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Abstract— This paper presents a computationally efficient
distance measurement method for double binary turbo codes,
such as these used in the Digital Video Broadcast with Return
Channel via Satellite (DVB-RCS) standard, based on Garello’s
method. Distance spectra for all standardized DVB-RCS packet
sizes and all standardized code rates are presented. A new
interleaver design for DVB-RCS based on the dithered relative
prime (DRP) interleaving approach is also presented. A minimum
distance (dmin) of 36 has been achieved for an unpunctured ATM
packet of 424 information bits with a DRP interleaver, whereas
the dmin of the standardized DVB-RCS interleaver is 31. A dmin

of 38 has been achieved for an unpunctured MPEG packet of
size 1504 information bits with a DRP interleaver, whereas the
dmin of the standardized DVB-RCS interleaver is 33. Simulation
results for code rate 1/3 show an improvement at high signal to
noise ratios of at least 0.15 dB and 0.25 dB for ATM and MPEG
packets, respectively.

I. INTRODUCTION

Consider the transmission of a linear binary code C(N, K̃)
(N is the codeword length, K̃ is the number of information
bits) over the additive white gaussian noise (AWGN) channel
using binary phase-shift keying (BPSK) or quadrature phase-
shift keying (QPSK). Applying Maximum-Likelihood (ML)
decoding, the Frame Error Rate (FER) and Bit Error Rate
(BER) are upper bounded by the union bounds [1]:

FER ≤ 1
2

∑
d≥dmin

Ad erfc

√
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N0

 (1)

BER ≤ 1
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∑
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 (2)

Here, dmin is the minimum distance of the code, the multiplic-
ity Ad is the number of codewords with Hamming weight d,
the information bit multiplicity Wd is the sum of the Hamming
weights of the Ad input sequences generating the codewords
with Hamming weight d, erfc(x) is the complementary error
function, Eb is the energy per information bit and N0 is
the one-sided noise power spectral density. At high signal to

0This work was supported by the Communication Research Centre (CRC)
in Ottawa, Canada.

noise ratio (SNR) (i.e., low error rates), the FER and BER
can be approximated by the first term or first few terms of
equations (1) and (2). However, it is important to keep in
mind that turbo codes [2] use iterative soft decoding [3],
which is sub-optimal compared to Maximum-Likelihood (ML)
decoding. See [4] for examples and further discussion.

The FER and BER can be obtained by software simulation.
However, for applications with very low error rates (e.g.,
FER<10−8), reliable software simulation could take months
or may not be practical at all. An alternative, at least for low
error rates, is to use the analytical approach described above.
In order to use this approach, it is necessary to have a distance
measurement method. It is important that such a method allows
the computation of dmin in a reasonable time.

This paper is structured as follows. Past works on distance
measurement methods are reviewed in the second section. A
method for computing a lower bound on dmin is given in the
third section. The fourth section presents a recursive method to
compute the true dmin. The fifth section presents some useful
techniques to lower the computational complexity. Distance
results of the standardized Digital Video Broadcasting with
Return Channel via Satellite (DVB-RCS) interleavers and the
new DRP interleavers are discussed in the sixth section and
conclusions are given in the seventh section.

II. BACKGROUND

According to [5], the minimum distance (dmin) of a turbo
code is expected to be equal to dmin(2), the distance due to
input sequences of weight 2, when the interleaver is random
and its size tends to infinity. This approach reduces the number
of non-zero input sequences to be tested from (2K̃ − 1) to(
K̃
2

)
, which leads to a significant reduction in computational

complexity. Unfortunately, this approach does not apply if the
interleaver size is small to medium (for example, 1000 bits).
Even for very large random interleavers, dmin can still be
produced by an input sequence of any weight. The necessity of
considering input-weights larger than two has been confirmed
analytically in [6]. Thus dmin(2) gives a loose upper bound
on dmin. Furthermore, from a practical point of view, it is
easy to increase dmin(2) by designing interleavers with high
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spread [7], [8], [9]. In this case dmin(2) tends to be a very loose
upper bound on dmin. This loose upper bound can still be used
in practice to first discard bad interleavers (low dmin(2)) and
the remaining interleavers can then be tested by a true distance
measurement method.

A number of brute force approaches computing dmin have
been proposed. The basic idea is to consider all possible
candidate sequences for one of the constituent encoders,
then interleave and encode each sequence with the second
constituent encoder to find the total turbo code distance. These
brute force approaches are practical, even for large block sizes,
as long as dmin remains small (i.e., it is close to the minimum
possible dmin). For well designed interleavers, however, the
computational complexity quickly becomes unacceptable as
the value of dmin increases. See [4] and [10] and the references
therein for examples and further discussion.

