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Abstract— Queuing theory allows the design of communica-
tion links that can provision for Quality of Service (QoS) in
time-varying channels, such as mobile wireless channels, by
considering an idealized queuing system that abstracts out the
physical layer. Similarly, information theory allows the design and
analysis of channel codes that can guarantee low decoding error
probability by adapting to the time-varying channel. Whereas
other researchers have attempted cross-layer design methods
that combine these two approaches, these have been limited
to specific choices of practical channel codes. There have been
few attempts to combine these two theories to specify the
ultimate limit of delay-constrained communications. This paper
presents an approach that obtains a QoS exponent, by combining
the queuing and information theoretic models; in particular,
by considering information-theoretically optimal channel codes.
Calculations show that such a joint approach yields substantial
improvement in QoS performance in a variety of communication
scenarios.

Keywords: Information theory, random coding bound, large
deviations, queuing, mobile wireless.

I. INTRODUCTION

The design of future packet cellular networks is likely to in-
volve explicit provisioning for Quality of Service (QoS), such
as delay and data rate guarantees. However, this requirement
poses a challenge in wireless network design, because wireless
channels have low reliability, and time varying signal strength,
which may cause severe QoS violations.

In networking, QoS guarantees for delay-sensitive applica-
tions have typically been provided by the analysis of cor-
responding queuing systems. In [1], we considered a pure
queuing model, where the effect of channel variations on
link performance was captured by a single function called
‘effective capacity’. Since the focus of that paper was on the
queuing model, the paper assumed ideal channel codes, so
that the instantaneous capacity was assumed to be achieved
at any time instant. While the paper successfully showed
that the effective capacity function provides an efficient and
compact representation of link performance, the results there
will typically be too optimistic for a real system, which must
deal with channel noise, using channel codes operating below
capacity. Thus, in reality, one needs to consider not only the
queuing model (as is common in networking), but also an
explicit physical layer model for channel coding (requiring
information theory). Then, the QoS will depend not only on
delay bound violations (caused by overload of the queued
server), but equally importantly, on decoding errors, introduced
by the channel noise. An optimal system must, therefore,
balance these two causes of errors.

To this end, consider the “joint queuing and coding system”
shown in Figure 1. This joint system is fed by a source of
constant rate � . Since the channel is time-varying (with time-
varying channel state), the queue attempts to match the source
rate with the instantaneous quality of the channel. In Figure
1, we explicitly model a channel encoder, which potentially
operates at a rate less than capacity. The encoder receives data
from the queue at a time-varying rate, and must encode the
data at a rate commensurate with the instantaneous channel
quality. Now, if the queue has a high instantaneous output
rate, then the encoder must choose channel codes with large
rates, thus clearing the queue quickly, but resulting in a high
decoding error probability. On the other hand, if the system
chooses channel codes with low rates, it will be able to reduce
the decoding error probability, only at the expense of large
(potentially unstable) queuing delays. This argument shows
that there must exist a system that balances the queuing and
the channel coding operations optimally, resulting in the best
possible QoS. This paper is an attempt to combine ideas from
the fields of queuing theory and communication/information
theory to design such an optimal system. For reasons of
tractability, this early attempt imposes a ‘memoryless’ limi-
tation on the server, and thus, may not be optimal. (However,
we show that even this memoryless joint system achieves
better performance than a pure coding system!) Under this
memoryless-server condition, the paper shows that the optimal
system achieves a QoS exponent (i.e., the exponent of decay
of QoS violation probability with delay bound) that is the
minimum of a) the delay bound violation exponent of a certain
queuing system, and b) the random coding error exponent of
a certain channel coding system. Since these two exponents
represent the large-delay asymptotic limit of “QoS” in queuing
theory and information theory respectively, the result of this
paper has a satisfying interpretation.

Note that other researchers have considered either the pure
queuing problem [2] or the pure channel coding problem (see
references in [3]), for wireless time-varying channels. For ex-
ample, a typical channel coding framework is to assume either
a) the source has infinite bits in its buffer, so that the encoder
can request as much data as it deems appropriate (depending
only on the channel quality) at each time instant, or b) the
source has a constant rate, but so does the encoder, which
therefore, eliminates the need for queuing. Note that while we
also assume a constant rate source (as in (b)), we explicitly
allow time-varying coding rates, thus allowing for the queue in
Figure 1. We then analyze the joint system in the analytically
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Fig. 1. Joint queuing and coding system

tractable large-delay bound regime. We must mention that
there have been several excellent papers on achieving such a
combination using practical channel codes [4], such as specific
rate-adaptive codes, but such attempts have so far not analyzed
the ultimate limits of such a joint communication system, as
our paper does. Interesting combinations of information theory
and queuing for multiple access was presented in [5], while [6]
considered the information capacity of queues. Several papers
have explored trade-offs between average power/throughput
and average delay [7], [8], [9], [10]. Problems with constraint
on absolute delay are considered in [7], [11]. However, each
of these papers assumes that capacity achieving channel codes
can be used.

