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Abstract- A novel blind clustering based equalizer suitable for 
channels with inter-symbol interference (ISI), nonlinear 
distortions and co-channel interference (CCI) is proposed. Blind 
channel estimation is performed by partitioning the baseband 
data at the receiver into clusters that are identified using a new 
class of clustering algorithms known as K-Harmonic            
Means (KHMp). The KHMp algorithms are insensitive to the 
initialization of the cluster centers owing to a built-in boosting 
function and  provide reliable estimates of the cluster centers. The 
identified cluster representatives are then mapped to the 
corresponding combinations of input symbols using a discrete 
hidden Markov model formulation of the channel states and the 
mapping is used to compute the branch metrics in a cluster-based 
Viterbi detector. The performance of the proposed equalizer in 
hostile environments is illustrated with computer simulations. 

I. INTRODUCTION 

  High-speed digital communication suffers from inter-symbol 
interference (ISI), co-channel interference (CCI), noise and 
nonlinear distortions present in the channel. Under Gaussian 
white noise conditions, the maximum likelihood sequence 
detector (MLSD) outperforms both linear as well as nonlinear 
symbol decision equalizers. However, under the presence of 
nonwhite CCI and severe nonlinearities in the channel, MLSD 
is no longer the optimal solution. Approaches based on data 
clustering techniques have generated a lot of interest for their 
ability to avoid any explicit channel modeling [1]-[5]. These 
methods focus on the clusters formed by the data at the 
receiver, exploiting the fact that the channel distortions such as 
ISI, nonlinearities, and CCI are reflected in the shape and 
position of the clusters. As a result, using a clustering 
algorithm to identify the cluster representatives basically 
unravels the specific nature of the channel impairments. In the 
past, clustering techniques like the neural gas-clustering 
network [2] and the Iterative Self-Organizing Data Analysis 
Technique (ISODATA) [4] and have been used to perform this 
task.  

  In this paper, we propose a novel cluster-based MLSD that 
uses the K-Harmonic Means (KHMp) class of clustering 
algorithms. The rest of the paper is organized as follows: In 
Section II, the concept of using clustering methods at the 
receiver is presented, with the KHMp algorithms described in 
Section III. Section IV, and V describe the channel mapping 
and sequence detection processes respectively. Simulation 
results for the nonlinear ISI and CCI impaired channels are 
presented in Section VI and the results are summarized in 
Section VII. 

II. CLUSTERING–BASED EQUALIZATION 

A. System Model 
  Let us consider the baseband model of a typical digital 
communication system corrupted by CCI as depicted in Fig.1. 
The channel, denoted by the FIR transfer function H(z), 
includes the modulation filter at the transmitter end, the 
multipath channel and filters at the front end of the receiver 
that are used to suppress the adjacent-channel interference 
(ACI) and perform low-pass filtering. The baseband received 
signal r(t), can be denoted as:  
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where s(t) is the output of the desired channel, sco(t) is the co-
channel interference component, w(t) is the zero mean white  
Gaussian noise with variance 2

nσ , and f (.) is the desired 
channel function representing channel characteristics like 
multipath effects and nonlinearities. s(t) and sco(t) are given by: 
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where I(t) and Ii(t) are the desired and co-channel data symbols 
that are assumed to be equiprobable bipolar (±1) and mutually 
uncorrelated, h(n) and hi(n) are the impulse response 
coefficients of the desired channel and the i-th co-channel 
having L and Li taps respectively and the total number of 
interfering co-channels is assumed to be k.  

 
 
Fig. 1. Discrete-time model of a typical digital communication system 
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The signal-to-noise ratio (SNR) and the signal-to-interference 
ration (SIR) are calculated as follows: 
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where 2
sσ and 2

coσ  are the signal power and the co-channel 
signal powers respectively. 
The proposed equalizer assuming a single interfering co-
channel is depicted in Fig.2.  
 
B. Clustering Concepts 
  We observe that the finite length of the channel and nature of 
the input sequence I(t), result in the desired channel output 
sequence s(t) being a discrete values signal with 2L+1 different 
elements, called desired channel states mk , 1≤ k≤ 2L+1,  
corresponding to 2L+1 possible realizations of the sequence of 
transmitted bits (I(t), …., I(t-L) in the 1-dimensional space.  If 
the channel has nonlinear characteristics, the desired channel 
states shift to new positions depending on the form of the 
nonlinearity. Similarly, assuming a single co-channel, the co-
channel output sequence sco(t) will be a discrete values signal 
with 112 +L  co-channel states j

com , 1≤ j≤ 112 +L . The 
randomness of the additive white Gaussian noise results in the 
formation of clusters around the observed states that arise from 
the sum of the co-channel states plus each one of the desired 
states. The bipolar nature of the transmitted symbols results in 
the observed states being uniformly distributed around the 
corresponding desired states and we can assume the overall 
mean coincides with the desired states. We use a new class of 
clustering algorithms known as K-Harmonic Means (KHMp) 
to identify the desired channel states. Once the desired channel 
states have been identified, the co-channel states are estimated 
by performing the clustering operation on the shifted observed 
data sequence, kmtrtr −= )()(ˆ , where r(t) is the received data 
symbol related to the desired state mk.  
 

