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Abstract— This paper presents a construction of very high-rate
low-density parity-check (LDPC) codes based on the incidence
matrices of unital designs. Like the projective geometry and oval
designs, unital designs exist with incidence matrices which are
significantly rank deficient. Thus high-rate LDPC codes with a
large number of linearly dependent parity-check equations can be
constructed. The LDPC codes from unitals have Tanner graphs
free of 4-cycles and perform well with iterative decoding, offering
new LDPC codes at rates and lengths not available with existing
algebraic LDPC codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were first pre-
sented by Gallager [1] in 1962 and have recently been re-
discovered and extended [2], [3]. LDPC codes are obtained
by specifying a sparse parity-check matrix H , so that the cal-
culation of each checksum depends on few code word bits, and
the evaluation of code bit validity depends on few checksums.
Using this property of LDPC codes Gallager presented an
iterative decoding algorithm whose complexity remains linear
in the block length with performance remarkably close to the
Shannon limit [1], [2], [4].

A Tanner graph displays the relationship between codeword
bits and parity checks and provides a useful representation of
LDPC codes [3]. Each of the code bits and parity checks in
H are represented by a vertex in the graph. A graph edge
joins a code bit vertex to the vertices of the parity checks that
include it. It is known that the iterative sum-product decoding
algorithm [5] converges to the optimal solution provided that
the Tanner graph of the code is free of cycles. A cycle in a
Tanner graph is a sequence of connected code bits and check
sums which start and end at the same vertex in the graph, and
which contain other vertices no more than once. The length
of the cycle is simply the number of edges it contains.

The existence of short cycles in the Tanner graph prevents
an exact error-probability analysis of iterative decoding proce-
dures, and the shorter are the cycles in the graph, the sooner the
analysis breaks down. To date, randomly constructed LDPC
codes have largely relied on the sparsity of the parity-check
matrix to avoid short cycles in the Tanner graph.
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Cycles of length less than 6 in the Tanner graph associated
with an LDPC code can be systematically avoided by taking
as parity-check matrices the incidence matrices of suitably
chosen combinatorial designs called Steiner 2-designs [6], [7],
[8], [9]. A Steiner 2-design, denoted 2-(v, b, r, γ, 1) or simply
2-(v, γ, 1), is an arrangement of a set of v points into b subsets,
called blocks, such that the number of points in each block,
and the number of blocks which contain each point, designated
γ and r respectively, are the same for every point and block
in the design and that every pair of points appears together in
exactly one block.

Besides the Steiner 2-designs with constant column weight,
the Steiner 2-designs of interest benefit from rank deficient
incidence matrices and can be derived from projective ge-
ometries. These are the projective geometry (PG) designs
themselves, which are 2-(m2 + m + 1,m + 1, 1) designs,
the 2-(m(m − 1)/2,m/2, 1) oval designs and unital designs
which are 2-(m3 + 1,m + 1, 1) designs. The majority logic
decodable codes constructed in [10], [11] which were derived
from projective geometries have recently been shown to also
make excellent LDPC codes in [7] and along with Euclidean
geometries (EG) in [8]. Motivated by the excellent perfor-
mance of these codes, oval designs were used to construct
new LDPC codes in [12].

In this paper we construct the parity-check matrices of
LDPC codes using the incidence matrices of unital designs.
The family of parity-check matrices so obtained have uniform
row and column weights, and have Tanner graphs which are
free of 4-cycles. The parameters of the family of unital designs
were presented in [13, Table II] where it was assumed that the
code rates would be (b− v)/b if codes were constructed from
the incidence matrices of unital designs on v = m3 +1 points.
However, for odd m the corresponding incidence matrices are
significantly rank deficient for small m and conjectured to be
so for larger m [14]. Consequently, LDPC codes from unital
designs with odd m benefit from both higher rates and the
decoding advantages attributed to a large number of linearly
dependent rows in the parity-check matrix [8], [15]. Thus we
consider in this paper the properties and performance of LDPC
codes derived from unital designs. Further, column splitting is
applied to the codes from unital designs to construct even
higher-rate LDPC codes free of 4-cycles.

