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Abstract—The Alamouti’s orthogonal space-time block codes are for
QAM modulations and two transmit antennas. We have recently gen-
eralized it for the continuous phase modulation (CPM) by maintain-
ing the orthogonality (for the fast ML decoding/demodulation) and the
phase continuity of two signals from two transmit antennas denoted as
OST-CPM. In this paper, we design orthogonal-like space-time coded
CPM systems for three and four transmit antennas based on the ex-
isting orthogonal and quasi-orthogonal space-time codes in the litera-
ture. Although the signals from the transmit antennas in the proposed
orthogonal-like space-time coded CPM systems are not orthogonal, the
fast decoding/demodulation is maintained as in the two transmit an-
tenna case. Simulation results show that the performance of the pro-
posed orthogonal-like space-time coded CPM systems for four transmit
antennas is much better than that of the OST-CPM systems for two
transmit antennas.

I. INTRODUCTION

Continuous phase modulation (CPM) systems with single trans-
mit antenna have been widely used in wireless systems due to its
spectral efficiency and resistance to wireless channel fading, see
for example [10]. Lately, space-time coding for multiple transmit
antennas has attracted much attention due to the potential capac-
ity increase, see for example [1] – [8]. Zhang and Fitz [9] re-
cently proposed trellis-coded space-time (TC-ST) coding for con-
tinuous phase modulation (CPM) systems. Similar to the trellis-
coded space-time coding (TC-ST) for QAM modulations, it may
have a high decoding/demodulation complexity.

Most recently, based on the Alamouti’s scheme [4], we proposed
CPM systems with orthogonal space-time (OST) coding in [13] for
two transmit antennas, where the orthogonality and the continuity
of the two signal phases from two transmit antennas are maintained.
The orthogonality provides us the fast decoding similar to the Alam-
outi’s scheme for QAM modulations. The difficulty of the design
comes from the maintaining of both the phase continuity and the
orthogonality of the signals from two transmit antennas.

As it is already a difficult task to design high rate OST for more
than two transmit antennas for QAM modulations [5], it is even
more challenging to keep the continuity of the signal phases. Al-
though there exist OST of rate 3/4 for 3 and 4 transmit antennas,
unfortunately, they can not be directly used in the proposed OST-
CPM systems [13]. For example, for 3 and 4 transmit antennas, the
orthogonal space-time codes [6], [7], [8]
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do not suit for CPM systems, since there are some zero values in the
code matrices. Notice that for 3 and 4 transmit antennas, there are
other orthogonal space-time codes with linear processing of sym-
bols presented in [5], but they are hard to be used in the proposed
OST-CPM systems too due to that the linear processing is hard to
deal with for the signal phases.

In this paper, for 3 and 4 transmit antennas, we modify the codes
in (1) as
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where φ1, φ2, φ3 and φ4 are some real constants which will be spec-
ified later. Notice that, the modified codes in (2) are not orthogonal,
but their behaviors are similar to those of codes in (1) and the fast
maximum-likelihood (ML) decoding is maintained. Then, based on
the modified codes in (2), we design CPM systems with fast decod-
ing algorithm. Similar to the OST-CPM for two transmit antennas
in [13], the main difficulty is to have the continuity of the signal
phase at each transmit antenna.

Moreover, in this paper, we also consider CPM systems with
quasi-orthogonal space-time coding for 3 and 4 transmit antennas.
The CPM systems with quasi-orthogonal space-time coding still
have fast decoding algorithm and may further improve the perfor-
mance of the above orthogonal design, but the decoding complexity
is higher than that of the CPM systems with the above modified
orthogonal space-time coding. We design space-time coded CPM
systems only for four transmit antennas. We can simply turn off one
of the transmit antennas to get the design for three transmit anten-
nas.