III. K-HARMONIC MEANS CLUSTERING 
The frequently used clustering algorithms like the K-means 
and ISODATA have the intrinsic problem of depending 
heavily on the initialization of the cluster centers for achieving 
good performance. This is due to their winner-takes-all 
partitioning strategy, which results in a strong association 
between the data points and the nearest center and prevents the 
centers from moving out of a local density of data. This 
problem can be resolved by replacing the minimum distance 
from a data point to the centers, used in K-means, by the 
Harmonic Averages (HA) of the distances from the data point 
to all centers resulting in a continuous transition between the 
data points and centers. This new class of center-based 
iterative clustering algorithms known as the K-Harmonic 
Means clustering (KHMp) [6], [7] is essentially insensitive to 
the initialization of the centers and significantly improves the 
quality of clustering results compared to the K-means and 
ISODATA under different initialization conditions. 

 
 

Fig. 2. Block diagram of the proposed cluster-based blind MLSD 

We use the KHMp clustering algorithms to classify a block of 
received data r(t) of length N, into K clusters and determine the 
associated set  M of cluster representatives. Since the number 
of clusters K into which the data must be classified is 
unknown, we obtain the clustering using the KHMp algorithms 
for increasing K until little reduction is obtained in the 
performance function J. The performance function J for the 
KHMp algorithms is defined as: 
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The recursive formula for minimizing the performance 
function J, is obtained by taking the partial derivatives of J 
with respect to the center positions  m k , k=1,…, K and setting 
them to zero as: 
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,)(then )ta(r  the weighting function of the data points, decides 
how much of each data point r(t) participates in the next 
iteration of calculating the new center locations whereas the 
term )rmp( ik  decides the portion of ii )ra(r  that is 
associated with km  and is known as the membership function. 
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We find that for p>2, )a(ri  has a smaller value for the data 
points that are closer to one of the centers. This property serves 
as a boosting function and boosts, in the next iteration, the 
participation of the data points that are not close to any centers. 
This dynamic weighting of the data points in effect flattens out 
a local density that has trapped more than one center and 
reduces the chance of multiple centers being trapped in a 
single local cluster of data, thus making the algorithm 
insensitive to the initialization of the centers [6]. The 
asymptotic computational complexity per iteration for 
computing the pair-wise distances from N data points to K 
centers is O(N*K) which is the same as that of K-means 
algorithm and the overall complexity is far less than that of the 
neural gas clustering network used in [2] that requires a large 
number of iterations to converge. 
 

IV. HMM-BASED CHANNEL MAPPING 
The estimated cluster representatives are related to one or 
more of the 2L+1 possible realizations of the sequence of input 
symbols, which can be named as their respective labels. We 
represent the unknown probabilities of specific clusters to 
correspond to specific labels by a probability matrix 

 2, 1 ),( 1L+≤≤ knmb kn and treat this matrix as an unknown 
parameter θ  of discrete observations HMM. The problem 
then, can be viewed as a maximum likelihood parameter 
estimation problem and the EM algorithm can be applied to 
find the optimal parameters of the HMM which best match the 
given discrete observation sequence.  
 
A. Discrete Hidden Markov Model Formulation 
1. A block of received data r(t) of length T, T ≤ N where N is 
the length of the block used for clustering, is quantized to the 
cluster representative closest to them, and is taken as the 
discrete observation sequence Y = (y(1), …, y(T)), 

},...,1;{)( Kkmty k =∈  feeding the HMM.  

2. There are Z=2L states in the HMM and the states can be 
represented as S(t): ( I(t-1)….I(t-L) ) for a channel of memory 
L, where I(t) is  the i.i.d. sequence of transmitted bipolar 
symbols. 
3. We observe that each state transition from state i to state j 
results in an emission of a specific cluster representative with a 
certain label and that only specific transitions among the 
clusters are possible due to the finite length of the channel and 
the effect of ISI on successive received samples. Hence, the 
elements of the state transition probability matrix  

  ,,1 ],)( |)1([ ZjiitSjtSPaij ≤≤==+=      

are assigned a value of 1/2 (2 possible symbols) if they 
correspond to a viable state transition and a value of zero if 
they do not.  
4. The initial state distribution πi = P[S(1) = i], for 1≤ i ≤ Z, is 
usually know at the receiver based on channel length 
measurements.  
5. The desired channel mapping probability matrix 

12, 1 ),( +≤≤ L
kn knmb , is considered as the unknown 

parameter θ  to be estimated by applying the EM algorithm to 
the HMM. 
 
