
An Evolutionary Framework for AS-Level Internet
Topology Modeling

Ruomei Gao Ellen Zegura
Networking and Telecommunications Group

College of Computing, Georgia Tech
Atlanta, GA 30332�

gaorm,ewz � @cc.gatech.edu

Abstract— Models for network topology form a crucial
component in the analysis of protocols. This paper sys-
tematically investigates a variety of evolutionary models for
autonomous-system (AS) level Internet topology. Evolution-
based models produce a topology incrementally, attempt-
ing to reflect the growth patterns of the actual topology.
While evolutionary models are appealing, they have gener-
ally agreed less closely with measurements of real data than
non-evolutionary models. We attempt to understand what
contributes to a “good” evolutionary model. Our system-
atic study consists of a relatively generic evolutionary model
framework, which we populate with different choices for the
components. This allows us to compare a variety of instances
of models to measurements from real data sets. We study
issues such as the initial topology, the type of preferential
connectivity used in adding edges, and the role of “growth”
edges added between existing nodes. We find that appro-
priate instantiation of the framework can provide topologies
that agree closely with real data. We also use our work to
highlight several crucial open problems in topology model-
ing.

I. INTRODUCTION

Models for network topology form a crucial component
in the analysis of protocols. Typically, a model for topol-
ogy is combined with a model for traffic to define an oper-
ational environment for the protocol under study. In some
cases, a fairly simple topology (e.g., a single bottleneck
link) is used; such models may admit analytic solutions.
Increasingly, however, the evaluation of protocols includes
simulation-based studies using topologies that are larger,
in an attempt to more accurately reflect the properties of
networks like the Internet.

Attempts to understand and model the topology of the
Internet have traditionally been limited by the difficulty of
obtaining real data. Network providers are reluctant to re-
veal details of internal topology, for obvious reasons of
security. While internal topology is a necessary compo-
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nent of router-level topology (where the topological enti-
ties are routers and their interconnections), it is hidden in
autonomous system (AS) level topology (where the topo-
logical entities are autonomous systems and their BGP in-
terconnections). Fortunately, data on the AS-level topol-
ogy can be inferred using the tables built by the inter-
domain routing protocol BGP [1]. Daily snapshots of AS-
level topology since November 1997 are available as part
of the U. of Oregon Route Views project [2] and archived
at NLANR [3].1

Faloutsos et al. analyzed the AS-level topology data,
focusing on three instances over a period of one year [4].
They observed that several properties of the topology can
be described using power laws, of the form ������� . In par-
ticular, these power laws concern the outdegree of nodes,
the neighborhood size around a node (defined by reachable
nodes within 	 hops), and the eigenvalues of the adjacency
matrix.

The Faloutsos observations have inspired the analysis of
older models for topology, which are largely intended for
router-level modeling (e.g., Tiers [5], GT-ITM [6], Wax-
man [7]), as well as development of newer models that
clearly target AS-level representation (e.g., BRITE [8] and
Inet [9]). Generally speaking, the newer models have been
demonstrated to agree more closely with real topological
data than the older models, on a variety of measures [8],
[9].

One type of newer model, typified by the BRITE work,
is evolution-based in the sense that it produces a topology
incrementally, by adding one node at a time to an existing
topology. Evolution-based models have appeal for several
reasons. First, they explicitly model, to some extent, the
growth of the actual Internet. In doing so, they have the
potential to lead to insights about why particular charac-


It should be noted that these snapshots are more accurately called

approximations of the AS-level topology. They are based on merging
views from a number of BGP routers, but do not claim complete cover-
age. Other limitations in the real data are discussed in Section II.



teristics are present in any snapshot of a topology. Second,
because they maintain a current topology, they can be used
to produce a series of snapshots for the study of a protocol
under a dynamic, time-varying topology. Third, they are
naturally amenable to “what-if” studies that consider the
effect a change in technology might have on an evolving
topology.

To date, however, the evolutionary models have gener-
ally agreed less closely with real data than models such as
Inet, that are driven by achieving a particular degree dis-
tribution. Thus, though evolutionary models are appealing
for the reasons listed above, there is a gap in the quality of
the topologies they produce. The goal of this paper is to
systematically investigate a variety of evolutionary mod-
els. We do this via a relatively generic evolutionary model
framework, which we populate with different options for
the components. Our choices for specific components are
in part driven by observations taken from the real data set
over time. That is, we attempt to use the real data, not in
single snapshot form, but viewed as a historical record of
actual evolution.

Our work is close in spirit to the BRITE paper, which
also uses a framework to study the effect of different
choices in an evolutionary model. We differ from BRITE
in the types of components we choose to focus upon. For
example, we explore several different types of preferen-
tial connectivity of quite different flavor than the BRITE
choices. We also consider a greater number of basic evo-
lutionary events than BRITE, including the addition of
edges between existing nodes. Finally, we use measure-
ments from the real data to drive choices in our evolution-
ary model.

The remainder of the paper is organized as follows. Sec-
tion II describes the real data set and presents evaluation
of properties of many instances of the real data. This
sets the stage for the target of modeling efforts. Section
III describes the two most relevant related models, Inet
and BRITE, and evaluates topologies generated by these
models. We find room for improved models. Section IV
presents our generic framework, and Section V lists the
ways in which we can instantiate the framework. Section
VI evaluates several key components of our framework.
We conclude in Section VII and include a list of key open
problems.