Another method based on combining low input-weight
patterns that lead to low-weight codewords has been presented
in [8]. An essential aspect of this approach is to determine
which combinations of low input-weight patterns should be
considered. It has been observed that these combinations
depend on the spread, defined as

Sp = min
(i,j �=i)

(| π(i)−π(j) | + | i−j |),∀i, j ∈ {0, . . . , K̃−1},
(3)

where π represents an interleaver permutation. A high spread
constraint easily eliminates many of the worst input-weight
combinations. However, some input-weight combinations do
not improve with spread. Improving the distance for these
cases requires specific distance tests to be performed. For-
tunately, many of the remaining worst-case input-weight com-
binations are fairly easy to test with reasonable computational
complexity. See [8] for the recommended cases to test and
further details. This method has been found to give a fairly
tight upper bound for the true dmin and is thus very useful
in designing good interleavers in a reasonable time. The
approach is very efficient, demonstrated by the fact that it was
possible to find a distance upper bound of 110 for a 16-state
single binary turbo code with K̃=32768 bits. Also, for large
interleavers with sufficiently high spread, the upper bounds
are guaranteed to be the true minimum distances for all cases
up to and including an input weight of 6. Unfortunately, the
higher the upper bound that is achieved, the less likely the
bound is to be tight, that is, the more likely the true dmin will
be caused by one of the cases not tested.

Recently, a fast method based on the ability of a soft-in
decoder to overcome error impulse inputs has been presented
in [11]. This method gives the true dmin if ML decoding
is used. A short description of this method follows. Define
x = (−1,−1, . . . ,−1) as the modulated codeword generated
by the all zero input sequence and y = (−1,−1, . . . ,−1,−1+
Ei,−1 . . . ,−1) as the input to the decoder (Ei is called the
error impulse at position i and is a real number). Assuming
that dmin lies in the interval [d0, d1], where d0 and d1 are
two integers and a ML decoder is used, then dmin can be
determined with the following algorithm, where K̃ is the

number of information bits:

‖ set Emin = d1 + 0.5;
‖ for i = 0 to (N − 1) do

– E = d0 − 0.5;
– set [(x̂ = x) = TRUE];
– while [(x̂ = x) = TRUE] and (E ≤ Emin − 1.0)

do

- E = E + 1.0;
- y = (−1, . . . ,−1,−1 + E,−1 . . . ,−1);

where (−1 + E) is in position i;
- ML decoding of y ⇒ x̂;
- If (x̂ �= x) then [(x̂ = x) = FALSE];
end while

– Emin = E

end for
‖ dmin is the integer part of Emin

Unfortunately, for non-ML iterative soft decoding the relation-
ship between the distance obtained with this method and the
true dmin remains uncertain. It has been observed that this
method usually gives a lower bound on dmin, but distances
higher than dmin have also been found. Even so, the approach
may prove to be very useful for finding good interleavers.

A novel and efficient method to compute the true dmin, the
true multiplicity Admin and the true information bit multiplicity
Wdmin based on the notion of constrained subcodes has been
presented by Garello [10] for single binary turbo codes. This
method assumes that both encoders start in the zero state and
are forced to the zero state at the end of the encoding stage
by adding termination bits, which are then sent to the decoder.
This results in a reduction in code rate (especially noticeable
for short block lengths) and the minimum distance obtained
is usually less than the dmin(TB) obtained with tail-biting if
a structured interleaver is used.

This paper extends Garello’s distance measurement method
for single binary turbo codes to double binary turbo codes,
such as the one used in the DVB-RCS [12] standard. Some
techniques used in Garello’s distance measurement routine
are explained. Furthermore, a new effective early stopping
technique that reduces the computational complexity by a
factor of 2 is presented. This reduction is significant, noting
that the computation of high dmin may take a month or
more. The new distance measurement method is applied to
DVB-RCS turbo codes, which use tail-biting [13]. Distance
spectra including multiplicity and information bit multiplicity
are presented for all standardized interleavers and code rates
of DVB-RCS turbo codes. A new interleaver design for DVB-
RCS based on dithered relative prime (DRP) interleavers is
also presented. The distance spectra, FER and BER for the
DVB-RCS standard are compared to those for the new DRP
interleavers.

