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Abstract

In this paper, we investigate how to design AQM with a low-pass filter (average queuing)
in supporting TCP based on the well-known AIMD dynamic model. Since we formulate
the AQM design problem for the given TCP as state-space models, we get three important
features. First, we derive PD-type (Proportional-Derivative) AQM structure with a low-
pass filter which includes P-type (Proportional) RED in terms of queue length. Second, we
compensate for delays in congestion measure explicitly by adding a memory control structure
that uses the previous dynamic information. Third, we obtain a stabilizing optimal gains of
the proposed AQM structure by minimizing a linear quadratic cost of the transients on queue
length, aggregate rate, and congestion measure. Finally, we illustrate the above theoretical

results through ns simulations for TCP Reno.
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1 Introduction

Congestion control is a distributed iterative procedure to fully utilize the given network resources
with fairness by approaching the equilibrium point in a short time. It consists of local algorithms
executed dynamically at sources (Transmission Control Protocol, or TCP) and at links (Active
Queue Management, or AQM). Since TCP Reno/AQM Droptail has been proposed in [1], the
current internet is still using Reno/Droptail and its variants as a congestion control strategy.

Droptail, which drops packets when the queue is full, is not appropriate for high-speed
networks since gateways are likely to have large queues in high-speed networks and this would
significantly increase the average delay in the network. Furthermore, Droptail can often cause
the global synchronization [2, 3] and thus have low throughput. In order to overcome these
problems, RED has been suggested in [4] which randomly drops packets proportionally to the
average queue length. Since then, there have been a lot of investigations about how to tune design
parameters in RED [5, 6, 7, 8]. They show that RED is not enough to stabilize the given TCP
and thus not easy to fully utilize the given network resources. As a result, new AQM algorithms
such as BLUE [9], AVQ [10] and REM [11] have been suggested. However, all these papers still
lack to address how to stabilize the dynamic behavior of TCP and queue systematically in spite
that stabilizing the dynamic behavior corresponds to maximizing throughput.

In order to address this problem, the paper [12] has developed a dynamic model to reflect
AIMD (Additive Increase Multiplicative Decrease) mode of TCP Reno and the paper [13] has
applied the transfer function approach to the RED design problem for stabilizing the AIMD
model in [12]. As a sequence, the papers [14, 15] have investigated how to design REM and
AVQ for stabilizing the given TCP, respectively. The papers [16, 17] have suggested PI-type
(Proportional Integral) AQM in terms of rate in an inner loop. However, all these results based
on the transfer function approach do not consider what is a natural state-feedback control [18]
in AQM to stabilize the given TCP and queue dynamics. Furthermore, they cannot compensate
for delays explicitly since they use only the current dynamic information even if they know the
previous dynamic information and delays, where this kind of control strategy is called memoryless
control in the control literature. It is well-known in the control literature that the memoryless
control has a limit on performance in the presence of a large delay [19, 21], i.e., we cannot fully
utilize the given network resources.

Recently, the papers [22, 23] formulate the AQM design problem as state-space models for a
single link and homogeneous delays and for multiple links and heterogeneous delays, respectively.
Thereby, they show that PD-type (Proportional-Derivative) AQM is a natural state-feedback
control structure to stabilize Reno for the first time in the networking literature to our knowledge,
where RED is P-type (Proportional) AQM in terms of queue length. However, they do not
consider a low-pass filter (average queuing) in RED which makes the congestion signal smooth
against sudden change of flow. Note that the paper [13] considers only P-type AQM like RED
and the papers [14, 15, 16, 17] do not consider low-pass filter in designing a stabilizing AQM,

and all of these results do not compensate for delays explicitly. Since a low-pass filter itself has



a dynamics, it can change dynamic behavior of TCP and queue and thus should be considered
in the AQM design problem. This motivates our paper.