II. REAL TOPOLOGY DATA

A. Description of data set

We use the NLANR data sets, which merge BGP data
from a collection of BGP routers at different locations.
The intent of the merged views is to produce a fairly com-

plete version of the Internet AS-level topology. Though
this data is widely used for topology research, it has sev-
eral types of inaccuracy:� Incompleteness. The data is currently collected from 52
BGP routers distributed geographically. There is no guar-
antee that their merged views include all ASes in the In-
ternet. Some AS information may be hidden intentionally;
other AS information may simply be out of the regions
covered by the collection routers. It is difficult to quantify
the extent of incompleteness, and we do not attempt to do
so. As in much other work, we use the data as is. An open
and interesting question is to quantify the incompleteness
and consider improved methods for capturing the full In-
ternet topology. Some progress in router level modeling
can be found in Govindan et al. [10].� Collection failures. The data sets contain occasional
instances of unusually small data files. We attribute these
to collection failures, either at BGP collection points or in
the process of recording the merged data. We are careful
not to use any instance that is unusually small.� Instability. The data sets viewed over time contain
instabilities, in the form of nodes that are intermittently
present in the data. That is, an AS number may be present
in the data set one day, absent for a short number of sub-
sequent days, then reappear. This sort of instability could
be caused by failure of the BGP-speaking router in the AS
or flapping of routes that causes this AS to be bypassed
intermittently. Though BGP4 [11] provides solutions to
dampen route flapping, flapping routes are still very com-
mon [12]. Instability causes difficulties in certain mea-
sures. For example, it is difficult to measure the number
of original edges that appear with a node (as opposed to
growth edges that are added later), when the node has no
single point of entry into the topology.

B. Evaluation of real data
Before evaluating models for generating topologies, we

consider the values of a set of metrics on instances from
the NLANR data. We have selected 10 instances from the
data set, covering a doubling in growth from about 3000
nodes to 6000 nodes 2

An open question in the area of topology modeling
concerns the evaluation of proposed models. The ap-
proach currently taken by most researchers is to evaluate
the generated topologies using a variety of graph-based
metrics, some focusing on fine-grained properties of the
graph (e.g., the degree sequence [4]) and others attempt-
ing to capture more coarse-grained structure (e.g., expan-
sion [13], clustering [8], [14]).
�
The data sets chosen represent snapshots that increment in size by

approximately 500 nodes.
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size 3503 4008 4502 5003 5500 6023 6505 6996 7505 Legend of abbreviations
edgenum 6302 7308 8371 9514 10570 11682 12600 13908 15007 edgenum: number of edges
avgdgr 3.60 3.65 3.72 3.80 3.84 3.88 3.87 3.98 4.00 avgdgr: average degree
clustcoeff 0.77 0.76 0.87 0.74 0.74 0.74 0.74 0.74 0.74 clustcoeff: clustering coefficient
diameter 10 11 10 9 9 9 9 9 10

asp 3.76 3.78 3.74 3.72 3.72 3.70 3.71 3.67 3.65 asp: average shortest path length
eccentri 7.44 7.49 7.01 6.87 6.67 6.74 6.76 6.64 6.66 eccentri: eccentricity
dgrfreq(b) -1.22 -1.23 -1.20 -1.18 -1.21 -1.17 -1.18 -1.15 -1.16 dgrfreq(b): slope of linear regression result on degree-frequence sequence
dgrfreq(r) 0.851 0.860 0.843 0.838 0.849 0.835 0.85 0.84 0.84 dgrfreq(r): correlation coefficient of linear regression result above
pw2(b) -2.16 -2.19 -2.21 -2.22 -2.16 -2.34 -2.21 -2.27 -2.15 pw2(b): slope of linear regression result of sequence above excluding 2% largest nodes
pw2(r) 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.98 0.98 pw2: correlation coefficient of linear regression result as above

TABLE I
SNAPSHOT OF REAL TOPOLOGY

Our intuition is that measures of coarse-grained struc-
ture are more practically important than measures of fine-
grained structure. However, we do not currently have re-
search results to substantiate that intuition. In the absence
of a solid understanding of which metrics matter (and un-
der what circumstances), we take a broad brush approach
and evaluate a fairly large collection of metrics, all pre-
viously proposed for evaluation of topologies. The met-
rics are defined in the Appendix. In fact, our work makes
clear that this approach leads to great difficulty in reaching
conclusions about models, and hence points to evaluating
topologies as a critical and unsolved open problem.

Table I shows the sizes of each instance and the val-
ues of the metrics. As the topology gets larger, the aver-
age node degree increases, and hence the graph is more
dense. This increase in density is also evident in the di-
ameter (which tends to remain constant or decrease as size
increases), the average shortest path length (which tends to
decrease slightly, despite a much larger topology), and the
eccentricity (which tends to decrease).