We present unital designs in some detail in Section II before
describing the LDPC codes constructed using unital designs
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in Section III. Section IV details the performance of unital
LDPC codes when decoded using the sum-product algorithm
and Section V concludes the paper.

II. UNITAL DESIGNS

Unital designs are constructed from projective geometries
and we present some background material on both projective
geometries and unitals in this Section. Further details on pro-
jective planes and their close connections with error-correcting
codes can be found in [16], [17]. Our treatment of projective
geometries follows Anderson [17], while the material on unital
designs is essentially the presentation of Assmus and Key [16],
[14].

Consider the set S of triples x = (x, y, z) of elements of
the finite field GF(q), where (x, y, z) are not all zero. S has
q3 − 1 members, but we identify triples x and y if x = λy
for some non-zero element λ ∈ GF(q), and say that x and
y are equivalent. Denote the equivalence class of x by [x].
Each equivalence class has q − 1 members, corresponding to
the q − 1 possible non-zero values of λ, and so there are
(q3 − 1)/(q − 1) = q2 + q + 1 different classes [x], which we
take as the points of PG(2, q).

Next define the blocks (or lines) as follows: If α =
(α0, α1, α2) is a triple of elements of GF(q), not all zero,
define the line [α] to be the set of all points [x] such that
α0x + α1y + α2z = 0. By an argument similar to the one
for points, there are q2 + q + 1 blocks. To see that there
are q + 1 points on each line, consider the line [α] where
α = (α0, α1, α2). Not all the αi are zero, so suppose for
example that α1 �= 0. Then, if [x] is on [α], x1 is uniquely
determined by x0 and x2, where x0 and x2 cannot both be
zero. There are q2−1 choices of x0 and x2, so there are q2−1
vectors x �= 0 satisfying α0x + α1y + α2z = 0, and hence
there are (q2 − 1)/(q − 1) = q + 1 distinct points [x] on [α].

As an example, we construct the finite projective plane
PG(2, 22). Here we use GF(22), which can be thought of
as {0, 1, α, α + 1}, where α2 = α + 1. Writing β in place
of α + 1, so that αβ = α(α + 1) = α2 + α = 1 and
β2 = (α + 1)2 = α2 + 1 = α, and omitting brackets and
commas, the 21 points can be written as

001, 010, 011, 01α, 01β, 100, 101, 10α, 10β, 110, 111,

11α, 11β, 1α0, 1α1, 1αα, 1αβ, 1β0, 1β1, 1βα, 1ββ.

Note that there are 21 points, and not 43 − 1 = 63, since we
identify points that differ only by a scalar multiple. Thus, for
example, 01α and 0aβ define the same point since (0, α, β)
= α(0, 1, α).

There are 21 lines in PG(2, 22), a representative selection
being as follows:

[100] : 001 010 011 01α 01β,

[011] : 100 011 111 1αα 1ββ,

[1αβ] : 01β 10α 111 1αβ 1β0.




1 . . . . 1 1 . . . 1 .
. . . . . 1 . 1 1 1 . .
. . 1 1 . . 1 1 . . . .
1 . . 1 1 . . . 1 . . .
. . . . 1 . 1 . . 1 . 1
. . 1 . . . . . 1 . 1 1
. 1 1 . 1 1 . . . . . .
1 1 . . . . . 1 . . . 1
. 1 . 1 . . . . . 1 1 .




Fig. 1. The incidence matrix of the 2-(9, 3, 1) unital design from the unitary
polarity on the plane PG(2, 22).

In the above, the five points identified as lying on the line
[1αβ] are, by definition, those points (x, y, z) which satisfy
the equation x + αy + βz = 0.

An unitary polarity in a projective plane of even order q =
m2 is a set of points of the plane with cardinality m3 + 1
having the property that every line of the plane meets the set
in 1 or m + 1 points. For example, the hermitian unital in
PG(2,m2) is the set of points (x, y, z) satisfying [14]

f(x, y, z) = xm+1 + ym+1 + zm+1 = 0.