B. Parameter Estimation Via The EM Algorithm 
Unknown parameter estimation of an HMM using the EM 
algorithm is also known as the Baum-Welch algorithm or the 
forward-backward algorithm [8]. Following the maximum 
likelihood parameter estimation concept, the estimation is done 
iteratively, estimating the parameter θ  that maximizes the 
probability P(Y/θ ) in every iteration and the algorithm 
converges when P(Y/θ ) exceeds a predetermined threshold. 
1) Initialization: Let )(itα and )(1 jt+β be the forward and 
backward parameters respectively. 
 Set 1)(1 =iα for the known initial state i and 0 otherwise, 

1)(1 =+ jTβ for j = 1,…, Z 
 Set ,/1)( Kmb kn = for n = 1,…, 2L+1, k = 1,…, K 
2) Recursion: The following parameters are calculated in each 
iteration. 

1. )( jtα  for t = 2, …, T+1, j = 1, …, Z   
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3. ),,( jitξ the probability of being in state i at time t and 
state j at time t+1  
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4. Finally, ),( kn mb  for n = 1,…, 2L+1, k = 1,…, K is 
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The recursion is repeated until convergence [4]. 

 
  The different cluster representatives are then mapped to the 
respective labels for which they have the highest probability as 
revealed by the estimated matrix )( kn mb . Thus, the required 
information for maximum likelihood sequence detection is 
now available and the detector proceeds to perform signal 
detection. 

V. CLUSTER-BASED VITERBI DETECTION 

 The channel mapping obtained using the procedure outlined in 
Section IV, is used to compute the distances Dk between the 
received symbol and the desired channel outputs mk and a 
decision is made based on the path having the minimum cost. 
In the presence of co-channel interference, the distance metric 
is modified as the minimum distance between the received 
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data r(t) and each of the observed states formed due to the sum 
of the corresponding desired state mk  and the co-channel states 

j
com  as described earlier in Section II. 
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 Also, the number of possible searching paths in the Viterbi 
trellis can be reduced by noting the constraints placed on the 
allowable jumps among the clusters as described earlier. Like 
in the HMM, the number of states is given by Z=2L and there 
are only two possible state transitions at any time.  Performing 
signal detection in the method outlined above is suitable for 
both linear and nonlinear channels and is especially found to 
be very efficient when the channel has nonlinear 
characteristics as shown in the computer simulations that 
follow. 

VI. SIMULATIONS 

In all the simulations that follow, we assume the transmitted 
symbols to be equiprobable bipolar symbols. The proposed 
scheme, as shown in Fig. 2, is investigated through bit error 
rate (BER) for different SNR and SIR values.  

A. Linear channel with ISI 
We initially consider a simple channel (L=1) without any 
nonlinearity and CCI to demonstrate the performance of the 
proposed KHMp clustering and HMM based channel mapping 
methods. The channel is represented as: 
     r(t) = 0.5 I(t) + I(t-1) + w(t) 
The signal to noise ratio (SNR) is taken as 12dB. The K-
Harmonic Means clustering algorithm with p =3,  N=200, and 
random data samples as the initial centers, identifies the cluster 
representatives as: 

  4969.1   and    5095.0   ,5005.0   ,5.1  4321 ==−=−= mmmm
The K-Means algorithm on the other hand, when initialized 
randomly, generates varying cluster representatives based on 
the initialization. With the number of states of the HMM fixed 
at Z = 2L = 2 and T=40, the channel mapping probability 
matrix 4, 1 ),( ≤≤ knmb kn converges to the matrix shown in 
Table 1 in 8 iterations of the EM algorithm.  
 
Each of the labels is then mapped to the cluster representative 

km  for which it has the highest probability as revealed by the 
matrix )( kn mb . We can thus conclude from the table that the 
channel output 1m  corresponds to the sequence of input bits (-
1 -1), 3m  to (-1 1) and so on.  
 
            TABLE 1: Probability matrix )( kmnb for channel A 

 
 
 
 
 
 
 

   TABLE 2: Probability matrix )( kmnb for channel B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Near optimal sequence detection can then be achieved by the 
Viterbi algorithm by using this mapping to compute the branch 
metrics associated with each of the legal state transitions in all 
the possible paths in the state trellis. 
 

