K/F cyclic
and thus, we have a full-rank STBC for 5 antennas as follows:

900 0914 0923 0g32 0ga1

1 go,1 91,0 592,4 593,3 594,2

C=¢—=| 902 911 92,0 593,4 594,3
VB , 5

go,3 91,2 92,1 93,0 ga.4

go,a 91,3 92,2 g3.1 94,0

where g; ; = Z?:o fj,z(wét5)l and f;; € S C F fori,j =
0,1,2,3,4.

III. MUTUAL INFORMATION

In this section we show that our STBCs maximize the
mutual information for any number of transmit and receive
antennas. Let n be the number of transmit antennas and r be
the number of receive antennas. Then, at any given channel

use, we have
X = \/ZHf +w
n

where H (r X n matrix) is the channel matrix, w(r x 1) is the
noise, f is the transmitted signal vector and X(r x 1) is the
received vector. The entries of H and w are complex Gaussian
iid with zero mean and unit variance. The transmitted signal
vector f is such that the average power transmitted in a channel
use is equal to n, i.e., E(fff) = n. And p is the signal to
noise ratio at each receive antenna. Then, the capacity of the
channel is given as [7], [19], [20]

where W (r x n) is the noise, X (r x n) is the received matrix
and F is our codeword matrix which is of the form given in
(1). These codeword matrices are again normalized such that
E (tr(FMF)) = n?. Then, we can rewrite the above equation
as

foo
H o 0 fo1
R S| 0 H 0 fo,2 .
% - \f . e U |iwe
n . .
0 O H
H L fnflmfl B

where X and W are vec(X) and vec(W) respectively (vec(z)
arranges all the columns of « in one column, one after another)
and O is an r X n zero matrix. The matrix ® is

1
¢ =—

Vn
where ®; for + = 1,2,...,n — 1, is shown in (5) and
oy = diag, (t,,), where diag,(x) denotes the n x n block
diagonal matrix with the block x as each diagonal entry. The
symbol O denotes the n-length zero vector, t,, is thelvector
[1t,t2 ... t""! and o'(t,) is the vector (ai(t%));’:_o. Note
that ®;s are n x n? matrices and ® is an n? x n?

[@fofe] - al_,)"

matrix.
To see it more clearly, consider the STBC of Example 1.
We have ® as

1 Vi 0 0
o L]0 0 1 i
Z2lo 0 6§ -85
1 =/ 0 0

and for the STBC of Example 2, we have ¢ as

[1 wg w2 0 0 0 0 O 0 |

C(p,n,r) = Exlog, (det (Ir + EHHH)) . (6) 000 0 1 w wsg 0 0 0
n 0 0 0 0 O 0 1 wy wd

The above equation is obtained by assuming that for any two 0O 0 0 0 0 0 6§ dwd &ws
channel uses, the transmitted vectors are independent of each @ — € 1 ws w§ 0 0 0 0 0 0
other. On the other hand when we use our STBCs, we have V3 0 0 0 1 wé wg 0 0 0
the transmitted vectors in the n channel uses dependent on 0 0 0 & 6w 6wd 0 O 0
each other (this is because of coding). So, we have 0O 0 0 0 0 0 6§ owl 6wl
0 1 wf w§y 0 0 0 0 0 0

X=,/-HF+W @) -
n
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Lemma 1: Let K/F be a cyclic extension of degree n,
where K = F(t, = t/"), t,w, € F, [t|=1and o : t,, —
wptn, be a generator of the Galois group. Then,

ifk=0

1 Z * n
Zt {o if k£ 0

Proof Note that t* = t~! by the choice of t.
The case k = 0 is trivial. So, let £k # 0. Then, prov-
ing that Z _01 ti, (o"(t}))" = 0 is the same as proving
S () (oF(t)) = 0. So, we have

S () = 3 [ (oH ()]
= >[5 k)]
1=0
- ) =0
=0

One says that a design is information lossless or achieves
capacity if the capacity of the new equivalent channel obtained
by considering the design as part of the channel, has the
same capacity of the original channel. And we call a STBC
described with such design an information lossless STBC [8].
Then, we have the following theorem:

Theorem 4: Let K/ F be a cyclic extension of degree n with
K = F(t, = t""), t,w, € F,|t| = 1 and o be a generator
of the Galois group. Let § (|6] = 1) be a transcendental
element over K. Then, the design given in (1), arising from
the division algebra (K (d)/F(6),0,9), achieves the capacity.
i.e., the capacity of the new channel H® is C(p,n,r).

