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Abstract— This paper1 outlines an optimal dynamic wave-
length allocation in all-optical WDM networks. A simple topology
consists of a 2-hop path network with three nodes is studied for
three classes of traffic where each class corresponds to different
source-destination pair. For each class, call interarrival and
holding times are exponentially distributed. The objective is to
determine a wavelength allocation policy in order to maximize the
weighted sum of users of all classes. Consequently, this method
is able to provide differentiated services in the network. The
problem can be formulated as a Markov Decision Process to
compute the optimal resource allocation policy. It has been shown
numerically that for two and three classes of users, the optimal
policy is of threshold type and monotonic. Simulation results
compare the performance of the optimal policy, with that of
Complete Sharing and Complete Partitioning policies.

I. INTRODUCTION

Wavelength Division Multiplexing (WDM), using wave-
length routing, is one of the candidates to handle the band-
width of future wide area backbone networks. In wavelength
routing networks, each optical path must be established with
a specific wavelength between each source-destination pair.
This is known as wavelength continuity constraint and can
be relaxed by using wavelength converters at intermediate
nodes [1]. The routing and wavelength assignment problem
(RWA) is an important issue in WDM networks. RWA is
usually divided into two separate sub-problems: i) wavelength
assignment problem and ii) routing problem. Many heuristic
algorithms such as random wavelength assignment and first-
fit have been already proposed [2]. The objective of these
algorithms is typically to minimize the overall call blocking
probability or maximize the overall utilization in a single-
class network. Few consistent results dealing with service
differentiation in all-optical networks are available. One can
refer to [3] for a general analysis of this problem.

In this paper, we investigate the wavelength allocation
problem for different classes of users with different priorities.
With the objective to maximize the weighted sum of class-
based utilization, we define a Markov Decision Process (MDP)
problem [4], based on which the optimal wavelength allocation
policy can be determined. In many admission control and
resource allocation problems in telecommunications [5], [6], it
was shown that under some conditions, the optimal policy of
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an MDP exists and it is stationary and monotone. The Policy
Iteration algorithm can be deployed to determine the optimal
policy [4].

The rest of the paper is organized as follows: In Section II,
we formulate the problem as an MDP for a simple network
topology. Section III deals with the definition of the discounted
cost function associated with the problem in the infinite
horizon case. Section IV shows the structure of optimal policy
and section V compares the performance of the proposed
policy with other standard policies. Conclusions are presented
in Section VI.

II. PROBLEM FORMULATION

Consider a 2-hop path network topology for a single fiber
circuit-switched wavelength routing network [7] as depicted in
Fig. 1. The total number of available wavelengths in the system
is W for each hop. Traffic is divided into 3 classes: each
class corresponds to different source-destination pair. Class 1
(respectively, Class 3) consists of the users that use hop h1

(respectively, h2); Class 2 includes the customers that use both
hops h1, h2. In this paper, we assume that there is a wavelength
converter in node 2. Therefore, a Class 2 call is accepted
whenever there is one available wavelength in both hops. Any
arriving call is blocked when all wavelengths along its path
are used. Blocked calls do not interfere with the system.

To improve the system performance it would be essential
to assign a certain number of wavelengths to each class as
a function of the current number of customers from different
classes. Wavelength allocation policies are a particular prob-
lem related to resources allocation policies, such as Complete
Sharing (CS) and Complete Partitioning (CP) [8]. When
implementing CS, no wavelength is reserved for any class.
In addition, an arriving call will be accepted if at least one
wavelength is available throughout all the hops along its path.

21 hh HopHop

 1                              2                              3 

Class 2

Class 3
Class 1

Fig. 1. 2-hop network topology.
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When deploying CP policy, each class is dedicated a constant
number of wavelengths that cannot be used by calls from other
classes. This paper investigates dynamic wavelength allocation
policies, that we refer to as Dynamic Partitioning (DP). It
consists of determining the appropriate number of wavelengths
allocated to each class taking into account the current state of
the system.

For each class, call interarrival times and holding times
are exponentially distributed. Let us define the following
notations:

• 1/λi , i = 1, 2, 3, is the mean interarrival time of Class
i calls.

• 1/µi , i = 1, 2, 3, is the mean holding time of Class i
calls.

• ni , i = 1, 2, 3, is the number of Class i calls currently
in the system.

We will consider first a simpler model which consists of only
Class 1 and Class 2 calls.