Section II introduces the problem of providing QoS guar-
antees formally. Section III provides an overview of pure
queuing theoretic and pure information theoretic asymptotic
approaches in the large delay regime. It then provides the
main result of this paper on the optimal joint approach. Some
illustrative examples, showing the value of the joint approach
are presented in Section IV. Finally, Section V concludes
the paper. For readability, the main proofs are placed in the
Appendix.

II. PROBLEM FORMULATION

We begin by formally describing the system model, shown
in Figure 1. The discrete-time memoryless channel (DMC)
model [12] is specified by the conditional probability distribu-
tion ��������� 	���
������
�������
���
������ , where ����
��� are the channel
input symbol and output sample respectively, at time � , while
	 � is the Channel State Information CSI (e.g., gain) at time
� . In simulations, we will assume that the noise is Gaussian
and that Gaussian codebooks are used, but our results apply to
the general DMC. The CSI is assumed to be known perfectly
to the transmitter (so that it can adapt to the CSI) as well as
to the receiver (so that it can use maximum-likelihood (ML)
decoding.) For simplicity of presentation, we first analyze the
case with independent, identically distributed (i.i.d.) 	 � and
then trivially extend our result to block fading channels [13],
which have blocks of equal gain.

Notice that the transmitter consists of a queue+server fol-
lowed by an encoder. Thus, it combines the canonical models
of queuing and information theory. Throughout the paper, we
measure information in ‘nats’, instead of bits (i.e.,  "!�#�$��&%'�
assumed for entropy) for convenience. We assume that the
server chooses an ‘instantaneous server capacity’ ()� nats,
which depends only on the current CSI. i.e., ()�*�+(,�-	��.� for
some fixed function (,�-	�� . Thus, the server rate is assumed
to be a memoryless function of channel CSI. (In the rest of
the paper, an ‘optimal joint system’ refers to the optimal sys-
tem, under the memoryless-server assumption.) The encoder
receives data from the server at rate ( � , encodes the data

bits into a sequence of symbols and transmits the channel
code sequentially into the channel. We assume a streaming-
code encoder (such as a convolutional encoder) [14] , since a
block-encoder [12], although simpler, requires additional delay
to buffer the data until a block of data is ready for encoding.
Thus, we assume that bits that depart the server at time �/�102�3�
are encoded into symbols � � 
4� ��576 
������ .

The decoder decodes the channel code after buffering the
received � � sufficiently. The system needs to be designed so
that the QoS demanded by the source application is met. We
formally define QoS as follows. The source has a constant
rate � and a maximum delay bound of 8 . Given the chan-
nel statistics and the system design, it is required that the
probability of error be as small as possible. (Alternatively, the
problem can also be cast in the framework of specifying the
channel resource that results in a certain maximum tolerable
probability of error.) The probability of error must capture
both; delay bound violations due to queuing, as well as
decoding errors due to channel noise. This will be specified
in the following.

Consider the source bit that arrives at the queue at time
�90:8 � . After spending time 8 � in the queue, it departs
the server at time �,0;� . The encoder encodes the bit(s) into
the code symbols � � 
4� �<576 
������ . Since the source demands a
delay bound of 8 , the decoder must decode this bit at time
�=0>8 �@? 8A0B� . Let C $&DD be the probability of bit decoding
error. Then, a bit decoding error can occur in two cases; a)
the bit spent the entire time 8 (or more) in the queue, and
therefore, never got sent, or b) the bit was sent within a delay
of 8 , but was decoded incorrectly (either because it spent
too much time in the queue, leaving too little time for the
channel code to be effective, or because of unusually large
channel noise). Thus, C $EDD captures both, the queuing notion
of error (delay-bound violation) and the information-theoretic
notion of decoding error. Therefore, the problem is to design
a joint system that can minimize C $ED�D for the given � 
8 and
channel statistics. Note that our formulation encompasses a
pure coding framework, which does not allow queuing, and
thus, is expected to perform better than the latter.