Proof: According to (6), we have the capacity of the
equivalent channel H®, denoted by Cpa(p,n,r) (DA stand-
ing for Division Algebras), as

Cpal(p,n,r) = %EH log, (det (Im + = ('H@)(HCI))H>> .

The factor % is to compensate the n channel uses. Using
Lemma 1 and the fact that J lies on the unit circle, it is easy
to see that ®® = ] .. Simplifying the above, we have

%EH log, ((det (Ir + gHHH)))
= Fpulog, <det (Ir + EHHH))
= C(p,n,r).

CDA(p7 TL,’I") =

| ]
From the above theorem, it is clear that the STBCs with |t| =
|6] = 1 of Examples 1, 2, 3, 4 and 5 are information lossless.

IV. SIMULATION RESULTS

The channel is modeled as in (7). We present simulation
results for the following cases: (i) 2 transmit and 2 receive
antennas with 4 and 8 bits per channel use, (ii) 2 transmit
and 10 receive antennas with 4 and 8 bits per channel use
and (iii) 4 transmit and 4 receive antennas with 8 and 16 bits
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channel use. We have used sphere decoding algorithm [21] at
the receiver.

For the two 2-transmit antenna cases we use the STBC of
Example 1 with 4 QAM and 16 QAM for 4 and 8 bits per

13
—— Divalg — 4bpcu
— By, 0" 4bpcu
—6— Divalg - 8bpcu
—— B, 0" 8bpcu
—A— LD - 8bpcu

5 10 15 20 25 30 35
SNR

Fig. 1. Comparison of STBCs from Division algebras with Damen’s rate-2
STBC and LD code from [7], for 2 transmit and 2 receive antennas

channel use respectively. The value of § is arbitrarily chosen
to be 705,

Figure 1 shows the BER vs SNR for 2 transmit and 2
receive antennas. It can be seen that at 10~ BER, the STBC
from division algebras outperforms the Damen’s rate-2 STBC
(B2,4) by 0.5 dB for 4 bits per channel and by 0.75 dB for 8
bits per channel use. We also compare our code with the Linear
Dispersion code in [7], obtained by maximizing the mutual
information for 8 bits per channel use. It can be seen that at
8 bits per channel use, our code outperforms the LD code by

T T
—+— DivAlg — 4bpcu
o Bz, 0 = 4bpcu

—— DivAlg — 8bpcu
= Bz, o T~ 8bpcu

8
SNR

Fig. 2. Comparison of STBCs from Division algebras with Damen’s rate-2
STBC, for 2 transmit and 10 receive antennas
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about 4dB at BER of 10~°. From the capacity calculations of
[9], it can be seen that for 4 and 8 bits per channel use, i.e.,
with 4 QAM and 16 QAM our code is less than 1 dB away
from the capacity of the channel with QAM as the input.

Figure 2 gives the BER vs SNR for 2 transmit and 10
receive antennas. Here also, it can be seen that we outperform
the Damen’s rate-2 STBC by 0.25 dB for both 4 and 8 bits
per channel use. In this case, our code is less than 0.25 dB
away from the capacity of the channel and coincides with the
capacity of the channel used with 4 QAM and 16 QAM as
given in [9].

o
w
]
107°
10°L :[ —— Uncoded-8bpc
—©— Galliou et al.-8bpc
—— Divalg-8bpc
—*— Uncoded-16bpc
107k B Galliou et al.-16bpc
—&— Divalg-16bpc
107 I I I I I I I I

6 8 10 12 14 16 18 20 22 24

any other cyclic division algebras which will yeild information
lossless STBCs with better performance. Also one could try
to obtain a closed form expression for the coding gain of the
STBCs obtained in this paper.
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