Other metrics show no clear trend as the topology in-
creases. For example, the clustering coefficient increases
and then decreases. Measures with this sort of variabil-
ity are both interesting and problematic. The fact that the
real data exhibits non-monotonic values for certain met-
rics seems to provide evidence that the underlying growth
mechanisms are not always well-behaved. In turn, this
presents a challenge for any modeling method that is at-
tempting to capture this behavior. Variable measures also
lead to difficulty in assessing a model, since the value ob-
served in the real data is sensitive to the particular choice
of instance.

Many of these measures are actually surprisingly con-
stant, varying by about 10% even as the topology size dou-
bles. This perhaps points to additional invariants (driven
by performance considerations?) in the growth of the In-
ternet topology, beyond those observed in the focus on

power law behavior.

III. EVALUATION OF INET AND BRITE

In this section, we compare topologies generated by Inet
and BRITE to the real topology data. We observe that
while each model agrees with the real data on some mea-
sures, both exhibit disagreement on other measures, hence
indicating room for improved models.

In BRITE, the initial topology is formed by random con-
nection of a fixed number of backbone nodes. Nodes are
placed in the plane either all at once or incrementally. In
the case of placement all at once, nodes are then consid-
ered in random order to be connected to exactly 
 neigh-
bors selected from all other nodes. In the case of incre-
mental placement, new nodes are added one at a time and
connect to exactly 
 neighbors from those nodes present
in the topology. Three forms of connectivity are supported:
Waxman-style, where the probability of an edge is propor-
tional to the distance between the two nodes; degree-based
preferential connectivity, where the probability of an edge
is proportional to the current outdegree of the target node;
and weighted preferential connectivity, where the proba-
bility of an edge is proportional to the outdegree weighted
by the distance between the two nodes. The primary con-
clusion of the BRITE study is that preferential connectiv-
ity and incremental growth are key factors contributing to
agreement between generated topologies and power-law
measurements on real AS-level topologies.

The Inet approach represents another class of models,
which are not evolutionary. Instead Inet generates a target
degree for each node and then interconnects the nodes so
as to achieve the target for each node. Preferential connec-
tivity is used in deciding the connections when there are
multiple nodes with unfilled outdegrees.

In our comparison, we use an instance of size 5003
nodes and 9514 edges, and use each generator to produce
a topology with a similar number of nodes and edges. Ta-

3



ble II summarizes the comparison.

RealTopo Inet BRITE

size 5003 5000 5009

edgenum 9514 9852 9364

avgdgr 3.80 3.94 3.74

clustcoeff 0.74 0.99 0.82

diameter 9 12 9

asp 3.72 3.74 5.12

eccentri 6.87 8.29 7.34

dgrfreq(b) -1.18 -1.30 -1.81

dgrfreq(r) 0.84 0.86 0.86

pw2(b) -2.22 -2.25 -0.57

pw2(r) 0.97 0.99 0.98

TABLE II
EVALUATION OF INET AND BRITE

The Inet data agrees fairly closely with the real topology
on the measures of average degree and average shortest
path length. It also agrees with two power law measures:
dgrfreq(b), which is the slope of the linear regression for
the degree-frequency power law, and pw2(b), which is the
slope of the linear regression for the degree-frequency data
excluding the largest 2% of ndoes. Since Inet explicitly
uses a degree sequence derived from the real data, the
agreement with degree-based measures is not surprising.

Inet disagrees with the real data, however, on the mea-
sures of clustering coefficient, diameter and eccentricity.
In all cases the Inet results are larger than the real data.
Examining the Inet procedure closely, we see that it first
assigns each node a degree according to an exponential
function inferred from the real data, and then connects all
those nodes whose degree is larger than one into a span-
ning tree. The order in which nodes are selected to con-
nect to the spanning tree is based on the assigned degree:
higher degree nodes tend to be added to the spanning tree
early, while lower degree nodes tend to be connected into
the spanning tree later. As a result, lower degree nodes
tend to form the leaves of the tree. After forming the ini-
tial spanning tree, degree one nodes are added to form a
spanning tree that includes all nodes. Although additional
edges are added to fulfill the pre-assigned degrees, there
remain low degree nodes at the leaves that cause the large
diameter. This spreading of the topology also affects clus-
tering coefficient and eccentricity.

Though BRITE also uses a spanning tree initially, it
doesn’t produce topologies with overly large diameter.
There are two reasons for this. First, the spanning tree is
typically a small fraction of the whole topology, used as an
initial topology before the incremental growth is applied.
Second, the spanning tree nodes are connected based on
geometric distance, with nodes near by in Euclidean space

connected together. This tends to result in tree paths with-
out too many hops.

We might expect diameter and average shortest path
length to be correlated. That is, topologies with low (high)
diameter would be expected to have low (high) shortest
path length. The BRITE and Inet topologies reverse this
intuition. Inet’s average shortest path length agrees closely
with the real data, despite the larger diameter. This oc-
curs because while a few nodes are far apart, most nodes
are fairly tightly connected. In BRITE, the average short-
est path length is a good deal higher than the real data,
despite the similar small diameter. In BRITE, the incre-
mental growth nodes are connected to the initial topology
using degree preference, however the nodes in the initial
topology tend to have similar degrees. Hence, the addi-
tional nodes tend to be distributed somewhat evenly over
the existing nodes. The result is much less of a “center” to
the graph and more long paths.