For the plane PG(2, 22) presented above, the set of points

110, 011, 1α0, 01α, 1β0, 01β, 101, 10α, 10β

form the unitary polarity described by x3 + y3 + z3 = 0. The
lines

[11β], [010], [1β1], [βα1], [1α1], [111],

[001], [α11], [100], [β11], [11α], [1αβ],

all contain 3 of the points in the unitary polarity and all other
lines contain one of these points.

A unital design or unital has as points the point set of a uni-
tary polarity and for blocks those lines in the projective plane
that meet the point set of the unitary polarity in m + 1 points
[16]. The points and blocks of the design retain the incidence
of the points and lines of the geometry. Thus a unital design
is a Steiner 2-design with parameters 2-(m3 + 1,m + 1, 1).
That is, a unital design consists of b = m2(m3 + 1)/(m + 1)
subsets, called blocks, of a set of v = m3 + 1 points with the
property that every point is contained in r = m2 blocks, every
block contains γ = m + 1 points and every pair of points is
contained in exactly one block together.

A unital design can be described by a v×b incidence matrix
N where each row in N represents a point Pj of the design
and each column a block Bi:

Ni,j =
{

1 if Pi ∈ Bj ,
0 otherwise.

The unitary polarity defined above on the plane GF(22)
produces a 2-(9, 3, 1) unital design with incidence matrix
shown in Fig. 1.

The unitals described above are Hermitian unitals, which
are the set of points and lines of a unitary polarity on a
desarguesian plane of order m2 [16]. These unitals exist for all
m a prime power. However other unital 2-(m3 + 1,m + 1, 1)
designs exist, for m not necessarily a prime power, which are
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not defined on a desarguesian plane [16]. The codes presented
in this paper are derived from Hermitian unitals constructed
using the method of [14].

III. LDPC CODES FROM UNITAL DESIGNS

We will construct LDPC codes from unital designs in two
ways. We define type-A codes, also called unital codes, by
taking the incidence matrix of the unital design as the parity-
check matrix of the code. A unital LDPC code will thus have
v parity checks and block length equal to b. All columns of
H will have constant weight γ and all rows constant weight
r; the codes are thus said to be (γ, r)-regular. The density of
the parity-check matrix of a unital code is

m + 1
m3 + 1

,

which decreases as the code length increases.
The unital designs have the property that every pair of points

in the design occur together in exactly one block. Thus a pair
of points cannot occur together in two blocks and cycles of size
4 are avoided in the Tanner graph of unital codes. However
cycles of size 6 always occur in codes from Steiner 2-designs
[9], and there are exactly

N6(m) =
(

m + 1
2

)
m3(m3 + 1)(m − 1)

3

6-cycles in a unital code from the unital design on m3 + 1
points.

Since no pair of points can occur together in two blocks
the unital codes have an orthogonal check set and Massey’s
minimum distance bound can be applied to unital codes. Unital
codes thus have a lower bound on the minimum distance of
one plus the column weight and we have

d ≥ m + 2. (1)

The parity-check matrices constructed from incidence matri-
ces of unitals are not necessarily full 2-rank and so the number
of message bits in the code is k = n − rank2(H). While an
explicit formula for the 2-ranks of the incidence matrices of
unital designs is not yet available, it is known that the 2-rank
can only be less than m2 if 2|m + 1 [16, Theorem 8.3.1]. For
the unitals presented in Table I the 2-ranks of the incidence
matrices have been calculated in [14] where it is conjectured
that the 2-rank of those unitals where 2|m + 1 is

m(m2 − m + 1).

Table I shows the parameters of the unital designs obtained
for values of m = 2, . . . , 9, m a prime power. Also shown
are the parameters of the associated linear block code. The
notation [n, k, d] specifies the length, dimension and minimum
distance of the code respectively. The range of possible
values for the minimum distance of the unital codes has been
shortened via exhaustive search using Magma [18]. We see that
the small unital codes have minimum distances better than the
lower bound.

