An IP Address Based Caching Scheme for
Peer-to-Peer Networks

Ronaldo A. Ferreira, Ananth Grama and Suresh Jagannathan
Department of Computer Sciences, Purdue University
West Lafayette, IN, 47907-2066, USA
{rf,ayg,suresh} @cs.purdue.edu

Abstract— Distributed hash tables (DHTSs), used in a number
of current peer-to-peer systems, provide efficient mechanisms
for resource location. Systems such as Chord, Pastry, CAN,
and Tapestry provide strong guarantees that queries in the
overlay network can be resolved in a bounded number of overlay
hops, while preserving load balance among the peers. A key
distinction in these systems is the way they handle locality in the
underlying network. Topology-based node identifier assignment,
proximity routing, and proximity neighbor selection are examples
of heuristics used to minimize message delays in the underlying
network. In this paper, we investigate the use of source IP
addresses to enhance locality in overlay networks based on DHTs.
We first show that a naive use of source IP address potentially
leads to severe resource imbalance due to nonuniformity of peers
over the IP space. We then present an effective caching scheme
that combines a segment of the source IP with the queried
hash-code to effectively localize access and affect replication.
Using detailed experiments, we show that this scheme achieves
performance gains of up to 41%, when compared to Pastry in
combination with the proximity neighbor selection heuristic.

I. INTRODUCTION

The past few years have seen considerable research activity
in the area of peer-to-peer (P2P) systems and applications.
File-sharing systems, such as Napster [10], and Gnutella
[5], have gained immense popularity and attracted research
attention. As has been well documented, [2], [18], [17], [6]
these early systems had major scalability problems — Napster
due to its use of a central server for queries, and Gnutella due
to an inefficient search protocol that floods the entire network,
or at least a significant part of it, in order to find an item
of interest. The scale of P2P networks with a large number
of participating nodes requires these networks to be highly
scalable in terms of aggregate resource requirement as well
as end user performance. The latter requirement translates to
minimizing the number of hops a message must travel in order
to satisfy a query.

A number of researchers have addressed the problem of
scalability of P2P networks [19], [15], [24]. Systems such as
Chord [19], Pastry [15], and Tapestry [24] provide a simple
primitive for name resolution: given a file name, return the IP
addresses of the nodes that currently have references to the file.
To support this primitive, these systems rely on a distributed
hash table (DHT) abstraction, and provide an upper bound on
hop-count of O(logn), where n is the total number of nodes
in the network. This upper bound is achieved using a small
amount (O(logn)) of routing information per node. Other

systems such as CAN [12] support similar primitives, but
have different upper bounds on hop-count subject to varying
constraints on per-node routing information.

While much of the current work has focused on minimizing
the number of overlay hops, the delay experienced by mes-
sages in the underlying network can be a major performance
bottleneck. Since nodes and objects are identified by random
strings, lookup messages may travel around the world before
reaching a destination node that is in the same LAN as the
source node. To try to minimize the effects of randomization,
several heuristics have been incorporated into these systems.
These include proximity routing, topology-based ID assign-
ment, and proximity neighbor selection [14].

While these heuristics produce good results when compared
to a standard implementation, they, nevertheless, rely exclu-
sively on a single global overlay. Consequently, no guarantees
can be provided that a popular object has its key installed
very far from the majority of nodes that access it. Moreover, a
response to a lookup message does not contain any locality
information about the nodes holding a copy of the object.
Thus, a node receiving a query response has no information
about which nodes are close or far from it.

A natural way of building locality in an overlay network is
to explore the addressing scheme of the underlying network,
and to try to relate an overlay identifier with its host address
in the underlying network. The allocation of IP addresses in
the Internet has the desirable property that addresses that are
numerically close to each other are, in most cases, physically
proximate. In Section III, we explore this idea and show,
using traces collected over the Internet, that a naive adaptation
of IP addressing to overlay networks results in severe load
imbalances resulting from a highly nonuniform population of
the IP space by peers. Using the same traces, we investigate
the prefix lengths of CIDR blocks in different autonomous
systems, and show that the average prefix length is long
enough that it is unlikely to produce good locality results
in current DHT systems. We subsequently propose a caching
scheme for Pastry that uses the geographic allocation of IP
addresses to create different overlay domains where copies of
objects are replicated. The caching scheme is implemented
using additional routing information that is a constant factor
larger than that required by Pastry. We show, using extensive
simulation studies, that this scheme can reduce the response
delay by up to 41%, when compared with an optimized version

of Pastry, depending on the cache hit ratio.