The main result of this paper appears next.

III. JOINT QUEUING AND CODING

A. Background

The key insight of this paper is as follows. If the encoder is
assumed to use ‘ideal channel’ codes that achieve the instanta-
neous capacity, then the recently developed effective capacity
[1] result can be used to calculate the C $&DD (which is simply
the delay bound violation probability now) in the asymptotic
regime of 8GFIH . Essentially, effective capacity is a pure
queuing (i.e., no coding) large-deviations framework, which is
the channel dual of the notion of effective bandwidth, devel-
oped to quantify source burstiness in Asynchronous Transfer
Mode (ATM) networks. To elaborate, for a channel whose
instantaneous capacity at time J is K���J4� (recall that capacity-
achieving codes are assumed in a pure queuing approach), it
was shown [1] that if C $ED�D ��LCMKONP8Q�RHS�UTV8XW (i.e., delay



bound 8 violation probability at steady state), then

 ��������� 0*�
8  !�#�� C $ED�D � �
	���� � � (1)

where 	 � � � �M� ���� 6 � � � and �� 6 �4% � is the inverse mapping
of the following (what we call) effective capacity function (if
it exists), ��� � � 0  ����� ��� ���J  "!�#���� � ��������� �!#"%$ D'&�(*),+ 
.-/�QT10�� (2)

The effective capacity function exists for a wide range of
channel processes; in particular for i.i.d. CSI, it simply re-
duces to the ratio of log-moment generating function of the
instantaneous capacity to the exponent � (see eqn. (34)). In
this paper, we will not require the general form (2) of the
effective capacity function, since we restrict ourselves to the
i.i.d. (block-fading) case only. However, interestingly, we will
show shortly that the effective capacity function appears as
one of the components of QoS in the joint queuing/coding
case.

On the other hand, if a pure coding approach is considered
(i.e., no queuing, or server rate ()�32 � 
4- � ), then the random
coding exponent [12] provides a bound on C $ED�D (which is
simply the decoding error probability now). To elaborate, for
a block code of rate � and code length 865�� , the decoding
error probability can be bounded as,

C $EDD87 9;:=< �40)� 8>5����@?BA�� � �4� (3)?BAP� � � � �DC :E*F�G*F 6 ? E ��H 
 � � ‘error exponent’ � (4)

For example, for Gaussian noise and codebooks,? E ��H�
 � � �)0X !�#�� I 9;:=< J
0KH6L� "!�#ML � ? 	�C E

� ? HON 0 � NQP (5)

where C E is the ratio of transmit power to noise power.
Notice how 	 � � � � and ?BAP� � � are both exponents that bound
C $ED�D , using two completely different approaches, which apply
respectively, under two different assumptions. Essentially, our
main contribution in this paper is to show that the optimal
joint queuing/coding system considers both these exponents,
to obtain the best possible error exponent for C $ED�D .
B. A joint queuing/coding exponent

Since we have limited our design to joint queuing/coding
systems which have a server ‘instantaneous capacity’ ( � �
( ��	��.� (i.e., memoryless), we need to choose the function
( ��	��=TR0 correctly. This choice must be made so that C $ED�D
is minimized for the given � 
8 . We work in the regime of
asymptotically large 8 , so that large-deviations queuing and
information theoretic coding results can be applied. Thus, the
problem is to choose (,�-	�� so that the ‘joint exponent’ 	 � � �
is maximized, where

 ����1��S=T����� 0*�
8  "!�# � C $ED�D � �U	 � � �<� (6)

In order to calculate the joint exponent, we need to analyze
the combined queuing and coding system. This analysis is
done in two stages. In stage 1, for a fixed decoding delay,
analyze the decoding error probability of the streaming code,
which encodes bits received by the encoder at time � , into

symbols � � 
4� �<576 
������ , possibly encoding a different number
of new bits in different symbols (as specified by the server
capacity (M� � (,�-	��.� ). Note that we use a streaming code,
rather than a block code, to avoid the extra delay in the latter,
whose encoding delay equals decoding delay. If the specified
decoding delay is zero or less, we can upper bound the error
probability by one. In stage 2, we analyze the queuing delay
8 � caused by the queuing system (due to the chosen (,�-	�� ),
and thus, obtain the decoding delay 8 0Q8 � available for the
decoder, for the QoS delay bound to be met. For bits that have
8Q0 8,� 7 0 , we bound the error probability by one, since these
bits never get transmitted. Thus, the bit error probability C $ED�D
of the code, fed by the queue, can be calculated by combining
stages 1 and 2.