In this paper, we suggest how to design AQM with a low-pass filter for stabilizing the AIMD
model of [12] in the presence of arbitrary delays. As a first step, we study a simplified version of
this problem which can be extended to more realistic problem formulation using modern control
theories and technologies, simplified in three regards as in [13, 14, 16, 17, 22]. First, we assume
single link, homogeneous delays, and no short flows. Second, we consider the linearized version
of the TCP function, so the variables denote perturbations around an equilibrium and the cost
measures the deviation from the equilibrium point. For example, a slower transient will incur
a higher cost. Third, when we try to get stabilizing optimal gains of AQM, we assume that we
know the global information of the given networks accurately. Then, we formulate the AQM
design problem as state-space models as in [22, 23]. Thereby, we derive PD-type AQM structure
with a low-pass filter, compensate for delays in congestion measure explicitly by using a memory
control structure, and obtain a stabilizing optimal AQM by minimizing the linear quadratic cost
of the transients on queue length, aggregate rate, and congestion measure. Finally, we verify

our results for the nonlinear version of TCP Reno via ns simulations.

2 Design of a stabilizing AQM with a low-pass filter

In this paper, we use the AIMD model of TCP Reno in [12] for the AQM design problem.
Consider the simple case of a single link of capacity ¢ shared by N TCP Reno sources and queue

dynamics modeled by
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where w;s(t) is (expected) TCP window size, in packets, of source s at time ¢, f (t) is the forward

delay from source to router, 77

2() is the backward delay from router to source, 74(¢) is the round

trip time (74(¢) = Tsf(t) + 72(t)), p(t) is the loss probability at time ¢ that is implemented
at links, b(t) is the queue length at time ¢, y(t) is aggregate rate, and ¢ is the link capacity,
in packets/sec. In the above model, the first and second parts of the first equation represent
Al and MD behavior at sources, respectively, where the second equation represents the queue
dynamics at link.

We define the source rate by x4(t) = wg(t)/(ds + b(t)/c), where dg is the round trip prop-
agation delay of source s. As in [13], we assume sources are identical d; = d and all have the
common window ws(t) = w(t); we assume delays take their equilibrium values and are constant,
and forward delays are zero, TSf() =0, so that 7,(t) = 7°(¢). Let (w*,b*,p*) be the equilibrium
point. Then the equilibrium round trip time 7 is related to b* by 7 = d + b*/c.



From (1), we can derive the following model of the linearized TCP and queue dynamics:
Sb(t) = A10b(t) + Azdb(t) + Biop(t — 1), (2)
where 6b(0), 6b(0), and {dp(0),o € [—7,0]} are given,

ob(t) = b(t) —b", Sb(t) = b(t), sb(t) = b(t), op(t) = p(t) —p*
2cN 2¢NT 4 2N? 4 %72 2N? + 272
Al = ey A2 = - s a0 Bl = o — (3
T(2N? + ?12) T(2N? + 212) 272N

Refer to [22] for the derivation of (2). Note that the paper [22] does not consider the following

averaging queue dynamics in RED.

Consider the following low-pass filter with the average queue length b(¢) in RED:
b(t) = —Pib(t)+Pib(t), P > 0. (4)
P is a design parameter which decides the cut-off frequency [18]. From (2), we can get
5h(t) = —Puob(t) + Ay(db(t) + Pyob(t)) + As(db(t) + Prob(t)) + PLBiop(t — 1), (5)

where 6 b (£) = b (), Sb(t) = b(¢), Sb(t) = b(t), and 6b(¢) = b(t) — b*.

Thus, we can obtain a state-space model for the linearized TCP with a low-pass filter
zZ(t) = Az(t)+ Bop(t — 1), (6)

where z(0) and {dp(0),o € [—7,0]} are given,

51}(t) 0 1 0 0
z(t) = |ob@t)|, A= 0 0 1 , B=1] 0 |. (7)
8b(t) APy A+ AP Ay — Py P By

The above state-space model is a minimal representation with state-space variables (8b(t), 6l;(t),
8b(t)) of the given differential equation (5). The control strategy based on a state-space model
is called modern control in the control literature, while that based on a transfer function model
as in [13, 14, 15, 16, 17] is called classical control. Since the state-space approach has been
developed in 1950s, it has been widely investigated due to many advantages over the transfer
function approach. Please refer to any control literature for more details [18].

From the above state-space model, we can naturally get the following state-feedback AQM
Sp(t) = H z(t) = Hy0b(t) + Hodb(t) + H3db(t) (8)

if we use only the current dynamic information b(t), b(t) and IA)(t) (or b(t) and b(t)) at the current
time ¢. Note that this structure (8) is not captured in the networking literature. How to obtain
a pair of stabilizing gain (Hy, Ho, H3) is discussed later in this paper.