TABLE I

PARAMETERS OF TYPE-A CODES FROM UNITAL DESIGNS

m (v, b, γ, ρ, λ) rank2(H) [n, k, d]
2 (9, 12, 3, 4, 1) 9 [12, 3, 6]
3 (28, 63, 4, 9, 1) 21 [63, 42, 6]
4 (65, 208, 5, 16, 1) 65 [208, 143, 6–10]
5 (126, 525, 6, 25, 1) 105 [525, 420, 7–9]
7 (344, 2107, 8, 49, 1) 301 [2107, 1806, 9–12]
8 (513, 3648, 9, 64, 1) 513 [3648, 3135,≥ 10]
9 (730, 5913, 10, 81, 1) 657 [5913, 5256,≥ 11]

TABLE II

PARAMETERS OF TYPE-B CODES FROM UNITAL DESIGNS

m s H [n, k, d]
4 2 γ = 2 and 3, r = 16 [416, 351,≥ 3]
5 2 (3, 25)-regular [1050, 924,≥ 4]
7 2 γ = 3 and 5, r = 49 [4214, 3870,≥ 4]
8 2 γ = 3 and 6, r = 64 [7296, 6783,≥ 4]
8 3 (3, 64)-regular [10944, 10431,≥ 4]
9 3 γ = 3 and 4, r = 81 [11826, 11096,≥ 4]

The Type-A unital codes provide a deterministic construc-
tion, guaranteed girth, and regularity. The benefit of a deter-
ministic construction is that the storage requirements necessary
to completely describe the code are reduced. If storage is a
significant issue it is possible to specify only the required m
and the entire code can be constructed on-line with some ex-
penditure in terms of computational complexity. Alternatively,
where the hard-wiring of the codes Tanner graph is employed
[19] the exact regularity of the unital codes translates directly
into regularity in the layout of an ASIC. Unital codes are thus
very promising LDPC codes for moderate to high signal-to-
noise ratio channels.

The large column weight of the unital codes motivates the
second type of codes from unital designs, type-B codes, which
we construct using column splitting, a technique employed in
[8]. The large column weight of unital designs allows us to
split the non zero entries of one column into two or more
(designated s) lower weight columns. The resulting matrix will
have s times as many columns as the original, the same number
of rows, and most importantly will still be free of 4-cycles.
By increasing the length of the code without increasing the
number of parity-check equations we can derive very high
rate LDPC codes without 4-cycles.

For example each column in the incidence matrix of the 2-
(126, 525, 6, 25, 1) unital design can be split into two weight
3 columns to produce a (3, 25)-regular [1050, 924,≥ 4] LDPC
code without 4-cycles. Splitting columns in this way produces
sparser parity-check matrices and codes with still higher rates.
The minimum distance of the type B codes is still lower
bounded by (1) where γ is now defined as the weight of the
smallest weight column in the parity-check matrix.

Table II shows the codes we have obtained using this
method.

IV. SIMULATION RESULTS

The performance of unital LDPC codes on the additive
white gaussian noise (AWGN) channel, when decoded us-
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Fig. 2. The decoding performance of length 63 LDPC codes on an
AWGN channel using sum-product decoding with a maximum of 10
iterations.

ing the sum-product decoding algorithm [4], [2], have been
compared to that of randomly generated codes of the same
rate and length and existing algebraic LDPC codes from oval
designs. In each simulation a maximum number of iterations
has been set and the standard stopping criterion for LDPC
codes, zH ′ = 0, is applied to terminate the decoding early
if the hard decision on the bit probabilities, z, is a valid
codeword.

For the random LDPC codes we have used the construction
method from [4], [2] using source code from [20]. At the
signal-to-noise ratios we consider the regular randomly con-
structed LDPC codes perform best with column weight 3 and
so we have constructed random LDPC codes with this column
weight rather than constructing random codes with the column
weight of the unital codes. Further, in an attempt to get the
best random LDPC codes we have generated random LDPC
codes with as few 4-cycles as possible in the cases where the
removal of 4-cycles produces a better performing LDPC code.
However, there is a tradeoff between removing code cycles and
obtaining code regularity as the process of removing 4-cycles
causes the row weight to be more variable.