The result of the analysis is formalized in the following two
lemmas.

Lemma 1: For a streaming code with a delay-bound of 8 ,
and source rate (M�*� ( ��	��.� , the error exponent is given by,

 ����V��S=T����� 0*�
8  !�#�� C $ED�D � TW?BA (7)

where ?BA is given by (20). Note that this is the same exponent
as achieved by a block code, whose block length is equal to
8 .

Proof: The proof follows [12], adapted to the case of a
streaming code, and assuming the specific time-varying source
rate. See Appendix A for details. This is the analysis for stage
1.

Lemma 2: Consider a joint queuing/coding system (Figure
1), which has a constant source rate � , a delay-bound of 8 ,
and which employs a streaming code. If the channel is a
fading channel with i.i.d. symbol-by-symbol fading, the error
exponent is given by,

 ����1��S=T�X��� 0*�
8  !�# � C $&DD � TY	 Z (8)

where 	 Z is given by (35).
Proof: The proof proceeds by analyzing the queuing

delay (stage 2), and then uses Lemma 1 to analyze the joint
system. See Appendix B for details.
Lemma 2 shows that the optimum error exponent for the
joint queuing/coding system is given by the minimum of the
respective error exponents 	 � � � � and ?[A�� � � (see (35)). Thus,
the joint system must balance the requirements of queuing
(choosing large (,��	�� so that the queue clears quickly) with
the requirements of the encoder (choosing small (,�-	�� so that
the code is highly redundant, and therefore, not susceptible to
errors due to noise). Thus, the lemma provides a satisfyingly
symmetric result that clearly shows the trade-off between
queuing and coding.

The following lemma extends the scope of Lemma 2, by
considering a block-fading channel model, where the CSI is
constant over a block of length \ symbols, but i.i.d. across
blocks.

Lemma 3: Consider a joint queuing/coding system (Figure
1), which has a delay bound of 8 , and which employs a
streaming code. If the channel is i.i.d. block-fading with block
length \ , and constant channel gain over each block, the error



exponent is given by,

 ����1��S=T����� 0*�
8  "!�# � C $ED�D � T1	 Z (9)

where 	 Z is given by (40).
Proof: The correlation of CSI within each block intro-

duces an intractable dependency between the queue and the
encoder. The proof adapts Lemma 2, by neglecting at most ��\
( � 8 ) symbols which cause the dependency. See Appendix
C for details.
In the next section, we show that the joint queuing and
coding approach provides a significant QoS improvement, as
evidenced by a large error exponent 	 Z , in a range of situations.

IV. ILLUSTRATIVE RESULTS

We compare the joint coding/queuing system with a pure
queuing system (which assumes that the instantaneous ca-
pacity can be achieved) and the pure coding system (which
sets ( ��	�� 2 � , indicating the absence of a queue). Since
the queuing system does not use channel coding, if noise is
present in the channel, it will be unable to achieve arbitrarily
small C $ED�D , even at large 8 . Therefore, we assume that the
only source of error for the queuing system is delay-bound
violation. Consequently, the error exponent 	 ��� � � that we
obtain for the queuing system should only be interpreted as an
upper bound on the maximum possible joint exponent 	 Z � � � .	 � � � � will not be achievable in a real system.

We will only present toy results in this paper to illustrate the
potential utility of the joint approach. Thus, assume a simple
Gaussian channel model, ���)��� 	��3��� ?�� � , where the noise
� � is Gaussian with variance one, and Gaussian codebooks,
transmitted at fixed power C E per-symbol, are used. The
channel gain is assumed to be binary. i.e., 	 ��� N 0�
4	��
	��OW . A
range of (constant) source rate � , average signal-to-noise-ratio�� ( � C E � � 	 + and fading block-lengths \ are simulated.	���� � ��
 ? A � � ��
@	 Z � � � are calculated and shown below. Note that
C $ED�D�� 9;:=< �&0K	M%P8U� holds for each exponent, respectively.