If we use a memoryless control, i.e., we use only the current state information z(¢) for the
delayed control dp(t — 7), it is well-known that it is difficult to stabilize a dynamical system in
the presence of a large delay [19, 21]. Thus, we cannot fully utilize the given network resources
in the presence of large delays 7. Next, we overcome this problem by compensating for delays

explicitly as far as we know the exact dynamic information.



2.1 Explicit delay compensation with a memory control structure

As one way to compensate for large delays in congestion measure explicitly, we need a delay-
dependent control that uses not only the current dynamic information but also the previous

dynamic information for dp(t) or dp(¢). To this end, throughout the rest of this paper, we define

A = A +A,P, Ay = Ay—-P, A3 = AP, B, = TyA3B, +T3By +TyBs
B = (B, B, Bf]" = "B
Ty(A3By + A1B1B; By + AyBs — By 1 B2
T1:—2(31+112 3+ A2Ds 2 B3) for some 15 #0
D,
. Ty(A3By — A3BB;'B -
T3 = ThA + (A3 B2 D3 12 3), Ty = T + ATy
1
D, = A3B?B,' + AB) + A3By — Bs. (9)

The key to deriving an explicit memory control for the delayed system (6) is to transform

the delayed system (6) to the equivalent nominal system
5(t) = As(t) + Bop(t), (10)
where

S(t) = [813 52, 83]Ta B = [Oa Oa BI]T

sit) = [T = (T = BA)AT AJOb(0) + urr (1) + [T = (5 — Todi) A7 Ay
(0b(t) + uar (t)) + (T3 — ToA1) A3 ' (3b(t) + us-(t)) (11)
$2(0) = (T3 = ToA0)(8b(8) + urr (1)) + Ty(3b(e) + uae (1) + To(6b(t) + us (1)) (12
s3(t) = TapAs(6b(t) +uir(t) + T3(5b( ) + (1)) + T4(5b( ) + us-(t)) (13)
u17(t) 0
ugr(t)| = / e~ M) Bop(t + o) do. (14)
u3 (1) ’

Refer to Appendix A for the derivation of (10). Note that the nominal system is asymptotically
stable if and only if the original delayed system (6) is asymptotically stable.

From the above state-space model, we can get a memory state-feedback AQM

Op(t) = HY(3b(t) + uar (1)) + HI (8b(t) + uar (1)) + HI (0b(t) + us- (1)). (15)
Next, we show how to obtain optimal gains of the proposed AQM structure.
2.2 Stabilizing Optimal AQM

As a performance measure for (10), we consider the following optimization problem:

t+o00
min J(s(t),0p(-)) = /t (sT(U)Qs(U)+5p2(U)) do, (16)

op(-)



where @ = QT > 0.

For ease of explanation of the above performance index, assume that d = 0 in (16). Then,
we define the optimal AQM design as the problem of choosing an input dp(¢) that minimizes
the cost of transient around an equilibrium:

oo ¥ o) %o 2
min Je0.500) = [ (@ (0) + Quil?(0) + Qui(0) + 65%(c) do

Each term in the integrand penalizes average-queue length, average-queue length rate, and

the fluctuation of the loss probability, respectively. Hence the cost is a weighted sum of transients

on average queue, average-queue rate, and fluctuation in probability, weighted by @1 > 0,
@2 >0, and Q3 > 0.

Proposition 1 If we solve the problem (16), then we get a stabilizing optimal AQM
gp*(t) = Hi si(t) + Hj sa(t) + Hs s3(?), (17)

where H{ > —g—‘:’, H; > —g—i, H3; >0,

- A+ /A2 + B2Q, e _ —2AeHy — BIHE + BiQs

1 - = B1 ) 2 9 )

and H3 is the positive solution of the following fourth order polynomial:

—BYH;" —4AyB3H3 + (4A, B} — 4A3B? + 2B1Q3)H3? — 8By (A3 +\/ A2 4+ B2Q,) — 8438,
—8A1 Ay By — 4A9 B3 Q3] Hy — 8As(A3 + £/ A3 + B2Q1) — 44, B2Q3 + 4B?Qy — B{Q3 = 0.