II. SYSTEM MODEL

We consider a system with four transmit antennas, Lt = 4, and
one receive antenna, Lr = 1, for simplicity. For the coming infor-
mation sequence I = (I1,1, ...IL,1, ..., I1,l, ..., IL,l, ...), each infor-
mation block I1,l, ..., IL,l of length L is mapped into an information
symbol matrix

dl =




d1,1(l) d1,2(l) d1,3(l) d1,4(l)
d2,1(l) d2,2(l) d2,3(l) d2,4(l)
d3,1(l) d3,2(l) d3,3(l) d3,4(l)
d4,1(l) d4,2(l) d4,3(l) d4,4(l)


 , (3)

where dm,n(l) is the modulation symbol at the m-th transmit an-
tenna and comes from a signal constellation set, for example

Ω
∆
= {−2M+1,−2M+3, ...,−1, 1, ..., 2M−1} . (4)

During time period 4lT ≤ t ≤ 4(l + 1)T , the symbol matrix dl is
used to generate the following signal matrix

S =


s1(t, 4l + 1) s1(t, 4l + 2) s1(t, 4l + 3) s1(t, 4l + 4)
s2(t, 4l + 1) s2(t, 4l + 2) s2(t, 4l + 3) s2(t, 4l + 4)
s3(t, 4l + 1) s3(t, 4l + 2) s3(t, 4l + 3) s3(t, 4l + 4)
s4(t, 4l + 1) s4(t, 4l + 2) s4(t, 4l + 3) s4(t, 4l + 4)


 .(5)
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The m-th row of the signal matrix S is transmitted by the m-th
transmit antenna, and in the time periods (4l+n−1)T ≤ t ≤ (4l+
n)T, n = 1, 2, 3, 4, all signals in the n-th column are transmitted
simultaneously, denote this time period as the (4l + n)-th time slot.

At time slot k = 4l+n, n = 1, 2, 3, 4, the received signal y(t, k)
can be written as [9], [10]

y(t, k) =

Lt∑
m=1

αm(t)sm(t, k) + W (t), (6)

where W (t) is the additive noise, αm(t) is the channel gain from
the m-th transmit antenna to the receive antenna, and sm(t, k) is
the transmitted signal from the m-th transmit antenna at time slot k
which is specified as

sm(t, k) =
√

1/T exp {j2π [φ0 + Φm(t, k)]} . (7)

The term Φm(t, k) in (7) contains the information symbol dm,n(l).
More precisely,

Φm(t, k)=
k∑

i=0

{hmdm,iq (t − (i−1)T ) + cm,iq0 (t − (i−1)T )}, (8)

where dm,i = dm,n(l) with i = 4l + n, hm is the modulation
index of the CPM system, q(t) and q0(t) are the phase smoothing
response functions with

q0(t) = q(t) = 0 for t ≤ 0, q0(t) = q(t) = 1
2

for t > T ,
and cm,i = cm,n(l) with i = 4l + n is generated by the following
matrix

cl =




c1,1(l) c1,2(l) c1,3(l) c1,4(l)
c2,1(l) c2,2(l) c2,3(l) c2,4(l)
c3,1(l) c3,2(l) c3,3(l) c3,4(l)
c4,1(l) c4,2(l) c4,3(l) c4,4(l)


 , (9)

which depends on the information symbol matrix dl and is used to
maintain the phase continuity and the orthogonality of the four sig-
nals. The choice of the matrix cl is the key of the fast decoding, and
will be specified later. If we consider a full response CPM system,

let hm = h
�
= m0

p
, where m0 and p are relatively prime integers,

then the phase of the CPM system, Φm(t, k), can be expressed as
[9], [10]

Φm(t, k)=θm(k−1) +hdm,kq(t−(k−1)T) + cm,kq0(t−(k−1)T),

in which

θm(k − 1) =
h

2

∑
i≤k−1

dm,i +
1

2

∑
i≤k−1

cm,i (10)

belongs to the set Ωθ
∆
= {0, 1

p
, 2

p
, ..., p−1

p
} with modulo 1.

Thus, Φm(t, k) has a trellis structure with states in Ωθ , and
(Φ1(t, k), Φ2(t, k), Φ3(t, k), Φ4(t, k)) has a trellis structure with
states in the product set Ωθ ×Ωθ ×Ωθ ×Ωθ . Clearly, the number of
states increases exponentially with the number of transmit antennas.

The ML demodulation of the information sequence I is [9], [10]

Î = arg min
I

{ K∑
k=1

∫ T

0

∣∣∣∣∣∣y(t, k) −
Lt∑

m=1

αm(t)sm(t, k)

∣∣∣∣∣∣
2

dt

}
. (11)

If the Viterbi algorithm is used to solve the above ML demodulation,
each state in the trellis structure has (2M)Lt coming branches and
(2M)Lt leaving branches. The decoding complexity is high if there
is no fast decoding algorithm. In the following, we propose some
special ST-CPM schemes such that the branches in each state can
be separated into several independent sets and the ML demodulation
complexity can be reduced.