The optimization problem (35) can be solved by a brute-
force search over the (,�-	�� function as follows. For the given

� 
 \ and channel probability mass function �7��	�� , fix (,�-	�� T0 . Calculate (20) by maximizing over H . This can be done
efficiently, since it is a convex problem. Now, set 	 � ? A
and mark 	 as feasible if �� ��?BA 5 � ��� � . This evaluation can
be done by calculating the log-moment generating function
(34). Repeat the procedure over a suitably discretized search
space of (,�-	�� and obtain the maximum 	 . For the pure
coding exponent ? A � � � , simply set (,�-	�� � � -V	 . The
pure queuing exponent 	%��� � � is obtained as ���� 6 � � � . For
more general channel statistics ���-	�� , the brute-force search
may be too expensive. However, the optimization can still
be done efficiently because it can be cast as a quasi-convex
problem [15]. Details will appear in a more extensive journal
publication, currently under preparation.

Figures 2, 3 and 4 show that the pure queuing exponent is an
upper bound on both, the joint queuing/coding and pure coding
exponents. These figures show that the joint queuing/coding
system provides a substantial gain over the pure coding system
for a wide range of � , average

�� ( and \ .
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Figure 2 shows the variation of error exponents with source
rate at

�� ( � � 0 dB and \G� ��
 � 0%0 . As � increases,
the QoS requirement becomes tighter, thus reducing the error
exponents. The average Shannon capacity in this case is ��� ���
nats/symbol. Observe that the error exponents go to zero for
source rates greater than the average capacity.

Figure 3 shows the variation of error exponents with average�� ( at � � � nats/symbol and \ � ��
 � 0%0 . The plot
shows that the pure coding and joint queuing/coding systems
perform much worse than the pure queuing system at low�� ( . However, a practical queuing system will be hard hit
by noise at low

�� ( . This fact is not reflected in the 	 �
plot, since we (naively) assume that the pure queuing system
achieves the instantaneous capacity. This figure brings out the
fact that the joint system gives a substantial gain over the pure
coding system only at high values of

�� ( for \ � � . This
is because under very noisy conditions, most of the delay is
allotted to the code, leaving very little for the queue. However,
for higher values of \ (as is likely for typical fading scenarios),
the performance of the joint system is close to the pure queuing
system.

Figure 4 shows the variation of error exponents with block
length \ at � � � nats/symbol and

�� ( � �*0 
���� dB.
We observe that the performance of the joint queuing/coding
system is very close to the pure queuing system for large
values of \ . The performance difference between the joint
queuing/coding and pure coding systems increases with \ .

V. CONCLUSION

This paper presented a joint approach to queuing and
channel coding, by combining ideas from large deviation
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theory (effective capacity) and information theory (random
coding bounds), which are applicable in the regime of large
delay-bounds ( 8 F H ). This approach aims to find the
ultimate (asymptotic) limit of delay-bounded communication,
in contrast to other approaches, which attempt such a com-
bination using specific queuing and practical channel coding
models, such as rate-adaptive convolutional coding. As a
first step, the paper considered a memoryless server model,
where the instantaneous server capacity was chosen to be a
function ( ��	�� of current CSI. A lower bound on the decay
exponent of decoding error probability was calculated for
a joint queuing/coding system, assuming i.i.d. block fading.
This exponent cannot be worse than the exponent in a pure
coding system (while the pure queuing system fails in the
absence of channel coding), since setting (,�-	�� 2 � reduces
the joint system to the pure coding system. Simulation results
show that the joint approach can provide significantly better
QoS, as shown by a larger error exponent, over a range of
situations, as compared to the pure coding approach. Note,
however, that a pure coding approach does not require CSI
at the transmitter, unlike the joint approach. Future work will
attempt to extend the approach to more general channel and
joint system models, and design practical streaming codes
which utilize the asymptotic theory.
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APPENDIX

A. Proof of Lemma 1

We denote the sequence � � 6 ��N�� 6 
�������
�� � W . ��� �"% + denotes
expectation over � .
Encoding: We denote the symbol transmitted at time � by
� � and the set of bits that arrive at the encoder over time
��
���
�������
 � as ���� ��� . We assume that ( � �A� ���� �����.0+� ��3�/�,0B�P���
is a time-varying source rate, which depends solely on the
current CSI 	�� as (M�*�+(,�-	��.� . We consider a streaming code
where ��� is generated based on � �3� ��� , i.e., ���)�	� � � �.� ���� where,� �&%'� is a probabilistic function. Specifically, for each � �.� ��� ,
a symbol � � is chosen according to an arbitrary probability
distribution 
�� ��� , independent of � � � 6 
4� � ��� 
�������
4� 6 . Notice
that two bit streams will have the same code symbols prior

to the time at which they first differ from each other, and
will have independent symbols from that time onwards. The
probability of choosing a particular codeword � �<5