In addition to the average shortest path length, BRITE
also disagrees with the real data on the power law mea-
sures. The slope of the linear regression is significantly
different than the real data for both versions of degree-
frequency data. This is caused by the well-known lack of
large degree nodes in BRITE.

We conclude from this analysis that while both methods
are able to match the real data on some measures, there is
room for improved models and particularly for improved
evolutionary models.

IV. A GENERIC FRAMEWORK

We desire the ability to study a variety of different evo-
lutionary models. As in BRITE, our approach is to use
a relatively generic framework that can be populated with
different choices for the basic components to produce dif-
ferent evolutionary models. The basic evolutionary frame-
work is straightforward: we begin with an initial topology,
then apply discrete events to the topology until a stop re-
quirement is met. (See Figure 1.)

A key issue in the design of the framework is the choice
of events that can be applied. The BRITE model essen-
tially includes only an AddNode event, which introduces
a new node into the graph and connects the new node to
existing nodes with some number of edges. Our obser-
vations from the real data set lead us to include three ad-
ditional events (though any particular instantiation of the
framework could choose to omit any of these). First, we
include an AddEdge event, which adds an edge between
two existing nodes. We thus distinguish between two types
of edges, original edges that enter the topology with a new
node, and growth edges that are added between existing
nodes.
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Main()
{
    Initialization();
    /* Read the argument file, initialize 
     * the data structure and variables */
    GenInitTopo();
    /* Generate Initial Topology */
    while (stop condition is not met )
    {
        EventType = SelectEvent();
        switch (EventType)
        {
            case 1:
                AddNode();
                break;
            case 2:
                DelNode();
                break;
            case 3:
                AddEdge();
                break;
            case 4:
                DelNode();
                break;
        }
    }
}                                             

Fig. 1. Basic procedure of the framework

The real data set also supports the inclusion of DelN-
ode and DelEdge events, which, respectively, remove a
node plus incident edges and a single edge. These events
are probably most important if one desires to use the evolu-
tionary model to produce a series of snapshots for studying
the behavior of a protocol in a time-varying environment,
where failure or removal of nodes and edges may be quite
important. On the other hand, these two events pose dif-
ficulties in the generation process since either one has the
potential to disconnect the graph. In our implementation of
the framework we include a check for disconnection that
is performed on deletion. If the deletion disconnects the
graph, it is not performed.

The choice of specific event at each step is controlled
by a SelectEvent function. For example, this function
might use probabilities to determine the mix of the four
different types of events.

Though not highlighted in the figure, we keep a notion
of time in our evolution. In each time unit, a certain num-
ber of events occur, each associated with the current time
stamp. This allows us to associate an age with a node,
which we use in implementing some of the preferential
connectivity methods. This could also be used in analyz-
ing time-varying behavior of the topology, though we do
not pursue this evaluation here.

V. POPULATION OF THE FRAMEWORK

The generic framework is populated by instantiating
each of the relevant functions. This involves supplying
(or choosing) a method to generate the initial topology, a
function to control the frequency of different event types, a
method for each event type and a stopping condition. This
section describes the functions that we provide and use in
our experiments.

A. Initial Topology

We have implemented four methods to generate the ini-
tial topology. Each method has its own set of control pa-
rameters.
1. Incremental with degree preference.
This method uses incremental creation to generate the ini-
tial topology. Starting from one node, additional nodes are
added one at a time. The edges associated with the new
node are connected to the existing nodes with probability
that is linearly proportional to the degree of the existing
node. The number of edges that come with a new node
can be distributed in one of three ways: exponential, deter-
ministic or uniform. This method is essentially equivalent
to the generation method of BRITE [8].
2. Degree-based topology.
This method uses pre-assigned degrees for each of the
nodes, with degree chosen from an exponential distribu-
tion. To generate a connected initial topology, nodes are
added one at a time and connected (with a single edge) to
the existing nodes, with equal probability. This produces a
spanning tree over all the nodes. Finally, edges are added
between nodes to fill the assigned original degrees. This
is close to the method used by Inet to generate a com-
plete topology [9]. However, there are two major differ-
ences between this method and Inet’s. First, Inet uses de-
gree preferential connectivity when building the spanning
tree. In our case, we connect the nodes of the spanning
tree purely randomly, i.e., every node has equal probabil-
ity. Second, Inet assigns the degree sequence according to
the real topology, i.e., it first assigns ����� nodes according
to the second power law in Faloutsos’ paper, then assigns
top ��� large nodes. We assign the degree according to an
exponential distribution.
3. Random graph.
The initial topology is a random graph with a specified av-
erage degree. Thus far, we have implemented only “pure”
random graphs, where each pair of nodes is connected with
fixed probability.
4. Snapshot.
The initial topology is taken from a specified graph file,
which might be a snapshot from a real network or the
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topology generated by another model.