III. FULL RESPONSE CPM SYSTEM WITH MODIFIED

ORTHOGONAL SPACE-TIME CODING

In this section, we present a CPM system based on the modi-
fied orthogonal space-time codes (2) for four transmit antennas, i.e.,
Lt = 4.

A. Design of CPM Signals

For an information sequence {I1,1, I2,1, I3,1, ...,
I1,l, I2,l, I3,l, ...}, each information block I1,l, I2,l, I3,l of
length 3 is mapped into symbols e1,l, e2,l, e3,l, which are chosen
from a signal constellation Ω in (4). The matrix dl in (3) is
generated by e1,l, e2,l, e3,l as follows

d1,1(l) d1,2(l) d1,3(l) d1,4(l)
d2,1(l) d2,2(l) d2,3(l) d2,4(l)
d3,1(l) d3,2(l) d3,3(l) d3,4(l)
d4,1(l) d4,2(l) d4,3(l) d4,4(l)


=




e1,l −e2,l −e3,l 0
e2,l −e1,l 0 −e3,l

e3,l 0 −e1,l −e2,l

0 e3,l e2,l e1,l


.

To generate the CPM signal waveforms sm(t, k) in (7), we also
need the matrix cl in (9), which is related to the symbol matrix dl

and is specified as follows:

cl =



1− a1,l 1+ a2,l+ a3,l 1+ a2,l+ a3,l 1+ a1,l

−a2,l a1,l+ a3,l 1+ a2,l a1,l+ a3,l

1− a3,l a3,l 1+ a1,l+ a2,l 1+ a1,l+ a2,l

0 0 0 0


 (12)

where

ai,l = mod(
ei,lm0

p
, 2), i = 1, 2, 3, (13)

where mod(x, y) is the modulo operation of x with base y and
m0/p = h is the modulation index. The reason why modulo 2
rather modulo 1 in the phase component is used is because the
smoothing response functions q(T ) = q0(T ) = 1/2 in (8) and
thus, 1/2 appears in the phase modulation in (10) We can see that
the matrix cl depends only on a1,l, a2,l and a3,l, and all of ai,l

have at most 2p0 possible values for all possible values of ei,l in Ω,
where

p0 =

{
p if p is odd;
p/2 if p is even,

(14)

since all of e1,l, e2,l and e3,l are odd numbers, and m0 and p are
relatively prime integers.

At the time period between 4lT and 4(l + 1)T , the following
signals are sent through the m-th transmit antenna

sm(t, 4l + n) =
√

1/T exp {j2πΦm(t, 4l + n)} , (15)

for n = 1, 2, 3, 4. The transmitted signal matrix S in (5) can be
written as follows[14],

S = EC(x1, x2, x3)F1, (16)

where,

F1 = diag
{

1, 1, ejπa3,l , ejπ(a3,l+a2,l)
}

F, (17)

F = diag
{
1, ej2πa3,lq0(τ), ej2πa2,lq0(τ), ej2πa1,lq0(τ)

}
, (18)

C(x1, x2, x3)
∆
=




x1 −x∗
2 x∗

3 −1

x2 x∗
1 ej2πq0(τ) −x∗

3

x3 −e−j2πq0(τ) −x∗
1 x∗

2
1 x3 x2 x1


, (19)

xi = ej2π[ei,lhq(τ)−ai,lq0(τ)], i = 1, 2, 3, (20)

Notice that C(x1, x2, x3) in (19) has the same form of (2). E and
F are diagonal matrices. The structure (16) provides the existence
of fast decoding algorithm which will be discussed in next section.
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B. Fast Demodulation Algorithm
By the trellis structure of the CPM system, the sequence detec-

tion in (11) can be implemented using the Viterbi algorithm. From
each state of the trellis, there are (2M)3 coming branches and
(2M)3 leaving branches. In order to search the survivor paths, the
input symbol block (e1,l, e2,l, e3,l) and the distance of current state
θm(4l) to next state θm(4(l + 1)) need to be obtained, where the
input block (e1,l, e2,l, e3,l) causes the state transfer from θm(4l) to
θm(4(l + 1)). Thus, we need to search all the branch metrics at the
stage l as follows

(
ê1,l, ê2,l, ê3,l

)
= arg min
(e1,l,e2,l,e3,l)∈Ω×Ω×Ω

{

4(l+1)∑
k=4l+1

∫ kT

(k−1)T

∣∣∣∣∣yn(t, k) −
4∑

m=1

αm,n(t)sm(t, k)

∣∣∣∣∣
2

dt

}
. (21)

We next want to simplify the above branch searching by taking
the advantage of the special trellis structure of the proposed CPM
system.