II. BACKGROUND

Current routing schemes in P2P networks such as Chord
[19], Pastry [15], and Tapestry [24], work by correcting a
certain number of bits at each routing step. These schemes can
be viewed as variants of hypercube (or dimension ordered)
routing [9]. The routing scheme of Plaxton [11] for access-
ing nearby copies of objects in distributed systems is also
related. In these systems, nodes and objects share the same
address space. Nodes have their addresses assigned randomly
and uniformly. This is generally achieved by computing a
hash function on their IP addresses. Objects are identified
by computing a hash function on their names. The uniform
distribution of the identifiers (nodes and objects) is desirable
for providing load balance in the system; that is, all nodes
are expected to store roughly the same number of object keys.
Due to space limitations, we present a brief description of
Pastry and refer interested readers to the bibliography for other
protocols.

In Pastry, objects and nodes are assigned random and
uniformly distributed identifiers of length 128 bits. An object
is stored in the node that is numerically closest to the object’s
identifier. Each node maintains routing information (overlay
IDs and IP addresses) about a limited number of neighbors,
with the size of the routing table varying depending on a
configuration parameter, b, which indicates how many bits
are resolved at each routing step. To route a message, each
intermediate node, along the message path, tries to forward
the message to a node whose node ID shares a prefix with
the destination identifier that is at least b bits longer than the
current node’s shared prefix. If the routing table does not have
any entries to such a node, the message is forwarded to a node
that shares a prefix of the same length as the prefix shared by
the current node, but is numerically closer to the destination.
In addition to the routing table, each node maintains two other
pieces of information: a leaf set and a neighborhood set. The
leaf set stores information about [nodes that are numerically
closest to the current node, with [/2 nodes having smaller
IDs than the current node, and [/2 having larger IDs. This
information is stored to provide reliable message routing, and
is normally used when the routing table does not have an
entry for a node that shares a prefix longer than the current
node. The neighborhood set stores information about m nodes
that are closest in the underlying network to the current node.
This information is not normally used for routing, rather it is
useful in applications that exploit locality properties. Figure 1
illustrates an example of the state stored at a particular Pastry
node.

An arriving node needs to initialize its tables (routing table
and leaf set) and inform the other nodes of its arrival. A new
node initializes its state tables by contacting a node already
present in the network, and asking it to route a join message
to its node ID. The nodes along the path from the contact
node to the node responsible for the new node’s ID, send
their state information to the new node. The new node uses

‘ Pastry State Information |

Leaf Set
Smaller Greater
31001 [31021 32021 [32031
31200 | 32101 32101 [32110
Routing Table
O la 2a -
30 3la - 33
- 321a 322« 323
3200« - 3202 3203«
Neighborhood Set
10223 [03111 [11330 [23111
31001 | 32110 | 21333 [22203

Fig. 1. Pastry state information stored at node with identifier 32012, and
parameter b equal to 2. The digits are in base 4, and « is an arbitrary suffix.

this information and may contact additional nodes to complete
its state tables.

The departure of a node z, either by voluntary termination
or by failure, triggers an update at its neighbors. The nodes that
are close in the ID space to the departing node must update
their leaf sets. If x appears in the leaf set of a node y, y can
replace = by asking the leaf set of the node with highest index
in the same side of y’s leaf set that z was present. If x appears
in the routing table of a node w, this will be detected when w
tries to use that entry. When detecting the failure of x, node
w can use its leaf set to forward the message. To repair its
routing table, node w can contact any node in the same row
of the missing entry, and ask for its routing table. For a more
detailed explanation of Pastry and its algorithms, we refer the
reader to [15].