B. Edge Connectivity Method

Both the AddNode and AddEdge events require a
method to determine the endpoint or endpoints of the edge.
We provide three methods to determine edge connectiv-
ity, all based on some form of preferential connectivity.
Specifically, each existing node is assigned a weight ac-
cording to an attribute (e.g., degree, activity or age). When
a new node or edge is added into the topology, it connects
to an existing node with probability proportional to the
weights. Specifically, our methods are:
1. Degree preference.
This is the common preferential connectivity function in
which the weight assigned to existing nodes is linearly pro-
portional to the degree of the nodes at that time [9], [8].
This tends to cause high degree nodes to develop higher
degree. We also implement a variation in which the weight
is assigned to a power of the degree of nodes.
2. Activity preference.
In this method, the weight assigned is linearly proportional
to the number of growth edges that have been added to the
node. Nodes without growth edges are assigned a minimal
weight to give new nodes a chance to grow. We include
this method because we observed that the real data shows
some preference based on activity: an edge is more likely
to connect to a more “active” node than a less active node.
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Fig. 2. Activity preference of events

Specifically, we measure preference for active nodes as
follows. We measure the activity during the first 200 days,
and call this the “activity history”. Nodes with an equal
number of events ��� during the activity history period are
grouped into equivalent sets. The value of � � associated
with an equivalent set is an “activity index” in the past (x-
axis). The higher the value of � � the more active are the
nodes. The number of events ��� that occur after the 200-
day period denote the activity in the future of a node. An
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Fig. 3. Age of nodes selected by growth edges

average of all values of ��� across nodes in an equivalent
set correspond to the activity in future (y-axis). The clear
rising trend in Figure 2 shows that node active in past will
still be active in future. In other words, edges tend to be
added to active nodes.
A variation of the activity preference includes a sliding
window. In this variation only those edges added within
the time window (e.g., 20 time units before the “cur-
rent” time) are counted. This simulates variable periods
of growth for nodes.
3. Age preference.
In this method, the weight assigned is equal to the age of
the node, which means the older nodes tend to get more
edges. Figure 3 shows the age of the nodes selected by
growth edges. This illustrates that growth edges prefer
connectivity to older nodes.

We should note that there are, of course, correlations
between degree, activity, and age. Older nodes and nodes
subject to more activity will tend to have higher degree.
Thus these three categories of preferential connectivity are
not entirely independent.

C. Additional comments
There are other functions in the framework for which

we currently provide limited options. For example, in the
AddNode method, we set the node degree to have an ex-
ponential distribution. (See Figure 4.)

Many other topology generators associate nodes with a
location in a 2-d plane to model geographic location. The
location (and, more precisely, the distance between two
nodes) is then used as a parameter in determining the prob-
ability of an edge between two nodes. We do not use ge-
ographic location in our model because the nodes in our
model represent ASes, which are not typically associated
with a single location in geographic space. More properly
they might be represented as “spread” across a region of
space, but even that does not reflect semantic reality espe-

6



1

10

100

1000

10000

1 10 100 1000

Nu
m

be
r o

f n
od

es

Number of original edges

Original edge number

Fig. 4. The distribution of original degree of new nodes

cially well. A better (but significantly more complex) ap-
proach might be to select a number of peering locations for
each AS and explicitly model each with a vertex, includ-
ing auxiliary information that would group together the set
of peering locations for the same AS. This approach rep-
resents a sort of hybrid between a router-level model and
an AS-level model.

VI. EVALUATION

We examine three areas where we may improve upon
the BRITE method: initial topology alternatives, prefer-
ential connectivity functions, and the inclusion of growth
edges.

A. Effect of initial topology
We compare three methods for generating the initial

topology: random, degree-based and incremental with de-
gree preference. We consider four sizes for the initial
topology: 50, 100, 200 and 500 nodes. All three meth-
ods have parameters that control the number of edges. We
use these parameters to produce three different densities:
sparse, medium and well-connected. In all experiments,
we run the evolution process until the topology has 5000
nodes and about 9500 edges. Note that this means we ad-
just some of the evolution parameters to achieve approx-
imately the same number of edges in the final topology,
regardless of the density of the initial topology.

Appendix II summarizes the results. Of particular note
are the following:� The random method generally has larger average short-
est path length and smaller clustering coefficient than the
other methods. The degrees of the nodes in the random
initial topology will tend to be quite similar, and this is
generally preserved in the final topology leading to rela-
tively long paths and less clustering of nodes.� The size of the initial topology has surprisingly little
effect on the comparison between methods. We might

have expected that larger initial topologies would result in
greater differences in the methods, but that hypothesis is
not supported by the data. Our largest initial topology is
10% of the size of the final topology; certainly we might
see greater differences if we increased the initial topology
size even further. We later explore using a relatively large
snapshot from the real topology as an initial topology.� The density of the initial topology does matter. Because
we require the final topologies to have the same number of
edges, the density of the initial topology affects the evo-
lution process. If the initial topology is sparse, the evo-
lution process adds more edges; if the initial topology is
dense, the evolution process adds fewer edges. In the ex-
treme case, during evolution all new nodes are connected
with just a single edge to the topology, leading to a tree-
like structure surrounding a much more dense core. A
more dense initial topology leads to a better connected fi-
nal topology (e.g., smaller average shortest path length). A
more dense initial topology also makes the differences in
the methods more clear.

Finding: Initial topology (even if small) affects the final
topology. The method and density of the initial topology
are more important than the size, at least for small to mod-
erate sizes.