Let k be the number of wavelengths allocated to Class 2
calls. For any (n1, n2), one can derive i = W − k − n1

and j = k − n2 as the numbers of available wavelengths
reserved to Class 1 and Class 2, respectively. Therefore, the
three-component vector (i, j, k) characterizes completely the
system. Let S = {s = (i, j, k)|0 ≤ i ≤ W − k, 0 ≤
j ≤ k, 0 ≤ k ≤ W} ⊂ {0, 1, 2, ...W}3 be the system
state space, and st be the system state at time t. Based on
the statistical assumptions, {st, t ≥ 0} is a continuous-time
Markov chain whose transitions are either the event of an
arrival or a departure of a call. To simplify the notation, the
following operators are introduced:

• Ai, i = 1, 2: Arrival operator describing the change of
system state at the arrival time of a Class i user.

– A1s = ((i − 1)+, j, k)
– A2s = (i, (j − 1)+, k)

• Di, i = 1, 2: Departure operator describing the change
of system state at the departure time of a Class i user.

– D1s = (i + 1, j, k)
– D2s = (i, j + 1, k)

where x+ = max(0, x) and s = (i, j, k).
Investigating DP policy involves the calculation of wave-

length allocation as a function of the current system s =
(i, j, k) and the event e. The objective, then , is to maximize
the usage of the optical resources. This equivalently translates
into maximizing weighted sum of number of requests of the
two classes. This problem can be formulated as a Markov
Decision Process (MDP) [9]. Let us describe more accurately
the model:

• Decision epochs take place only at departure times, when
a call terminates and a wavelength becomes available.
This wavelength may be reserved for the same class or
switched to the other one. Fig. 2(a) illustrates the initial
situation of a system in state s = (i, j, k). Fig. 2(b)
provides the final system state, after the departure of
a Class 1 call when we decide to keep the wavelength
to Class 1. Similarly, Fig. 2(c) shows the system state
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(a)                                        (b)                                         (c)

Fig. 2. Possible states after the departure of a Class 1 Call.

after the departure of a Class 1 call when the policy
maker decides to reserve the wavelength for Class 2.
The decision results in increasing the value of k by 1,
or leaving it unmodified. Similarly, when considering the
termination of a Class 2 call, the decision will result in
decreasing the value of k by 1, or leaving it unchanged.

• Therefore, when the system is in state s and the event e
has just occurred, the set of possible actions A(s, e) are:

A(s, e) =




{0} if e = A1 or A2

{0,+1} if e = D1

{−1, 0} if e = D2

Let Pa, a = −1, 0, 1 be the policy operator to describe the
change of system state when applying action a ∈ A(s, e):

– Pas = ((i − 1)+, j + 1, k + 1) for a = 1
– Pas = (i, j, k) for a = 0,
– Pas = (i + 1, (j − 1)+, (k − 1)+) for a = −1

This initial continuous-time MDP can be converted into an
equivalent discrete-time MDP by applying the uniformization
technique [9]. In order to do so, we introduce a random
sampling time ν defined as ν := W (µ1+µ2)+λ1+λ2. When
considering the equivalent discrete-time MDP, only one single
transition can occur during each time slot. And a transition can
correspond to an event of: 1) Class 1 call arrival or departure,
2) Class 2 call arrival or departure and 3) fictitious event.

III. THE DISCOUNTED COST PROBLEM

Our goal is to determine a wavelength allocation policy that
maximizes the weighted sum of n1 and n2. To this end, we are
going to use the results from MDP for discounted cost model
with the infinite horizon [9]. Let us first define the one-step
reward:

R(sn) = n1 + βn2 = W − (i + jβ + (1 − β)k) (1)

where sn = (i, j, k) and β ∈ [0, 1] is the weight assigned to
Class 2 users. One can notice that maximizing (1) consists
of minimizing (i + jβ + (1 − β)k). Thus, we can define the
one-step cost to be minimized:

C(sn) = B · sn (2)

where vector B := (1, β, (1 − β))T .
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The optimal discounted cost function and the optimal policy
can be computed by using the following recursive scheme,
known as the relative value iteration algorithm [4].

Vn+1(s) = min
π

[C(s) + γ
∑
s′

Pπ
ss′Vn(s′)] (3)

where Pπ
ss′ is the transition probability to jump from state s

to state s′ when applying policy π. Pπ
ss′ is given by:

Pπ
ss′ =




λ1 if s′ = A1s , a = 0
λ2 if s′ = A2s , a = 0
n1µ1 if s′ = D1P0s, a = 0
n1µ1 if s′ = D1P1s, a = 1
n2µ2 if s′ = D2P0s, a = 0
n2µ2 if s′ = D2P1s, a = 1
F if s′ = s, a = 0

where F = W (µ2 + µ1) − n1µ1 − n2µ2

Replacing Pπ
ss′ in (3) yields:

Vn+1(s) = C(s) + γ[λ1Vn(A1s) + λ2Vn(A2s) +
(W (µ2 + µ1) − n2µ2 − n1µ1)Vn(s) +
µ1n1 min{Vn(D1P0s), Vn(D1P1s)} +
µ2n2 min{Vn(D2P0s), Vn(D2P−1s)}] (4)

From the above equation, it can be noticed that at a Class 1 call
termination time, the optimal action is a = 0 if Vn(D1P0s) <
Vn(D1P1s) and a = 1 otherwise.