� � 66 in the
random code generation is
�� � �<5 � � 66 � �

�<5 � � 6��� 6 
���� � ��� (10)

Decoding: We consider maximum-likelihood decoding, as-
suming that the decoder knows the CSI. The � ��� symbol is
decoded at time � ? 8 0:� (since a delay constraint of 8
symbols is assumed). To decode the symbol � � , all samples
� �<5

� � 66 are utilized. We now compute the probability that
the � ��� symbol is incorrectly decoded, given that message� � ��.�/� ? 8 0:�3� is transmitted. Notice that the message
is assumed to consist of bits up to time � ? 8+0Q� , since those
time samples are used for decoding � � . Most of the proof
follows [12], so we skip several steps and retain the ones
that highlight the difference between a streaming and block
code. The probability of decoding the � ��� symbol incorrectly,
averaged over the random code, is given as an expectation of
the probability over the CSI sequence � as,

C $�� � � ����� C $�� �=��� � + � ��� � C����� ����+� � � � � +
� �������

���! #" � �� �$ �! #" � �� C���� �<5
� � 66 � � �<5

� � 66 �%
���� �<5 � � 66 �

C������� ��;��� � � �<5 � � 66 
4� �<5
� � 66 
 � �'&.� (11)

But, C��(���� �� ����� � �<5 � � 66 
4� �<5
� � 66 
 � �7*) �+-,�/. ,� �10� � �32 C���4 ,� �!5

G

 0 7 H 7 ��
 (12)

where 4 ,� is the event that the decoded message is 6� ,
conditioned on � ��5

� � 66 , � �<5
� � 66 and � . Note that only such6� are considered which result in 6� �7��;� � . Let 6�.� � ? 8A0 �P�

denote the bits of 6� until time � ? 8 0 � .
C���4 ,�M� 7 �,� �% 8" � �� 
��96� �<5 � � 66 �96� 
4� �<5 � � 66 
 � �

: C���� �<5 � � 66 �;6� �<5 � � 66 �
C���� �<5

� � 66 � � �<5
� � 66 �8<>= 
@?)TV0 (13)

From (12) and (13) we obtain,

C������� ��+����� � �<5
� � 66 
� �<5

� � 66 
 � � �A �+-,�B. ,� �10� � �32
C �,� �! #" � �� 
2�96� ��5 � � 66 �(6� 
� �<5 � � 66 
 � �

: C���� �<5 � � 66 �;6� �<5 � � 66 �
C���� �<5

� � 66 � � �<5
� � 66 �1<D=FEHG

G
� (14)

We partition the codewords NI6�KJ 6� ���� � � W into � ? � subsets
as follows. Let N�6�ML.W be the symbols of 6� .NBO � NP6�QJ 6���SR�� � ����SR�� -TRVU>� 
 6�.� ��� �� � �3� ���<W

� N/O � 7 9;:=< ) ��5 � � 6� �S� O ( � 5 (15)

Thus, 6�KW NBO implies that � and 6� have the same bits in
the first � 0 � time instants, while at least one of the bits at



time � (and perhaps more in the future) are different. Since6�KW NBO , � 6� L �+� L 
 R U>� , while 6� L�� � L 
 R2T � (since the
code generates independent symbols for different messages),
hence,
��96� �<5 � � 66 �(6� 
4� ��5 � � 66 
 � � � O � 6�S� 6 � �36� � 09� � �

��5 � � 6��� O 
��36� � �<� (16)

We only need to consider the messages 6� for which at most
the first �/�,0+�3� symbols are the same (i.e., � 7 � ). If more
than the first � �*0>�3� symbols are same, then there is no error
in decoding � � . Now, using (15) and (16), (14) simplifies to

C��(�� ����+� � � � �<5
� � 66 
� �<5

� � 66 
 � � 7A ��O � E 9;:=< ) �<5
� � 6� �S� O ( � 5 �,� �% 8" � ��

C O � 6��� 6 � �96� � 0>� � � E C
�<5 � � 6�S� O 
��36� � � E: C���� �<5 � � 66 ��6� �<5 � � 66 �

C���� �<5
� � 66 � � �<5

� � 66 �F<>=�G
G

	�
A ��O � E 9':=< ) �<5

� � 6� ��� O ( � 5 C �<5 � � 6�S� O : � ,��� 
2�96� � �
: C�� � � ��6� � �
C�� � � � � � � < = <�E-G

G
where, ( � ) is because the channel is a DMC.