B. Channel with ISI and nonlinearity 
We now consider an ISI impaired channel with nonlinearity 
but without any CCI as shown below: 
r(t) = 0.5 I(t) + 0.7 I(t-1) + 0.5 I(t-2) 
with nonlinearity: r(t) + 0.05r(t)2  - 0.1r(t)3 + w(t) 

For a signal to noise ratio (SNR) of 10dB, the KHM3 
clustering algorithm identifies 6 clusters in the block of N=200 
received data samples and the cluster centers are as follows: 

,1532.1-      , -0.6175  , 2641.0-  
0.3183,        ,6842.0    , 4154.1  

654

321

===
===

mmm
mmm

 

We observe that the clustering algorithm has identified only 6 
clusters whereas the maximum possible number of clusters is 
K = 2L+1  = 23 =8. This is because of the high ISI and the 
symmetry in the channel that leads to overlapping clusters. 
This is revealed by the output of the HMM, which is the 
probability matrix 6 1 ,8 1for   ),( ≤≤≤≤ knmb kn  (converges 
in 9 iterations) as shown in Table 2. For example, it is revealed 
that both the labels (1 1 -1) and (-1 1 1) correspond to the 
cluster representative 2m  and the labels (1 -1 –1) and (-1 -1 1) 
correspond to 5m , etc. Thus the exact channel mapping is 
identified by the HMM process.  
 
Fig. 3 compares the performance, in terms of the bit error rate 
(BER) for various SNR, of the proposed KHM3 clustering 
based blind detector to that achieved using the K-Means 
clustering algorithm, and a classical MLSD with optimal linear 
channel estimator. The initial cluster centers for all the three 
methods were initialized randomly from the data available. We 
can observe from the figure that the proposed blind detector 
outperforms both the detector with the K-Means clustering,  

Label 
I(t)I(t-1) 

Cluster representative 

1m          2m         3m         4m  
(-1 -1) 
(-1  1) 
(1  -1) 
(1   1) 

1 
0 
0 
0 

0 
0 
1 
0 

0 
1 
0 
0 

0 
0 
0 
1 

      Label:                     Cluster representatives         
I(t)I(t-1)I(t-2)       m1       m2     m3     m4     m5      m6 

    
   (1 1 1)                1        0       0       0       0        0   
 
   (1 1 -1)               0        1        0      0       0        0 
 
   (1 -1 1)               0        0       1       0       0        0  
 
   (1 -1 -1)              0        0       0       0       1        0  
 
   (-1 1 1)               0        1       0       0       0        0  
 
   (-1 1 -1)             0         0       0       1       0         0  
 
   (-1 -1 1)             0         0       0       0       1         0  
 
   (-1 -1 -1)            0         0       0       0       0         1  
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Fig. 3: ISI and nonlinearly impaired signal  Performance comparison: 
‘—’ proposed blind detector, ‘- - -’ MLSD with linear channel estimator, ‘….’ 
blind detector with K-Means clustering and random initialization of cluster 
centers. 

which suffers severely from its inherent random initialization 
problem, as well as the non-blind classical MLSD with a linear 
channel estimator. 

C. Channel with ISI, nonlinearity and CCI 
Finally, we consider the entire structure presented in Fig 2. 
The ISI and nonlinearity are as previously described and we 
add a single co-channel interferer as given below with a SIR of 
10dB.  

))1(8.0)(6.0()( 11 −+= tItItsco λ where λ determines the SIR. 
The co-channel states are computed as described in Section II 
and the distance metric given in equation (10) is used to 
compute the branch metrics in the Viterbi algorithm.  Fig. 4 
verifies the superior performance of the proposed scheme 
against the conventional MLSD as well as the detector with the 
K-Means clustering even in the presence of CCI. 

VII CONCLUSIONS 

A blind maximum likelihood sequence detector based on 
clustering concepts was proposed. The received data were 
grouped into clusters using the K-Harmonic Means 
unsupervised classification algorithm. The insensitivity of the 
KHMp algorithm to the random initialization of the cluster 
centers resulted in providing good estimates of the possible 
noiseless discrete outputs of the channel. The EM algorithm 
was used to determine the channel mapping probability matrix 
that was modeled as the unknown parameter of a discrete 
HMM, and was subsequently used by the Viterbi detector to 
perform signal detection. The simulations confirm that the 
proposed method does not require any training sequences or 
explicit channel modeling and is well suited for ISI and CCI 
impaired linear as well as nonlinear channels. 
 

 
Fig. 4: ISI, CCI, and nonlinearly impaired signal  Performance comparison: 
‘—’ proposed blind detector, ‘- - -’ MLSD with linear channel estimator, ‘….’ 
blind detector with K-Means clustering and random initialization of cluster 
centers.  
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