Recursively, we can determine the sequence of n-stage
value functions {V1(s), V2(s), · · ·Vn(s)}, and the limit of this
sequence when n goes to infinity. Lippman in [10] shows that
V (s) := limn→∞ Vn(s) exists and it is the solution of the
infinite horizon discounted cost problem. Besides, V (s) is the
unique solution to the dynamic programming equation (4).

IV. STRUCTURE OF THE OPTIMAL POLICY

The Policy Iteration algorithm [4] can be implemented to
get numerically the optimal policy. In this study, we have
implemented the algorithm by developing a C program. We
define the two following examples with these parameters:
W = 10, λ1 = λ2 = 5, µ1 = µ2 = 1, k = 5; The structure of
the optimal policies are plotted for two cases: i) for β = 0.1
(Fig. 3) and ii) for β = 0.5 (Fig. 4). In both cases, the optimal
policy has the well-known structure of the switching curve,
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Fig. 3. Optimal Policy for W = 10, k = 5, λ1 = λ2 = 5, µ1 = µ2 =
1, β = 0.1 (Fig (a): e = D1, Fig. (b): e = D2).
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Fig. 4. Optimal Policy for W = 10, k = 5, λ1 = λ2 = 5, µ1 = µ2 =
1, β = 0.5 (Fig. (a): e = D1, Fig. (b): e = D2).

separating the state space into two domains. One domain for
which the optimal action is a = +1 (depicted by ’+’) and
the other one for which the optimal decision is a = 0. Figs.
3(a) and 4(a) show the optimal policy after a Class 1 call
terminates. Similarly in Figs. 3(b) and 4(b), when a Class 2
call departures, the switching curve separates the states whose
optimal action is a = −1 (depicted by ’-’) from states where
the optimal action is a = 0. Furthermore, the switching curve
is non-decreasing. A complete proof of the optimal policy
monotonicity is in [11], which is available upon request.

The comparison between Fig. 3 and Fig. 4 illustrates the
sensitivity of the switching curve to the factor β. When β is
close to 1, the priority is given to Class 2 calls. Therefore,
the system is more likely to reserve a larger number of
wavelengths to this class; either by transferring one wavelength
from Class 1 (at a Class 1 call termination), or by maintaining
the number of wavelengths to Class 2 calls (at a Class 2 call
termination).

Now we add Class 3 users to the problem and determine
numerically the structure of the optimal policy. The problem
formulation can be extended to the three classes problem by
introducing �, the number of available wavelengths for Class
3 calls. The global system state space is given by: S = {s =
(i, j, �, k)|0 ≤ i, � ≤ W − k, 0 ≤ j ≤ k, 0 ≤ k ≤ W}; and
the parameter � = W − k − n3 corresponds to the number of
available wavelengths for Class 3 users. The reward function
Rg(sn) with 3-class problem is a generalization of R(sn)
defined in (1). Thus, Rg(sn) is a weighted sum of n1, n2 and
n3:

Rg(sn) = n1 + βn2 + δn3 (5)

yields the generalized cost function Cg(sn) as:

Cg(sn) = Bg.sn (6)

where Bg = (1, β, δ, (1 + δ − β))T with 0 ≤ β, δ ≤ 1 as the
respective weights assigned to Classes 2 and 3, respectively.

The n-stage finite-horizon value function for three classes
can be derived by using Cg(sn). Refer to [11] for a complete
description of this problem.

In this paper, we only show the structure of the optimal
policy, that is calculated with Policy iteration algorithm. Fig.
5 depicts the optimal policy for 3 classes of traffic for W =
10, k = 4, λ1 = λ2 = λ3 = 5, µ1 = µ2 = µ3 = 1, β =
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Fig. 5. Optimal Policy for 3 classes of traffic for W = 10, k = 4, λ1 =
λ2 = λ3 = 5, µ1 = µ2 = µ3 = 1, β = 0.1, δ = 0.1.

0.1, δ = 0.1, at a Class 1 call termination time. In this
figure, each cube represents action a = 1. It can be noticed
that the policy is a monotone 3D switching curve, dividing
the state space into two subsets. The structure of the policy
reflects the fact that the three classes of calls are competing
for the available wavelengths. In Fig. 6, we set β = 0.5 and
calculate the optimal policy for the same parameters as in Fig.
5. Comparison of Figs. 5 and 6 shows that by increasing β,
the decision maker gives more resources to Class 2 users (i.e.,
more cubes).