B. Preferential connectivity
In addition to degree-based preferential connectivity, re-

call that our framework includes preferential connectivity
based on activity (where more active nodes are more likely
to be the endpoint of an edge) and preferential connectivity
based on age (where more recently added nodes are more
likely to be the endpoint of an edge). We further include
a generalized version of degree-based preference, where
the weight associated with a node is raised to a power. If
the power is greater than 1.0, this will further increase the
preference associated with large degree nodes.

The purpose of this set of experiments is to evaluate the
effect of these different forms of preferential connectiv-
ity. We choose one version of each method for experi-
mentation, selected based on our experience with methods
that tend to work fairly well. Specifically, we use a Pois-
son distributed number of events per day in the age-based
method with mean of 10, a sliding window in the activity-
based method with window size 20 days, and an exponent
of 1.2 in the degree-based method. To eliminate the effect
of other parameters, all the experiments have similar final
topology size and the same initial topology (50 nodes and
incremental degree preference).

Table III summarizes the comparison. We find that
the degree-based method comes closest to the real data,
and the age-based method is least like the real data. The
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activity-based method falls in between. Both the age and
activity-based methods tend to have larger diameters, av-
erage shortest path lengths and eccentricities than the real
data. This indicates topologies that are less closely con-
nected. We note that the age-based method will treat all
nodes of the same age equally, without regard to degree.
Hence, there is limited opportunity for a single node to
develop large degree. The activity-based method also con-
tains a notion of time since activity is measured within a
sliding age window. However this method is more simi-
lar to degree-based connectivity. Indeed, one can view the
activity-based method as equivalent to degree-based pref-
erence with truncation, where the truncation causes only
the most recently added edges to be counted in assessing
degree.

Preference
Method

Real Topology Activity: Slid-
ingWindow

Age: Poisson
Distribution

Power of De-
gree

edgenum 9514 9493 9588 9375

avgdgr

clustcoeff 0.74 0.82 0.82 0.88

diameter 9 12 16 9

avgshtpth 3.72 4.97 6.06 3.76

eccentri 6.87 8.68 11.32 6.67

dgrfreq(b,r) -1.18,0.84 -2.01,0.97 -2.47,0.93 -1.29,0.87

pw2(b,r) -2.22,0.97 -2.03,0.98 -2.22,0.90 -2.27,0.98

TABLE III
DIFFERENT PREFERENTIAL CONNECTIVITY

Finding: Degree-based preferential connectivity (espe-
cially with an exponent slightly greater than 1.0) produces
better topologies than using age or activity as the basis for
preference. These age and activity methods suffer because
they only weakly prefer higher degree nodes and therefore
produce more uniform and loosely connected topologies.

C. Event mix
Recall that our framework allows specification of the

frequency of different types of events. The purpose of this
set of experiments is to evaluate the effect of varying the
mix of events. In particular, we focus only on the two
addition events (AddNode and AddEdge ) since deletion
events are primarily interesting when considering a series
of topologies. We vary the percentage of AddNode events
from 60% to 100%; the remaining events are AddEdge
events. We use degree-based preferential connectivity; a
new node has an exponentially distributed number of orig-
inal edges. We vary the mean of the exponential distri-
bution to achieve a similar number of edges in the final
topology. When there are more AddNode events, we use
a larger mean.

Table IV summarizes the comparison. We see that as

ratio 60% 70% 80% 90% 100%

parameter 6:4, 0.5 7:3, 0.8 8:2, 1.0 9:1, 1.1 10:0,1.25

edgenum 9377 9386 9519 9445 9473

avgdgr 3.75 3.75 3.81 3.78 3.79

clustcoeff 0.85 0.83 0.82 0.81 0.80

diameter 10 9 9 10 10

asp 3.93 4.01 4.08 4.14 4.22

eccentri 7.36 6.70 6.91 7.16 7.53

dgrfreq(b,r) -1.38,0.90 -1.41,0.88 -1.47,0.91 -1.49,0.90 -1.53,0.90

pw2(b,r) -2.24,0.99 -2.32,0.98 2.34,0.97 -2.32,0.96 -2.33,0.96

TABLE IV
DIFFERENT ADDNODE:ADDEDGE RATIOS

the event mix contains more AddNode events, the cluster-
ing coefficient decreases, the average shortest path length
increases, and the resilience decreases. Consistent with
intuition, AddEdge events tend to produce more closely
connected graphs, while AddNode events tend to produce
longer paths. New edges add short-cuts in the topology
that make paths shortest, while new nodes cause a more
tree-like structure since most new nodes have just one orig-
inal edge.

More AddEdge events also tend to help generate large
degree nodes, as can be seen from the linear regression
of the degree frequency plot. This is also consistent with
intuition: a new edge selects two endpoints, using degree-
based preference for both endpoint. Hence a new edge can
increase the degree of two large nodes. A new node will
add edges to the topology, but one endpoint is fixed at the
(relatively low degree) new node.

Finding: Increasing the percentage of AddEdge events
yields more closely connected graphs and larger nodes
with large-degree. Both trends are present in the real data,
hence the inclusion of AddEdge events appears important
in evolutionary models.