Applying )�� �
	 � 5 G 7 � ��	 G� 
 if 	 � TW0�
 H 7 �P� in (11),

C $ � � 7 ��� A �$ �% 8" � �� �
� �! #" � �� C�� � ��5

� � 66 � � �<5
� � 66 �!
�� � �<5 � � 66 �

A ��O � E 9;:=< )��5
� � 6� ��� O H�( � 5 C ��5 � � 6��� O : � ,��� 
��96� � �

: C���� � �;6� � �
C���� � � � � � < = <�E

G
G�G

� ��� A ��O � E 9': < ) �<5
� � 6� ��� O HO( � 5 �$ �! #" � ��

A!C O � 6��� 6
: �
� �


�� � � �
C�� � � � � � � <�E C

�<5 � � 6��� O : �
� �


�� � � �&C�� � � � � � � 6 � = G <�E-GA �<5 � � 6��� O : �
� �


�� � � �&C���� � � � � � = <
G
G�G �

It can be shown that ?B� � 5��&� ? H�� minimizes the above
expression [12]. Therefore, we substitute ��5��&� ? H�� for ? to
obtain the tightest bound.

C $�� � 7 ��� A ��O � E 9;:=< ) �<5
� � 6� �S� O H�( � 5

�<5 � � 6�S� O : � $ �
: �
� �


�� � � �&C���� � � � � � 6� & 6&5 G ) < 645 G <HG
� ��� A ��O � E 9;:=< NO0 �<5

� � 6� ��� O �,?2�-	 � � 0 H�(,�-	 � �4� W G (17)

where ?2��	 � � depends on the current channel transition matrix
C���� � �7
&	 � � as below,?2�-	 � � �:0X !�#

A � $ : �
�

�� ���4C���� � �7
&	 � � 6� & 6&5 G ) < 645 G G

Since ?U�-	 � �<
�( ��	 � � depend only on the current 	 � , and the
	 � ’s are i.i.d., choosing the tightest bound gives,

C $�� � 7 ��O � E 9;:=< N�0)�/� ? 8 0 ����%*? A W (18)7 � 6 9': < �&0 8A%*? A � where (19)? A � �DC :E'F G*F 6 ) 0> !�#���� I � 9': < � (,�-	�� 0 ?U�-	��4� + �!5 (20)

assuming ? A � 0 by appropriate choice of (,�-	�� , and � 6 is
some constant. Since any bit at time � is decoded incorrectly
only if ��� is decoded incorrectly, the bit error probability
C $EDD 7 C $�� � above.

B. Proof of Lemma 2

Let 	 � be the i.i.d. channel state. Let � � be the queue length
at time � and 8 � be the queuing delay of the bit that departs
the queue at time � . Since the source rate is assumed constant,
8 � ��� � 5 � [1]. We choose the server rate to be a memoryless
function (M�U� (,�-	��.� , where (,�-	�� is a fixed function. �P��576
can be expanded as [16],

���<576 � �DC : ��0 
 � 09(M�<576�
�� � 0 (M�<576 0 (M�O

� � 0 (M�<576 0 (�� 0 (�� � 6�
������ � (21)

8 �<576 � �DC : ��0 
�� �<576 
�� �<5�6 ? � � 
������ � (22)

where, � � �� �@09( � 5 � � �@09(,�-	 � � 5 � � (23)

The bit error probability C $ED�D can be bounded as,

C $ED�D 7 Pr �(���� �� ����� �
� � � C $�� � ��� � + (24)

� � � � � ����� C $�� �=��� � �.8 � +�+ (25)	7 � � � � � 6 % 9;:=< �40)� 8 0 8 � � ?BA � + (26)

� � 6 % 9;:=< �40 8Q?BA � � � � � 9':=< � 8 � %'?BA � + (27)

where (a) arises because of the following. The time 8 �
spent by the bit in the queue is a function of 	 � 
4	 � � 6 
������
while the decoding error probability, given 8U� , depends
on 	O�<5763
4	��<5 � 
������ . Since 	 � ’s are i.i.d., the distribution of
	��<576.
&	��<5 � 
������ , given 8�� , remains the same. Further, ( � �
(,�-	 � � , so the conditions of Lemma 1 are satisfied, with the
decoder allowed a (remaining) delay constraint of 8 0;8 � .
(,�-	�� must be chosen, so that ? A (defined by (20)) satisfies?BA �10 .9;:=< � 8 � ?BA � � 9':=< ��?BA %'�DC : ��0 
�� � 
�� �@? � � � 6 
������ ��7 ��L � � 6 9':=< ��?BA

L� ��� E � � � � �
where the summand is defined as � for R=�:0*� .