Fig. 2 shows the performance of the unital [63, 42, 6] code
compared to a randomly generated LDPC code on the AWGN
channel. The unital code is a (4, 9)-regular code and the
randomly generated LDPC code is (3, 9)-regular. Also shown
is the performance of the equivalent length but slightly higher
rate oval LDPC code which is also (4, 9)-regular. Probably due
to its better minimum distance, the unital code outperforms the
oval code at very high signal-to-noise ratios.

Fig. 3 shows the performance over an AWGN channel of
the unital [525, 420,≥ 7] and [2107, 1806,≥ 9] codes. The
2-dimensional PG and EG LDPC codes with the closest rate
are length 4161 and 4095 respectively while the closest rate
oval LDPC code is length 1023. The performance of the
[1023, 812,≥ 17] oval code is also shown in Fig. 3. In a
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Fig. 3. The decoding performance of unital and oval LDPC codes
on an AWGN channel using sum-product decoding with a maximum
of 10 iterations.

Similar manner to the oval, EG and PG codes, as the size of
the unital increases so too does the column weight of the unital
code. This provides a good minimum distance for the code,
and hence excellent decoding performance at high signal-to-
noise ratios, but also degrades the decoding performance at
low signal-to-noise ratios. The length 525 unital code out-
performs randomly constructed codes for bit error rates lower
than 10−4, while the length 2107 unital code out-performs
randomly constructed codes for bit error rates lower than 10−6.

The column weight of the LDPC codes from unital designs
can be reduced, to improve their performance at low signal-
to-noise ratios, by employing column splitting. Such codes are
no longer completely deterministic but they can still be regular
and do retain the guaranteed girth. Using column splitting very
high rate LDPC codes can be achieved which is beneficial for
applications such as magnetic recording channels. Figs. 4–
5 show the performance of type-B LDPC codes constructed
using column splitting. For these codes the column weights
are keep small and high rate LDPC codes free of 4-cycles are
constructed.

Fig. 4 shows the BER performance over an AWGN channel
of the [416, 351,≥ 3] code from the unital on 65 points
compared with a randomly generated LDPC code. The uni-
tal code is nearly regular with half the columns weight 3
and the other half weight 2, with all rows weight 16. The
randomly generated LDPC code has column weights of 3
and row weights between 8 and 63. Also shown is the BER
performance over an AWGN channel of the [4214, 3870,≥ 3]
code from the unital on 344 points compared with a randomly
generated LDPC code. The unital code has half the columns
weight 2 and the other half weight 3 with each row weight
49 while the randomly generated LDPC code has all columns
weight 3 and row weights between 28 and 48. The length
4214 unital code performs similarly to the slightly longer but
equivalent rate [4599, 4227,≥ 9] type-II EG-LDPC code [8]
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Fig. 4. The decoding performance of LDPC codes on an AWGN
channel using sum-product decoding with a maximum of 10 itera-
tions.
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Fig. 5. The decoding performance of LDPC codes on an AWGN
channel using sum-product decoding with a maximum of 10 itera-
tions.

which is (8, 72)-regular.

Fig. 5 shows the BER performance over an AWGN channel
of the [7296, 6783,≥ 4] code from the unital on 344 points
compared with a randomly generated LDPC code. The unital
code has half the columns weight 2 and the other half weight
3 with each row weight 49 while the randomly generated
LDPC code has all columns weight 3 and row weights between
34 and 52. Fig. 5 also shows the BER performance over an
AWGN channel of the [11826, 11096,≥ 4] code from the
unital on 730 points compared with a randomly generated
LDPC code. The unital code has columns weight 3 and 4 and
row weights between 44 and 67 while the randomly generated
LDPC code has all columns weight 3 and row weights between
39 and 56.

V. CONCLUSIONS

In this paper low-density parity-check codes, based on
combinatorial structures known as unital designs, have been
presented. We have constructed high-rate LDPC codes with
Tanner graphs free of 4-cycles, and in some cases with a large
number of linearly dependent parity checks as well. Simulation
results with the sum-product decoding algorithm demonstrate
that the codes from unital designs provide excellent decoding
performances.
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