Proof: The optimal control that minimizes (16) is given by u*(t) = H*s(t) [24]. O

Proposition 1 implies that the solution of the problem (16) is an AQM algorithm, specified
by (Hf,Hs,H;). Conversely, given any AQM of this structure, it solves the problem (16) with

appropriate weights ();, as the next result says. It can be easily proved from Proposition 1.

Proposition 2 Given a stabilizing AQM dp(t) = [H1 Hy Hss(t), it solves the problem (16)
with weights

H (243 + B H)) ) A1BiHy + (As + B1H3)\/ A%+ B}Q1 + As A4
1 = - ) Q2 = H5+2 —
B B
21212[{3 + Hy

By

Qs = Hi+

Proposition 3 Given the eigenvalues A1, A2, and A3 of the closed-loop system (10) with (17),
where real parts of A1, Ao, and A3 are negative, 0p(t) solves the problem (16) with weights

0 52— A2 0 —A2 £ 32 4+ 20/ A2 + B2Q) + 24543
1 - T x5 2 = ~
B? B?
0 —A2 24, + 32 -2,
3 = ~ )
52




where 5\1 == )\1 + )\2 + )\3, 5\2 = )\1)\2 + )\2)\3 + )\1)\3, and 5\3 == )\1)\2)\3.

We now interpret RED as an approximation of the proposed AQM. For ease of comparison,

we assume that 7 = 0 (i.e., s(t) = z(t), B = B) for linearized model.

Remark 1 The linear model motivated by RED is:
RED:  6p"(t) = H}ob(t)

for some nonnegative constants H{. By Proposition 1, the proposed AQM has dp(t) = H15(;(t) +
H25l;(t) + chﬁ;(t). Thus, if we set H) = H], Hy = 0 and H3s = 0, then we can get the above
RED. Note that Hsz should be positive by Proposition 1. From Propositions 1-3, the sum of
eigenvalues of the closed-loop system with RED is given by

A = Ay + B Hz < A,

where the last inequality follows from that Ay < 0, By < 0, and Hs > 0. Since all eigenvalues
have nonpositive real parts, the above inequality means that the sum of the real parts of the
etgenvalues is less negative when Hz = 0 than when Hs > 0. This suggests that the decay rate
is smaller with RED (Hy = H3 =0).

3 mns simulations for TCP Reno

In this section, we illustrate performance of the derived structures via two simulation examples.
In each example, we compare the proposed PD-type memoryless AQM with RED and compare
the proposed memory PD-type AQM with the proposed memoryless one in the presence of large
propagation delays.

For ease of implementation of stabilizing optimal AQMs, we set all eigenvalues of the closed-
loop system to be equal (i.e., A = \; for all i). Then, we have only to design A < 0. The other
values of stabilizing optimal AQMs are obtained automatically from the equations of Section
2.2. RED-like AQM is obtained by setting Hy = H3 = 0 after getting gains Hy, Ho, and Hj of
the proposed stabilizing optimal AQM.

Similarly to [13, 14], we simulate a single bottleneck link with capacity ¢ = 4000 pkts/sec
shared by N = 100 Reno sources. The AQM at the bottleneck link uses ECN marking. Real
queue length is limited by bmmax = 800 pkts. Marking probability of each AQM is updated every
2ms, i.e., the sampling time is T, = 2ms, where b(t) = b(t — Ty) + T P, (— b(t —Ty) + b(t — Ty)).

The simulation duration is 40 sec.

3.1 RED-like AQM and the proposed memoryless PD-type AQM

In this example, we compare performances of RED-like AQM and the proposed memoryless

PD-type AQM without explicit delay compensation in the presence of delays. We assume that



the propagation delay is d; = 150ms, where the round trip time is 7% = ds + b*/c and the target
queue length is b* = 200 pkts.
The memoryless AQM of (17), which is obtained by setting 7 = 0, is implemented by

p(t) = p*+ Hi(b(t) — b*) + HaPy(—b(t) + b(t)) + H3 P[Py (b(t) — b(t)) + y(t) — y(to)],

Ao 23 A 2 Ao
(A?}BIA ), Hy = —7('41ng ), and H3 = —7(‘42313)‘).