VII. CONCLUSIONS

We conclude by first presenting an example instantia-
tion of our framework which does especially well in com-
parison to the real data set. Table V shows the results;
the topology has 10500 nodes and 22500 edges. The ini-
tial topology is a snapshot of the real topology, with about
3500 nodes (35% of the final total). The ratio of AddNode
and AddEdge events is 6:4, and edges are added using
degree preferential connectivity raised to a power. For this
instance, the agreement between model and reality is quite
close, and better than the BRITE or Inet comparison shown
earlier for a 5000 node topology.

This example illustrates the positive result that evo-
lutionary models, if properly instantiated, can produce
topologies that agree with real data on a number of mea-
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RealTopology Generated Topology

node num 10494 10500

edge num 21890 22550

clustcoeff 0.732 0.717

diameter 10 9

asp 3.63 3.70

eccentri 7.18 6.75

dgrfreq(b,r) -1.14,0.838 -1.32,0.842

pw2(b,r) -2.17,0.982 -2.40,0.962

TABLE V
REAL TOPOLOGY AND GENERATED TOPOLOGY

sures.
However, our study also leads us to conclude that the

following open problems are critical to the field of topol-
ogy modeling:� Evaluation. It is clear that we need a much better un-
derstanding of how to evaluate models. Using a collection
of graph theoretic measures is problematic both because
the level of agreement may be mixed across the metrics
(e.g., model A does better on metric 1 than model B, while
model B does better on metric 2 than model A), and be-
cause it is unclear which metrics matter most (e.g., if met-
ric 1 matters, model A may be “better”). Better under-
standing of how metrics relate to issues such as protocol
performance are crucial, but appear to be difficult to tackle
in a general way. (See [13] and [15] for initial work in this
direction.)� Modeling. Our analysis of the real data indicates that
the Internet graph has some properties that are surpris-
ingly constant, yet others that behave non-monotonically
over time. None of the existing models have sufficient
time-varying dynamics to capture non-monotonic behav-
ior. There is some work in modeling the WWW that may
be relevant in this area [16], [17].� Theory. The theory community has engaged in the
problem of WWW modeling; there is also a role for the-
oretical foundations in the AS and router-level modeling
arena. For example, one can consider the initial topol-
ogy question in theoretical terms: how large can the initial
topology be before it is “detectable” in the final topology
(for some theoretical definition of detectable, perhaps cast
as a game with an adversary). We are currently working
with theoreticians on several problems in topology model-
ing [18].
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APPENDIX

I. METRICS

A. Terminology
Terms we used are clarified below.

- Nodes and Edges are the basic elements in the topol-
ogy. If we consider the topology of the network as a graph,
each AS is a node, and the BGP sessions between ASes are
edges.
- The Degree of a node is the number of edges incident to
the node. we use an undirected graph representation.
- The Distance between a pair of nodes is the length of the
shortest path between the two nodes. In a graph without
any weights on the edges, the length equals the number of
hops of the path.
- Neighborhood( � ) of node � , is the sub-graph formed by
the nodes that can be reached from node � within 	 hops.

B. Metrics
Our metrics can be categorized into five groups: basic,

degree oriented, path/connection oriented, sub-graph ori-
ented and others.

1. Basic
This group includes the most basic metrics of the topol-

ogy: the number of nodes � , the number of edges � , diam-
eter � , and the average degree ��� �"!"� . The diameter of
a graph is the maximum distance between any two nodes
in the graph. These metrics only provide a coarse picture
of the whole topology.

2. Degree oriented
These metrics focus on the degree of each node:

degree-frequency distribution and rank-degree distribu-
tion. Degree-frequency is the relationship between the de-
gree of a node and the number of nodes that have this de-
gree. A variation of degree-frequeency is the sequence
with the 2% largest node taken off. We refer to this as
power law 2 (pw2). The comparison of the results of the
two methods helped us understand the role of the large
nodes. Rank-degree distribution describes the relationship
between degree rank and degree value. The degree rank of
a node is the rank by sorting nodes according to their de-
grees. These are local metrics, in the sense they are mea-
sured at a node.

3. Path oriented
The metrics in this group describe how the nodes con-

nect to each other. The metrics include: hop-plot, average
shortest path length, and eccentricity. All of these metrics
are based on the distance between nodes. Hop-plot( 	 ) is
the number of node pairs that have a distance shorter than
	 . Eccentricity of node � is the longest distance from �
to any other node. Basically, if there is a “center” of the

graph, eccentricity describes how far the node is from the
center. For the whole graph, we define the eccentricity as
the average eccentricity across all the nodes.

4. Sub-graph oriented
The metrics in this group consider the neighborhood of

the nodes. Expansion( 	 ) [13]is the size of the neighbor-
hood within 	 hops. For the graph, we take the average
neighborhood size of all nodes. This metric is quite similar
to the hop-plot metric mentioned above, but with increas-
ing 	 it tries to capture the growth of the neighborhood
from one node. Clustering coefficient [14] is defined as
the number of edges in the 1-hop neighborhood, normal-
ized by the number of edges in a full mesh graph with the
same number of nodes (i.e., for node � : � , the number of
nodes in the neighborhood; � , the number of edges; #$# , the
clustering coefficient of the node. #$#%�&�'!)(*�+(*�-,/.1020 ) We
take the average of #$# of all nodes, to define the clustering
degree of the whole topology.