III. TP ADDRESSES AND NETWORK LOCALITY

Locality is a highly desirable property of DHT systems.
This property refers to an overlay mapping in which nodes that
are close in the overlay space are also close in the physical
network. An overlay network that incorporates geographic
locality, among other advantages, has the potential for isolating
traffic based on the peer interests. For example, in a music
sharing application, users from a particular region will most
likely share the same interests. A user in China will most likely
be interested in Chinese music, therefore, it would be desirable
to isolate corresponding network traffic largely to this region.

We motivate our locality scheme with a brief description
of the Internet organization and IP addressing. The Internet is
composed of several autonomous systems, each autonomous
system is further comprised of multiple LANs. Within a LAN,
IP addresses are normally allocated sequentially. This means
that if we could use the IP addresses of the nodes as overlay
node identifiers, we would be able to build overlay networks
with good locality properties. The problem with this approach
is that the IP space is not uniformly populated by peers. This
can be easily seen by considering just the addresses whose
first octet values are greater than or equal to 224. IP addresses
in this range are reserved for multicast and for future use. If
we were to use IP addresses as overlay identifiers, this part
of the ID space would have no node. All keys mapped to this
region would have to be deterministically remapped, possibly

to one or two hosts that are closest to the region depending on
the DHT scheme used. Another problem with a nonuniform
address space is that the upper bound of O(logn) overlay hops
cannot be guaranteed.

In the early days of the Internet, IP address assignment
was completely controlled by the Internet Assigned Number
Authority (IANA) and by the Internet Registry (IR). With
its growth and globalization, this task was decentralized and
delegated to Regional Internet Registries (RIRs). Each regional
registry became responsible for large geographic areas, with
the world being divided into four major areas: North Amer-
ica (ARIN), Asia and Pacific (APNIC), South and Central
America (LACNIC), and Europe (RIPE NCC). The address
allocation for the RIRs is in blocks of contiguous addresses,
the size of blocks may vary, and the RIRs may have multiple
blocks from different parts of the address space. For example,
the addresses from 193.0.0.0 to 195.255.255.255 and from
80.0.0.0 to 82.255.255.255 are allocated to Europe. For more
details about the Internet address allocation policy, we refer
the reader to [8], [4], and for the current allocation we refer the
reader to [7]. What can be observed with the current allocation
policy is that IP addresses that share the first octet are normally
allocated to the same geographic region. This is, of course,
not always the case, with the initial class B allocation being a
counter-example. Since the great majority of class B addresses
were allocated to North America, we do not expect this to be
a severe deviation from geographic allocation.

Instead of trying to build a unique overlay network using
the entire IP address as an overlay identifier, we limit our
approach to a caching scheme that can be incorporated into
Pastry, or any one of the other DHT systems. The idea is that
nodes in the network are grouped into different domains based
on the first eight bits of their IP addresses. Each domain is
an additional Pastry overlay, where the routing of messages is
performed in the same manner as in the original scheme. For
example, all nodes with IP addresses with first octet 128 are
placed in the same domain. In this manner, we group the entire
network into as many domains as there are unique first octets.
When a node joins or leaves the network, it must join or leave
both the main overlay network and the cache network. Each
domain has a rendezvous point in the main network that can
be contacted by a new node to find nodes in the same domain.
Both routing tables (main and cache) can be constructed using
the proximity neighbor selection heuristic. When searching an
object, nodes issue a query in the cache network. If it is found,
it is immediately returned, otherwise, the query is reissued in
the main overlay network. Once an object is accessed in one
domain, it is automatically replicated in the cache network for
that domain. With this scheme, we can have objects replicated
in as many domains as the number of distinct eight-bit prefixes
present in the network. In practice, however, due to bounded
buffer (cache) sizes this does not generally occur.

After grouping nodes into domains, we investigate the
possibility of using the remaining 24 bits of the IP addresses
as overlay identifiers for the cache network. Such an identifier
allocation has the desirable property that as we progress

through the routing process we move closer to the prefix
lengths of autonomous systems, with the last few hops being
inside one particular autonomous system. Such a scheme, if
successful, would avoid the higher delays that dominate the
last hops in Pastry [1].