Figure 1 shows their performances when A = —3.75. It illustrates Remark 1 that the proposed
AQM is easier to stabilize TCP than RED-like AQM. The average queue lengths of RED-like
AQM and the proposed AQM are 434.8 pkts and 205.3 pkts, respectively and utilization of
RED-like AQM and the proposed AQM are 93 % and 95 %, respectively. Thus, the proposed
PD-type AQM has a smaller queuing delay but a larger throughput than RED-like AQM.

where H; = —

3.2 Performance of a memory stabilizing AQM

In this example, we illustrate the performance of a memory control structure by comparing a
memory PD-type AQM with a memoryless one. Here, we hold all simulation parameters of the
previous subsection except d; = 350msec.

The proposed memory AQM (17) is implemented by

p(t) = p*+ H{(b(t) = b* +uir (1)) + H3 (= Pib(t) + Pib(t) + uar(t))
+Hj [PEb(t) — PEb(t) + Pi(y(t) — y(to)) + uar (1)),

where H] = Hi[Ty — (Ts — To A1) A7 A)] + Hi(Ts — ToAy) + HiTo A3, H] = Hi[Ty — (T —

PN 2 PN Ar— 23
TyA)A7'Ay] + HITy + HiTs, H] = Hi(Ty — ToAy)A;' + HiTy + HiTy, Hf = —%,
x _(1211-}-3/\2) * _(42—3)\)
H; = E and H3 = I

Figure 2 illustrates that the proposed memory AQM is much closer to the target queue length
(b* = 200 pkts) than the proposed memoryless AQM as the propagation delay increases, while
they have similar performances when the delay is small. Utilization of the memoryless AQM
and the memory AQM are 83 % and 91 %, respectively. Thus, the proposed memory AQM has
a smaller queuing delay but a larger throughput than the proposed memoryless AQM. We have

the same results for other large propagation delays.

4 Conclusion

In this paper, we investigated the design of AQM with a low-pass filter (average queuing)
for stabilizing the given TCP. Thereby, we derived PD-type AQM, compensated for delays in
congestion measure explicitly by adding a memory control structure, and obtained stabilizing
optimal gains of the proposed AQM structure. Finally, we illustrated the proposed results via ns
simulations. In simulations, we used only one parameter (\) for designing the proposed AQMs.

Our result based on the AIMD model in [12] shows that P-type AQM like RED is not enough
to stabilize the AIMD dynamic behavior of TCP Reno. We expect that this work will be helpful
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Figure 1: Queue b(t) trajectories of P- and PD-type memoryless AQMs
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Figure 2: Queue b(t) trajectories of the memoryless and memory AQMs



to design a new AQM control structure which fully supports any kind of TCP in the future. For

this purpose, we can think about four directions of future research. First, we need to extend the

proposed results to more realistic models. Second, it is necessary to consider how to estimate the

number of sources and round-trip times at routers and how to implement the memory control

structure in real-time. Third, we should investigate how to design a robust AQM in the presence

of uncertainty in estimation of system parameters and delays. Finally, it would be interesting

to approximate the stabilizing optimal AQM in a decentralized manner.
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A Derivation of (10)

We note that the system (6) can be written as z(t +7) = z(t) + fOT Ale+7) Bp(o +
ulT(t
t)do]. Define h(t) = ) + f AT Bop(t + o)do = ) + |ua,(t)| . Then, the system
u3; (t)
(6) can be rewritten as
h(t) = Ah(t)+ Bop(t), (A.18)
where B = [BT, BY, BIT = ¢ 4"B.
Ty — (T3 — ToA)) AT Ay To — (T3 — ToA)) A7 Ay (T3 — ThAy) A
Let s(t) = Th(t), where T = Ts — Ty A, Ty Ty
T21213 T Ty
Ty should be selected so that det(T") # 0 (75 cannot be zero). Then, the system (A.18)
0
can be rewritten as §(t) = TAT 's(t) + TBop(t) = As(t)+ | 0 | dp(t), where B, =
By

TyAs By + T3By + TyBs.
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