Assume that the channel αm(t) is known and constant during a
space-time coding block [4lT, 4(l + 1)T ]. From the orthogonality
of sm(t, k) and the properties of cm,n(l), the equation (21) can be
rewritten as the following [14]

(
ê1,l, ê2,l, ê3,l

)
= arg min
(e1,l,e2,l,e3,l)∈Ω×Ω×Ω

∫ T

0
||Y (l)− AS||2F dτ, (22)

where ||V ||F is the Frobenius norm. From [14], we know that

∫ T

0
||Y (l) − AS||2F dτ = f1(x1, a1,l, a2,l, a3,l)

+f2(x2, a1,l, a2,l, a3,l) + f3(x3, a1,l, a2,l, a3,l). (23)

Recall that all of ai,l, i = 1, 2, 3, have only 2p0 possible val-
ues, where p0 is specified in (14). More precisely, since ai,l =
mod(ei,lm0/p, 2), i = 1, 2, 3, every ai,l belongs to the following
set G:

G
∆
=

{
{0, 1

p0
, 2

p0
, · · · , 2p0−1

p0
}, if p is odd;

1
p

+{0, 1
p0

, 2
p0

, · · · , 2p0−1
p0

}, if p is even.
(24)

Again, since ai,l = mod(ei,lm0/p, 2), for a fixed ai,l, symbol ei,l

has to belong to the following set Ω(ai,l):

Ω(ai,l)
∆
= {n ∈ Ω : mod(nm0/p, 2) = ai,l}, (25)

where Ω is specified in (6). The number of elements in Ω(ai,l) is
approximately 2M/(2p0) that will be used to calculate the demod-
ulation complexity later. Therefore, the branch searching in (21) or
(22) can be simplified as

(
ê1,l, ê2,l, ê3,l

)
= arg min

(a1,l,a2,l,a3,l)∈G×G×G

{

min
e1,l∈Ω(a1,l)

f1(x1, a1,l, a2,l, a3,l)

+ min
e2,l∈Ω(a2,l)

f2(x2, a1,l, a2,l, a3,l)

+ min
e3,l∈Ω(a3,l)

f3(x3, a1,l, a2,l, a3,l)

}
. (26)

The decoding complexity of the original branch searching (21) is
(2M)3/p0 from a state to the next state, while the one in (26) is at
most (2p0)

33(2M/(2p0))/p0 = 24p0M as shown in Fig.1. Notice

that, p0 depends only on the CPM modulation index h, not on the
signal constellation size 2M , and p0 is usually much smaller than
2M . As an example, when h = 1/2 is used, then p0 = 1. In
this case, the number of branch searching is at most 24M while the
original one is 8M3.

The similar idea for the parallel path searching reduction has in-
dependently appeared in space-time trellis coding for PSK signal
by using MTCM [17] [18].

IV. FULL RESPONSE CPM SYSTEM WITH

QUASI-ORTHOGONAL SPACE-TIME CODING

It is known that the rate of orthogonal space-time code can not
be greater than 3/4 for more than two transmit antennas [5], [15].
Recently, Jafarkhani [11], Tirkkonen, Boariu and Hottinen [12] pro-
posed quasi-orthogonal space-time code




x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3
x3 x4 x1 x2

−x∗
4 x∗

3 −x∗
2 x∗

1


 , (27)

with rate 1 for four transmit antennas. The code (27) has fast de-
coding, but does not have full diversity. More recently, Su and Xia
[16] proposed a quasi-orthogonal space-time code with full diver-
sity based on (27). The full diversity is achieved by properly choos-
ing the signal constellations. In this section, we want to use the
quasi-orthogonal space-time code with full diversity in CPM sys-
tems.