C $EDD87 � 6 % 9;:=< �&0 8M?BA �;� ��L � E ) � 9':=< ��?BA���� 5 L + (28)

since � � are i.i.d. (23). Choose ?[A so that� 9': < ��?BA����IU � (29)

Then, C $ED�D 7���� % 9': < �&0 8A%*?BA � (30)

Define joint exponent 	 ��  ����1��S=T�X��� 0 �
8  "!�# C $EDD

T ?BA (using (30))
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Fig. 5. Block fading channel

Therefore, a lower bound on the optimum joint exponent is
obtained by solving the following optimization problem,	 Z � � � � �DC :� & I )�� E 	 (31)

s.t. 	 U ?[A�
 � 9;:=< ��?BA����IU ��� (32)

Eqn. (32) can be written as � �,?BA 5 � ��� � (33)

where,  � ����� � 0 ��  "!�#�� � I 9': < �&0���(,�-	��4� + (34)

is the effective capacity function corresponding to (,��	�� .
Therefore, we require ?[AP� � � ��U?BABU �� � 6� � � � ��
	 � � � �
since  � ����� is a decreasing function [17]. Since scaling (,�-	��
up strictly increases 	%� (to an arbitrarily large value) while
strictly decreasing ? A � � � (up to the lower bound of zero), the
optimization problem (31) can be stated compactly as,	 Z � � � � �DC :� & I )�� E � ��S N ?BAP� � �<
 	 � � � �<W (35)

where, ? A � � � is given by (20), while 	%�.� � � � �� � 6� � � � ,
obtained using (34).

C. Proof of Lemma 3

We consider a block fading channel with i.i.d. gains and
block length \ of each block. Let the gain for the � ��� symbol
� � be 	 � . Then, 	 � � 	 L if ���@5 \�	*�
� R=5 \�	 . We assume a
delay constraint 8V���\ , where � is a positive integer. Let the
arrival-instant of the bit of interest to the queue, be offset from
the start boundary of its arrival frame by \ � and the instant
of departure from the queue be offset from the start boundary
of the departure frame by \ 6 (see Figure 5).

In this case, the evaluation steps for C $EDD are similar to
those for the \A� � case analyzed in Appendix B. We note
the steps that differ. The only complication here is that the bit
may be sent within a frame rather than at its boundary, thus
voiding the assumption of independence of N�	 �<576 
&	 �<5 � 
������"W
and N�	 � 
&	 � � 6 
������ W . But this can be handled easily by throwing
away all the symbols within the departure frame, as well as
all the symbols within the last frame used for decoding, from
any decoding considerations. There are at most ��\ � 8 such
symbols. Therefore, this can only increase the error probability
by a constant factor (i.e., constant with respect to 8 ), which
does not affect the decoding error exponent, in the limit of
large 8 . Thus, following Appendix B, we have similar to (27),

C $ED�D87 � � 9;:=<�� 0 8Q?BA��)%*��� � 9;:=<�� 8 � ?[A�� + 
 (36)

?��A �� �DC :E*F�G*F 6 ) 0 �\  "!�# ��� I � 9':=< ��\;%�� ( ��	���0 ?2��	���4� + � 5 (37)

where, � � is a constant, which accounts for the � \ symbols
thrown away. Note the difference between (20) and (37), due
to the correlation of 	 � within each frame. Similar to (28), but
since 	�� is constant within a frame, the expectation term in
(36) can be bounded as,� � � � 9': < � 8 � ?BA �1& 7 ��\ 6 ? �P� �DC : ) ��
 � � 9;:=< N ?BA�� � \ 6 W + 5 ?��L � � � 5�6 9;:=< � ?BAP� � �@? � � � 6 ? ����� ? � � � L � � � (38)

The second term in the above equation is similar to the term
in (28). Similar to (29), we assume that � 9': < �,? A �X\ � U �
holds. Thus, the error probability is bounded by,

C $ED�D 7 ����9;:=< NO0 8Q?BA�W where, ��� is a constant � (39)

Thus, the optimum joint error exponent 	 Z � � � � can be found
as below,	 Z � � � � � �DC :� & I )�� E � ��S N ?��A � � �<
@	��� � � � W (40)

where, ? �A � � � is given by (37), while 	 �� � � � ��� � 5 \��  � 6� � � � ,
obtained using (34).
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