V. PERFORMANCE COMPARISON

In this section, we compare the performance of our proposed
policy (DP), with Complete Sharing (CS) and Complete Par-
titioning (CP) policies. The simulation results are carried out
only for traffic of Classes 1 and 2 with different weights. The
performance metric used in the numerical comparison deals
with: n1 + βn2.

In order to use CP policy, one can divide the total number of
wavelengths, W , into two parts; each part corresponds to each
class of traffic. Let m be the number of wavelengths allocated
to Class 1 and consequently, W −m wavelengths to Class 2.
Note that m is constant. Using Erlang’s B formula, we can
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Fig. 6. Optimal Policy for 3 classes of traffic for W = 10, k = 4, λ1 =
λ2 = λ3 = 5, µ1 = µ2 = µ3 = 1, β = 0.5, δ = 0.1.

compute pi
k as the probability of having k users of Class i in

the system. Then p1
m is the probability that m wavelengths are

busy and being currently used by Class 1 users in the system.
Using p1

m and p2
W−m, we can derive the expected number of

calls of each class as:

N1(m) =
(λ1

µ1

)
(1−p1

m) and N2(m) =
(λ2

µ2

)
(1−p2

W−m)

Let define m∗ as:

m∗ := arg max
m∈{1,···W−1}

N1(m) + βN2(m) (7)

We simulate the system by deploying the optimal policy
implemented in Section IV to calculate the performance metric
of DP policy. For CP, the simulation result is carried out for
two independent M/M/m∗/m∗ and M/M/W − m∗/W − m∗

queues associated respectively with Class 1 and Class 2, where
m∗ is defined in (7). Finally, we simulate the system without
any allocation policy in order to find the performance of CS
policy.

Figs. 7 and 8 depict the average-time reward function (n1 +
βn2) versus the load. In both examples, the parameters are
set as follows: W = 10, λ1 = λ2 varying from 3 to 20,
µ1 = µ2 = 1. The difference between the two examples lies
in the value of β which is equal to 0.1 (respectively, 0.5) in
Fig. 7 (respectively, Fig. 8). In Fig. 7, it can be observed that
for low load (up to 6 Erlang), all the policies have a similar
performance. As the load increases, DP policy shows much
better performance, in particular when compared to CS policy.

Fig. 8 illustrates the case where β is equal to 0.5, thus closer
to 1 compare with that in Fig. 7. One can notice that CP and
DP policies yield to similar performance, which is better than
CS policy performance. When β is close to 1, the priority
assigned to Class 2 calls is close to the one assigned to Class 1
calls. Therefore, calls from both classes are equally competing
for the access to the wavelengths. And CP, CS and DP policies
have similar behavior in terms of resource allocation.

In order to evaluate the relative performance improvement
of DP policy when compared to CS policy, we calculate the
relative performance ratio, (DPp − CSp)/CSp, where DPp

and CSp represent the performance of DP and CS policies,
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Fig. 7. Performance Comparison of DP, CP and CS policies for W =
10, λ1 = λ2, µ1 = µ2 = 1, β = 0.1.
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Fig. 8. Performance Comparison of DP, CP and CS policies for W =
10, λ1 = λ2, µ1 = µ2 = 1, β = 0.5.

respectively. This quantity is plotted versus the load (Fig. 9).
For β = 0.1, DP policy has significantly better performance,
up to 75% for heavy load, whereas for β = 0.5, the best
improvement is only equal to 25%. Another important per-
formance metric is the weighted blocking probabilities. Using
DP and CS policies, we simulate the system and determine
this quantity. The relative performance improvement is plotted
versus the load in Fig. 10. We can see that DP policy have
higher performance, up to 45% for intermediate load ( around
15 Erlang) which is a fact observed in networks and is in
agreement with intuition.

Qualitatively, we can conclude that:
- when the two classes are differentiated with priorities, then
DP policy is the most efficient policy.
- when the two classes are assigned the same weights, CS
policy is a simpler policy with acceptable performance, in
particular for network with low and intermediate load.

VI. CONCLUSION

We have described an approach to the problem of dynamic
wavelength allocation in all-optical WDM networks. The prob-
lem has been formulated as an MDP and the optimal policy is
obtained using the Policy Iteration method. The optimal policy
which maximizes the reward function is a non-decreasing
switching curve. The simulation results, carried out in a 2-
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Fig. 9. Relative performance improvement of DP compared with CS when
performance metric is the weighted sum of users.
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Fig. 10. Relative performance improvement of DP compared with CS when
performance metric is the weighted blocking probabilities.

hop network with two different classes with different weights,
show that our policy provides the best performance in most
cases. The investigation of the switching curve as a function
of the parameters of the system would enable us to determine
simple approximations of the optimal policy. Also, this method
provides insight into the issue of resource utilization for more
complex network topologies.
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