II. RESULTS FROM EXPERIMENTS WITH DIFFERENT
INITIAL TOPOLOGIES

Tables VI to Table IX show the evaluation results of
different experiments with different initial topologies. In
the tables, the Initial topologies have 3 densities: S:sparse,
M:Medium, W:Well-Connected.

Incremental Degree Random Degree-base

InitDensity S M W S M W S M W

edgenum 9338 9377 9565 9481 9550 9634 9371 9465 9461

avgdgr 3.74 3.75 3.83 3.79 3.82 3.85 3.75 3.79 3.78

clustcoeff 0.95 0.80 0.87 0.75 0.73 0.98 0.88 0.89 0.96

diameter 11 10 10 12 10 10 10 10 10

asp 4.33 4.14 3.85 4.36 4.24 3.79 4.31 4.19 3.89

eccentri 7.52 7.37 7.02 8.45 7.35 7.25 7.08 7.16 7.11

dgrfreq(b) -1.62 -1.49 -1.30 -1.69 -1.61 -1.26 -1.60 -1.54 -1.34

dgrfreq(r) 0.91 0.89 0.90 0.94 0.92 0.89 0.93 0.92 0.91

pw2(b) -2.09 -2.16 -2.15 -2.21 -2.16 -2.12 -2.14 -2.15 -2.17

pw2(r) 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.99

TABLE VI
INITIAL TOPOLOGY WITH 50 NODES
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Incremental Degree Random Degree-base

InitDensity S M W S M W S M W

edgenum 9364 9525 9514 9455 9696 9455 9303 9693 9396

avgdgr 3.74 3.81 3.81 3.87 3.88 3.78 3.72 3.88 3.75

clustcoeff 0.94 0.81 0.87 0.70 0.70 0.97 0.86 0.87 0.95

diameter 11 10 9 11 11 9 11 10 10

asp 4.31 4.12 3.75 4.42 4.25 3.86 4.38 4.14 3.8

eccentri 7.57 6.32 6.59 7.74 7.57 6.78 7.88 7.49 7.32

dgrfreq(b) -1.62 -1.46 -1.23 -1.73 -1.63 -1.25 -1.64 -1.54 -1.22

dgrfreq(r) 0.92 0.90 0.88 0.94 0.91 0.87 0.93 0.91 0.85

pw2(b) -2.18 -2.3 -2.27 -2.11 -2.31 -2.46 -2.16 -2.17 -2.47

pw2(r) 0.98 0.98 0.99 0.98 0.97 0.99 0.98 0.98 0.98

TABLE VII
INITIAL TOPOLOGY WITH 100 NODES

Incremental Degree Random Degree-base

InitDensity S M W S M W S M W

edgenum 9396 9597 9511 9599 9612 9502 9429 9682 9437

avgdgr 3.75 3.84 3.80 3.84 3.84 3.80 3.77 3.87 3.77

clustcoeff 0.80 0.81 0.86 0.71 0.75 0.81 0.87 0.87 0.93

diameter 10 11 11 10 11 9 10 10 10

asp 4.22 4.10 3.84 4.39 4.34 4.07 4.28 4.17 3.93

eccentri 7.46 7.71 7.54 7.51 7.49 6.92 7.35 7.52 7.15

dgrfreq(b) -1.55 -1.50 -1.16 -1.73 -1.70 -1.15 -1.59 -1.57 -1.18

dgrfreq(r) 0.92 0.91 0.84 0.95 0.94 0.75 0.93 0.91 0.85

pw2(b, r) -2.26 -2.31 -2.48 -1.91 -2.08 -3.02 -2.23 -2.30 -2.52

pw2(r) 0.98 0.98 0.97 0.96 0.99 0.97 0.98 0.97 0.97

TABLE VIII
INITIAL TOPOLOGY WITH 200 NODES

Incremental Degree Random Degree-base

InitDensity S M W S M W S M W

edgenum 9405 9540 9414 9584 9499 9335 9577 9466 9423

avgdgr 3.76 3.82 3.77 3.83 3.80 3.73 3.83 3.79 3.77

clustcoeff 0.91 0.84 0.91 0.69 0.76 0.87 0.85 0.89 0.93

diameter 11 10 12 10 11 12 11 11 11

asp 4.33 4.14 4.06 4.72 4.55 4.41 4.59 4.30 4.14

eccentri 7.9 7.44 8.28 7.86 7.96 8.23 8.09 7.64 7.40

dgrfreq(b) -1.69 -1.48 -1.12 -1.98 -1.63 -1.11 -1.83 -1.59 -1.23

dgrfreq(r) 0.94 0.93 0.91 0.97 0.96 0.73 0.98 0.94 0.90

pw2(b, r) -2.06 -1.90 -1.51 -1.83 -1.52 -0.90 -1.87 -1.84 -1.30

pw2(r) 0.99 0.96 0.91 0.99 0.94 0.66 0.98 0.96 0.89

TABLE IX
INITIAL TOPOLOGY WITH 500 NODES
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