A. Design of CPM Signals
A binary information sequence {· · · , I1,l, · · · , IL,l, · · · } is

mapped to a symbol sequence {· · · , e1,l, e2,l, e3,l, e4,l, · · · },
where e1,l and e2,l are chosen from a signal constellation

Ω = {−2M + 1, ...,−1, 1, ..., 2M − 1}, (28)

and e3,l and e4,l are chosen from another signal constellation

Ω̃ = {−2(M̃ − 1), ...,−2, 0, 2, ..., 2M̃}, (29)

The matrix dl in (3) is generated by e1,l, ..., e4,l as follows

dl ==




e1,l e2,l e3,l e4,l

−e2,l −e1,l −e4,l −e3,l

e3,l e4,l e1,l e2,l

−e4,l −e3,l −e2,l −e1,l


. (30)

Similar to Section 3, to generate the CPM signal waveforms
sm(t, k) in (7), we also need matrix cl in (9), which is related to
the symbol matrix dl and specified as follows:

cl =




a3,l − a1,l a4,l − a2,l a1,l − a3,l a2,l − a4,l

1 + a2,l + a3,l 1 + a1,l + a4,l 1 + a1,l + a4,l 1 + a2,l + a3,l

0 0 0 0
1 + a3,l + a4,l 1 + a3,l + a4,l 1 + a1,l + a2,l 1 + a1,l + a2,l


,

(31)

where

ai,l = mod(
ei,lm0

p
, 2), i = 1, 2, 3, 4, (32)

where m0/p = h is the modulation index. Similar to (12)-(13),
matrix cl depends only on a1,l, a2,l, a3,l and a4,l, and all of ai,l

have at most 2p0 possible values.
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At the time period between 4lT and 4(l + 1)T , the transmitted
signal matrix S can be written as [14]

S = EC(x1, x2, x3, x4)F1, (33)

where

E =diag
{

ej2πθ1(4l), ej2π[θ2(4l)+q0(τ)], ej2πθ3(4l), ej2π[θ4(4l)+q0(τ)]
}

,

(34)

C(x1, x2, x3, x4) =




x1 x2 x3 x4

x∗
2 −x∗

1 x∗
4 −x∗

3
x3 x4 x1 x2

x∗
4 −x∗

3 x∗
2 −x∗

1


 , (35)

and

F1 = diag

{
ej2πa3,lq0(τ), ejπ[2a4,lq0(τ)+a3,l],

ejπ[2a1,lq0(τ)+a3,l+a4,l], ejπ[2a2,lq0(τ)+a1,l+a3,l+a4,l]
}

. (36)

B. Fast Demodulation Algorithm

Similar to the fast demodulation algorithm developed in Section
3, we assume that the channel state information αm(t) is known
and constant during a space-time coding block [4lT, 4(l+1)T ]. Let
A = [α1(t) α2(t) α3(t) α4(t)], and Y (l) = [y(t, 4l+1) y(t, 4l+
2) y(t, 4l + 3) y(t, 4l + 4)], then the branch metric at stage l can
be calculated as [14]

(
ê1,l, ê2,l, ê3,l, ê4,l

)
= arg min

(e1,l,e2,l,e3,l,e4,l)∈Ω×Ω×Ω̃×Ω̃

∫ T

0
||Y (l) − AS||2F dτ. (37)

In here
∫ T

0
||Y (l) − AS||2F dτ

= f13(x1, x3, a1,l, a2,l, a3,l, a4,l) + f24(x2, x4, a1,l, a2,l, a3,l, a4,l).

Recall that all of ai,l, i = 1, 2, 3, 4, have at most 2p0 possible
values, where p0 is specified in (14). More precisely, a1,l and a2,l

belong to set G as in (24) and a3,l and a4,l belong to the following
set G̃

G̃ =

{
0,

1

p0
,

2

p0
, · · · ,

2p0 − 1

p0

}
, (38)

which is different from G in (24) because constellation Ω̃ in
(29) is different from constellation Ω in (28). Since ai,l =
mod(ei,lm0/p, 2), i = 1, 2, 3, 4, , if a1,l and a2,l are fixed, then
e1,l and e2,l belong to the following sets Ω(ai,l), i = 1, 2, respec-
tively:

Ω(ai,l) = {n ∈ Ω : mod(nm0/p, 2) = ai,l}, i = 1, 2, (39)

where Ω is specified in (28). The number of elements in Ω(ai,l) is
approximately 2M/(2p0). If a3,l and a4,l are fixed, then e3,l and
e4,l belong to the following sets Ω̃(ai,l), i = 3, 4, respectively,

Ω̃(ai,l) = {n ∈ Ω̃ : mod(nm0/p, 2) = ai,l}, i = 3, 4, (40)

Fig. 1. Parallel paths between two states.

where Ω̃ is specified in (29). The number of elements in Ω̃(ai,l)

is approximately 2M̃/(2p0). Therefore, the branch searching (37)
can be simplified as

(
ê1,l, ê2,l, ê3,l, ê4,l

)
= arg min

(a1,l,a2,l,a3,l,a4,l)∈G×G×G̃×G̃

{

min
(e1,l,e3,l)∈Ω(a1,l)×Ω̃(a3,l)

f13(x1, x3, a1,l, a2,l, a3,l, a4,l) +

min
(e2,l,e4,l)∈Ω(a2,l)×Ω̃(a4,l)

f24(x2, x4, a1,l, a2,l, a3,l, a4,l)

}
. (41)

The decoding complexity of the above branch searching is
(2p0)

4(2M + 2M̃)/(2p0)/p0 = 16p2
0(M + M̃), while the orig-

inal one is (2M)2(2M̃)2/p0 = 16(MM̃)2/p0. Notice that, p0

depends only on the CPM modulation index h, not on the signal
constellation size 2M or 2M̃ , and p0 is usually much smaller than
2M and 2M̃ .

V. SIMULATION RESULTS

In this section, we compare the performances of the modified
orthogonal ST-CPM system for four transmit antennas, the quasi-
orthogonal ST-CPM system also for four transmit antennas, and the
OST-CPM system [13] for two transmit antennas. One receiver is
used in all the simulations. The channel coefficients are zero mean
complex Gaussian random variables with variance 1. We assume
the channel is quasi-static, i.e., the channel coefficients are constant
during one block transmission, and change independently from one
block to another. In all simulations, we set the full response CPM
systems with modulation index h = 1/2 and smoothing phase func-
tions q(t) = 1

2T
t , q0 = 2

{
1/2 − T

2π
sin

(
2π t

T

)}
if t ∈ [0, T ],

q0(t) = q(t) = 0 if t ≤ 0, and q0(t) = q(t) = 1/2 if t > T .
The signal constellation Ω = {−2M + 1, ...,−1, 1, 2M − 1}

is used in the conventional one transmitter CPM system, the OST-
CPM system, the modified orthogonal ST-CPM system, and the
quasi-orthogonal ST-CPM system not with full diversity. For the
quasi-orthogonal ST-CPM system with full diversity, signal constel-
lation Ω = {−2M + 1, ...,−1, 1, ..., 2M − 1} is used for e1,l and
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Fig. 2. Performances of the conventional CPM with 1 Tx antenna (line with
�), the OST-CPM with 2 Tx antennas (line with +), the modified OST-CPM
with 4 Tx antennas (line with ·), and the quasi-orthogonal ST-CPM with 4
Tx antennas (line with ◦ for that not with full diversity, and line with ∗ for
that with full diversity).

e3,l, signal constellation Ω̃ = {−2(M − 1), ...,−2, 0, 2, ..., 2M}
is used for e2,l and e4,l.

From Fig.2 (a) and (b), we can see that the performance of the
modified orthogonal ST-CPM system for four transmit antennas is
much better than that of the OST-CPM system for two transmit an-
tennas. Furthermore, the quasi-orthogonal ST-CPM systems out-
perform the modified orthogonal ST-CPM system. However, the
decoding complexity of the former is higher than that of the latter.

VI. CONCLUSION

In this paper, we proposed a modified orthogonal ST-CPM sys-
tem and a quasi-orthogonal ST-CPM system for three and four
transmit antennas, and derived fast ML demodulation algorithms

for the proposed systems. Simulation results showed that the per-
formances of the proposed ST-CPM schemes for four transmit an-
tennas are much better than that of the OST-CPM system for two
transmit antennas. Although the idea of the fast demodulation al-
gorithm in this paper is similar to the one in [13] for two transmit
antennas, the orthogonal-like space-time coded CPM design for 4
transmit antennas is much more difficult than the design for 2 trans-
mit antennas.
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