A key issue in this approach is the load imbalance that
results from the nonuniform occupancy of the IP space and
a restrictive hash-code. To further explore this issue, we
populate the network with clients from Gnutella (Zeinalipour-
Yazti and Folias [22] collected and analyzed more than 56
million messages from a Gnutella network in June 2002 and
have kindly made these traces available to us). Using these
traces, we isolate the IP addresses of the nodes present in the
network. Since it is possible to have bogus advertisements in
Gnutella, we first validate the IP addresses in the trace using
a whois server' to map them to their respective autonomous
systems, verifying, in this way, their allocation to an existing
organization. From the total addresses present in the trace,
more than 62,000 are valid IP addresses. We classify the IP
addresses into domains based on the first eight bits and build a
Pastry network for each domain. The node identifiers for each
network are the last 24 bits of the IP addresses. For each node
in the network, we issue a number of queries for randomly and
uniformly selected destinations in the address space [0 — 2%4]
to analyze how many queries each node receives. Figure 2(a)
illustrates the results for 2,420 nodes with IP addresses whose
first octet is 200, the number of queries originating at each
node is fixed at 20 per node, for a total of 48,400 queries.
Figure 2(b) shows an experiment with the same number of
nodes and queries, however, here the node identifiers are drawn
from a uniform distribution.

We note in the case of a uniform node distribution that
each node is the target of no more than 125 queries (indeed
it can be shown that this number varies roughly as klogn
for k source queries generated at each node and n being
the total number of nodes). While this situation is reasonably
implementable, notice what happens when we use actual data
from nodes on the Gnutella network. In this case, the number
of queries that are mapped to a target node may be as high as
3000! Recall that each source node only originates 20 queries
and under optimal load distribution, each peer must also be
a target of only 20 queries. Evidently, under real Gnutella
population, load imbalance may be as high as two orders of
magnitude with this mapping scheme. A direct consequence
of this mapping is that a few nodes will be overloaded with
queries, thus posing a resource (network and replication/disk)
bottleneck. We observe similar results for the other IP domains
as well.

As previously mentioned, another source of locality in the
Internet is its organization into autonomous systems (ASs).
Hosts in an AS are generally located in a limited geographic
area. With this in mind, we investigate, in the Gnutella trace,
the prefix length of CIDR (Classless Inter Domain Routing)
blocks in the autonomous systems. The trace contains 3,264

Iwhois.radb.net

IP Block 200.0.0.0/8
3000

2500

2000

1500 1

Number of Keys per Node

1000 -

500 -

o 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e407 1.4e+07 1.6e+07 1.8e+07
Address Range

(a)

Uniform Distribution

Number of Keys per Node

o 2e+06 4e+06 6e+06 8e+06
Address Range

(b)

10407 1.2e407 1.4e+07 1.6e+07 1.8e+07

Fig. 2. (a) Observed (actual) distribution of Gnutella clients and key mapping
in the 200.x.y.z domain; (b) Synthetic (uniform) distribution of clients with
corresponding key mapping.

different ASs, which constitutes a representative sample of the
Internet. The average prefix length of the AS’s CIDR blocks
is a little over 19 bits. This implies that if we use a routing
scheme like Pastry, where we resolve four bits at each hop,
we would need on average 5 hops to get inside an AS. Such a
scheme would become effective only if the number of nodes
in the network were greater than 16° (approximately sixteen
million). As shown in [15], the expected number of overlay
hops in Pastry is log; 5 n, where n is the total number of nodes.

We can conclude from the above discussion that, other than
the geographic location encompassed in the first eight bits
of the IP addresses, it is unlikely that we can employ IP
addresses to build locality into systems such as Pastry (where
routing is performed by bit correction) without compromising
the load balance of the overlay network. Consequently, we use
a localization scheme that groups peers into domains based
on the first eight bits of their IP addresses. These domains are
used as caching networks within the global network. Inside
the cache network, the node identifiers are randomized in the
same way as in the main network, avoiding, in this way, load
imbalances at peers. We now characterize the performance of
such a caching scheme using detailed experimental analyses.

1V. EXPERIMENTAL RESULTS

In this section, we present simulation results for our caching
scheme. We have developed a network simulator that imple-
ments the routing scheme of Pastry for the overlay networks

(cache and main), and emulates the underlying network. The
topology of the underlying network is generated using the
Georgia Tech. transit-stub network topology model [21]. All
experiments are performed on a 32-processor Origin 2000 with
16GB of memory, running IRIX64.

The topology generated by the GT-ITM topology generator
does not contain node addresses that can be linked to real
Internet addresses. In our experiments we use the IP addresses
collected from the Gnutella network. To assign these addresses
to the generated topology, we use the following approach: a
transit network in the generated topology corresponds to a
geographic region whose nodes’ IP addresses share the first
eight bits; a stub network, which is linked to a transit network,
corresponds to an autonomous system whose addresses share
the same prefix as the transit network. The IP addresses
are grouped in the autonomous systems obtained from the
mapping using a whois server, as described in the previous
section. Each autonomous system in the trace is linked to a
stub node, and the IP addresses of the autonomous system are
assigned to LANs connected to the stub node. The resulting
topology used in the experiments below has 117,825 nodes.
Link delays are random values within the following intervals:
the delay of an edge between two transit domains is in the
interval [20-80]ms; the delay of a transit-transit edge in the
same transit domain is in the interval [3-23]ms; the delay of
a transit-stub edge is in the interval [2-7]ms; the delay of a
stub-stub edge is in the interval [1-4]ms; and the delay of an
edge connecting a host to a stub node is fixed at 1ms. These
figures are similar to those used by Xu et al. [20].

The evaluation of a caching scheme requires appropriate
dimensioning of the storage available for caching at each
node, and a realistic workload. Since there are no publicly
available traces that contain file sizes for existing peer-to-peer
systems, we use web proxy logs for the distribution of file
sizes in the network. The same approach was used to validate
PAST in [16]. We use a set of web proxy logs from NLANR?
corresponding to eight consecutive days in February 2003. The
trace contains references to 500,258 unique URLs, with mean
file size 5,144 bytes, median file size 1,663 bytes, largest file
size 15,002,466 bytes, and smallest file size 17 bytes. The total
storage requirement of the files in the trace is 2.4GBytes.

The overlay nodes are selected randomly from the Gnutella
trace, resulting in 75 different domains. The distribution of
nodes per domain is illustrated in Figure 3. The source nodes
of the queries were chosen randomly and uniformly, and the
objects are accessed according to a Zipf-like distribution, with
the ranks of the objects being determined by their position in
the original trace.

As described in the previous section, in our scheme a query
that cannot be satisfied by the cache network causes an access
to the main overlay network and the automatic caching of the
object in the cache network of the node issuing the query.
Here, we assume that the objects being cached are the actual
files and not the keys, as generally assumed in Pastry. Due

Zhttp://www.ircache.nlanr.net

1400

1200 |

1000 |

800 -

600 -

Number of Overtay Nodes

o . .
o 10 20 30 40 50 60 70

Domains

Fig. 3. Distribution of nodes per cache domain.

to the storage requirements of our workload, and to guarantee
that the simulation would reach a steady state, we restrict the
size of the overlay network to 10,000 nodes, with each node
having a cache of size SMB. If the number of overlay nodes
is increased beyond this value, without reducing the cache
size per node to insignificant values, the total cache capacity
available in the network exceeds the total storage requirement,
which causes the cache hit ratio to keep increasing with the
number of queries. With the parameters above, we are able to
reach steady state after 75 million queries.

We measure the impact of the cache hit ratio on the response
delay for the queries. The Pastry parameters are set to: b = 4,
and leaf set size | = 32, the neighborhood set is not used. LRU
(Least-Recently-Used) is the cache replacement policy used
on the nodes in the cache overlays. Figure 4 summarizes the
results for the delay measurements. For each value of « in the
Zipf distribution, we run simulations of the network without
and with cache. The parameter o has no effect on queries
performed only over the main overlay network. This is because
the sources are chosen uniformly, there is no replication, and
the objects are always placed in the nodes numerically closest
to the objects’ IDs. The performance gain shown in the table
is defined as: g = dld_le, where d; is the average query delay
in the network without cache, and ds is the average query
delay in the network with cache. Observe that both overlay
networks implement the proximity neighbor selection heuristic
to minimize the delays in the underlying network. The results
are very promising, since the gains are relative to a topology-
aware scheme with relative delay penalties on average less
than 2, as shown in [1].

| o Parameter | Cache Hit Ratio | Gain |
0.75 76% | 31.0%
0.80 79% | 33.5%
0.85 81% | 36.0%
0.90 83% | 38.7%
0.95 86% | 41.3%

Fig. 4. Simulation results illustrating percent improvement in response time
and corresponding cache hit ratios.

V. RELATED WORK

Three major approaches have been proposed for topology-
aware overlay construction in DHT networks: proximity rout-
ing, topology-based node ID assignment, and proximity neigh-
bor selection [14].

In proximity routing, each node determines the next hop
for a message taking into consideration not only the node that
makes more progress in the resolution of the virtual identifier,
but also the proximity of its neighbors in the underlying
network. This technique has been used with some success
in CFS [3]. The key idea is to select, among all neighbors,
the node that is closest in the underlying network or one that
balances the proximity with progress in the resolution of the
virtual ID. The problem with this approach is that the number
of overlay hops may increase considerably.

In topology-based node ID assignment, the overlay node
IDs are chosen based on the location of the nodes in the
underlying network. The idea here is that nodes that are close
in the underlying network are assigned overlay IDs that are
numerically close. Ratnasamy et.al [13] demonstrate the use
of this technique in CAN. In this particular example, before
joining the network, nodes measure their distances to a set of
landmarks and use the measurements to position themselves in
the multi-dimensional address space of CAN. Even though this
technique is able to achieve considerable reduction in routing
delays, it also presents a few problems. By biasing identifier
assignments, it potentially destroys the uniform distribution of
nodes in the ID space.

In proximity neighbor selection, the topology of the un-
derlying network is explored during the construction and
maintenance of the routing table. For a given routing table
entry, the idea is to choose, among all the nodes that qualify
for that entry, the one that is closest in the underlying network
to the current node. This heuristic is suitable for prefix-based
protocols like Tapestry and Pastry. In these systems, the first
rows of the routing tables have many options for each entry,
with latter rows having exponentially fewer options. As a
consequence, the total delay during the routing process is
dominated by the last hop. Castro et. al.[1] present a detailed
study of proximity neighbor selection in Pastry. They show that
the heuristic results in small relative delay penalties, without
compromising the load balance of the system. Relative delay
penalty is defined as the ratio of the delay experienced by a
Pastry message to the delay from its source and destination
nodes in the underlying network. We use this approach in the
routing tables of the cache overlay nodes.

The use of a two-level architecture to improve overlay
performance is not new. Brocade [23] uses a secondary overlay
network of supernodes. The supernodes are nodes with good
capacity and network connectivity and are assumed to be
close to network access points such as routers. Nodes inside
an autonomous system use the supernodes to access objects
in the global overlay. Our approach differs from Brocade in
several important respects. In Brocade, a normal node (not
a supernode) participates in the overlay via supernodes. A

normal node first needs to contact a supernode and to ask it
to route its messages. Supernodes have to keep information
about all overlay nodes inside their autonomous systems.
The Brocade organization is basically an overlay of servers
that have several clients connected to them. There is no
deterministic distributed way for a normal node to find a
supernode. It is assumed that the supernodes are able to snoop
the underlying network and detect overlay traffic, or that the
supernodes have well known DNS names.

Xu et al. [20] also proposes a two level overlay, consisting
of one auxiliary overlay, called expressway, composed of
supernodes, as in Brocade, and a global overlay. Nodes in the
expressway exchange routing information, much in the same
way as routers exchange BGP reports in the Internet. A key
difference w.r.t. our scheme is that the auxiliary network in
[20] is intended to speed up the communication of nodes far
apart in the Internet. Our auxiliary network (cache overlay)
is intended to speed up the communication among nodes
that are close to each other, taking advantage of possible
common interests, and reducing traffic in the global network.
Furthermore, the expressway requires significant work to be
performed by the supernodes. The supernodes try to emulate,
in the overlay network, the BGP routing protocol of the
Internet, by running a distance-vector routing protocol to
summarize routes.

VI. CONCLUDING REMARKS

In this paper, we investigate the use of IP addresses to in-
corporate locality into structured P2P networks. We show that
this approach has some fundamental limitations with respect
to load imbalance and associated resource requirements. This
is a consequence of the nonuniform occupancy of the address
space by overlay nodes. We subsequently propose a caching
scheme that uses the geographic allocation of IP addresses
to partition nodes into replication domains. This approach
yields excellent results, when compared to an overlay network
without replication. Specifically, we demonstrate performance
gains of up to 41%, depending on the cache hit ratio, for
realistic network and workload scenarios. We are currently
investigating and comparing other aspects of our caching
scheme with existing systems. Link congestion, aggregate
resource utilization, and replication factors of objects are all
parameters that we expect to quantify in the near future.

ACKNOWLEDGMENTS

This research is partially funded by the National Science
Foundation grants ACI 0082834, ACI 9875899, and EIA
0216131. The first author is partially funded by CNPq and
UFMS, Brazil.

[1]

[2]

[3]

[4]

[5]
[6]

[7]
[8]
[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

REFERENCES

M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting Network
Proximity in Peer-to-Peer Overalay Networks, Technical Report MSR-
TR-2002-82, 2002.

E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. In ACM SIGCOMM’02 Conference, 2002.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
Area Cooperative Storage with CFS. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles, Lake Louise, Canada,
October 2001.

E. Gerich. Guidelines for Management of IP Address Space, RFC 1466,
IETF, May 1993.

Gnutella. http://gnutella.wego.com/.

Theodore Hong. Performance. In Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly, 2001.
http://www.iana.org/assignments/ipv4-address space.

K. Hubbard, M. Kosters, D. Conrad, D. Karrenberg, and J. Postel.
Internet Registry IP Allocation Guidelines., RFC 2050, IETF, November
1996.

Frank Thomson Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.
Napster. http://www.napster.com/.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. Theory of
Computing Systems, 32:241-280, 1999.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of the 2001
ACM SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, pages 247-254, San
Diego, CA, August 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-
Aware Overlay Construction and Server Selection. In Proceedings of
IEEE INFOCOM 2002, New Yourk, NY, June 2002.

S. Ratnasamy, S. Shenker, and I. Stoica. Routing Algorithms for DHTs:
Some Open Questions. In Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS’02), Boston, MA, March 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proceed-
ings of the 2001 ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication,
pages 247-254, San Diego, CA, August 2001.

A. Rowstron and P. Druschel. Storage Management and Caching in
PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems Principles,
Lake Louise, Canada, October 2001.

S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia
Computing and Networking 2002 (MMCN °02), San Jose, CA, USA,
January 2002.

S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across Large
Networks. ACM Transactions on Networking, To appear.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. In Proceedings of the 2001 ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 149-160, San Diego, CA, August 2001.

Z. Xu, M. Mahalingam, and M. Karlsson. Turning Heterogeneity into an
Advantage in Overlay Routing. In Proceedings of the IEEE INFOCOM
2003, San Francisco, CA, April 2003.

E. Zegura, K. Calvert, and S. Bhattacharjee. =How to Model an
Internetwork. In Proceedings of IEEE INFOCOM 1996, March 1996.
D. Zeinalipour-Yazti and T. Folias. Quantitative Analysis of the Gnutella
Network Traffic, Technical Report, Department of Computer Science,
University of California at Riverside, June 2002.

B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz. Brocade:
Landmark Routing on Overlay Networks. In Proceedings of Ist
International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge,
MA, March 2002.

B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-0101141, UC Berkeley, Computer Science Division, April
2001.