III. COMPUTING A LOWER BOUND ON MINIMUM DISTANCE

This lower bound is a key element in lowering the com-
putational complexity and will be used in the next section to
determine the exact dmin in a recursive manner.
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DVB-RCS turbo codes use tail-biting, where the first
encoder (ENC1) must start and stop in the same state.
The second encoder (ENC2) must also start and stop in
the same state. Any combination of starting states for the
two encoders is allowed. Thus, for an 8-state turbo code
there are 64 possible starting state combinations. In double
binary turbo codes each symbol consists of 2 bits, thus
K = K̃

2 . Define u = (u0, . . . , uj , . . . , uK−1) and uπ =
(uπ(0), . . . , uπ(j), . . . , uπ(K−1)) as the input sequences into
ENC1 and ENC2 respectively, where π is an interleaver of
length K. In other words, any information symbol uj entering
ENC1 at time j will enter ENC2 at time π−1(j). Turbo
codes are linear codes, thus the minimum distance (dmin)
is given by the codeword with minimum Hamming weight,
where Hamming weight is the number of non-zero bits in
a binary sequence. There are (4K − 1) possible non-zero
input sequences that may generate dmin. The goal here is
to find all input sequences from this set that generate dmin.
Define w(u) = WE1 + WE2 as the Hamming weight of the
codeword generated by the input sequence u, where WE1
is the sum of Hamming weights of u and its corresponding
parities generated by ENC1 and WE2 is the Hamming weight
of parities generated by ENC2.

Assume an input sequence uj , where only the first j
information symbols u<j = (u0, . . . , uj−1) are known and the
other (K − j) information symbols u≥j = (uj , . . . , uK−1) =
(×, . . . ,×) are unknown (× can be 00, 01, 10 or 11). The
aim is to find the unknown information symbols u≥j in
uj that minimize the weight W

j
= WE1j + WE2j

. Define
MWE1j

and MWE2j
as the minimum weight-outputs gen-

erated respectively by the input sequences uj into ENC1
and uj

π into ENC2. Note that the input symbols at positions
(j, . . . ,K−1) in uj are not necessarily the same input symbols
at positions (π−1(j), . . . , π−1(K−1)) in uj

π , because MWE1j

and MWE2j
are computed separately based on the common

knowledge of the known symbols u<j . If the symbols in
u<j agree with the first j information symbols of any input
sequence umin that generates dmin, then MW

j
= MWE1j +

MWE2j
is a lower bound for dmin, i.e.,

MW
j ≤ (w(umin) = dmin). (4)

A. The computation of MWE2j
tb

The computation of MWE2j
tb for tail-biting turbo codes is

obtained by applying the following modified forward Viterbi
algorithm (MVA) [10]. Each branch of the trellis of ENC2 is
labelled with the corresponding weight except the irrelevant
branches at sections (π−1(0), . . . , π−1(j − 1)) of ENC2 that
are labelled with an effectively infinite value (in practice, it
is enough to set this value to N ). The irrelevant branches
are the branches associated with symbols different from the
known symbols at trellis sections (π−1(0), . . . , π−1(j − 1)).
Furthermore assume that the encoder starts and ends in the
state sx.

1) Initialize t = 0; w(sx) = 0; w(s �= sx) = ∞.

2) Increase t by 1

- Compute all weights of each state s by adding the
weight of the branch entering s from state s′ and
the weight of the state s′ at time (t − 1), then set
w(s) to the smallest weight. Repeat until t = K.

3) The value MWE2j
tb is w(sx).

B. The computation of MWE1j
tb

The computation of MWE1j
tb for tail-biting turbo codes

consists of three parts:

- The output-weight ENC1(u<j) resulting from encoding
the known input sequence u<j with ENC1. ENC1 starts
encoding u<j at time t = 0 in state sx and ends it at
time t = j in state sy . The computation of ENC1(u<j)
and sy is straightforward.

- The minimum output-weight ENC1(u≥j) resulting from
encoding the unknown input sequence u≥j with ENC1,
which starts encoding u≥j at time t = j in the state
sy and ends it in the state sx at time t = K. Applying
the backward MVA (t = K; initial state=sx; w(sx) =
0; w(s �= sx) = ∞; decreasing by 1 until t = j)
gives a minimum weight at time t = j for the state
sy . This weight is the needed minimum output-weight
ENC1(u≥j).

- The MWE1j
tb is the sum of ENC1(u<j) and ENC1(u≥j).

IV. RECURSIVE CONSTRUCTION OF MINIMUM DISTANCE

The search for dmin consists of a recursive construc-
tion of input sequences that generate codewords of weight
dmin. Assume d∗ is an upper bound for dmin and IW ∗ is
the maximum allowed input-weight that can generate dmin.
Any input sequence u = uj fulfilling the criteria (weight
of uj) ≤ IW ∗ and MW

j ≤ d∗ may generate dmin

and will be the basis for the next iteration uj+1
a∈φ0 , where

φ0 = {00, 01, 10, 11} and uj+1
a∈φ0 = (u<j , a,×, . . . ,×) =

(u<j , 00/01/10/11,×, . . . ,×). If more than a single uj+1
i

fulfill the criteria, then set u = uj+1
i as the current basis

for the next iteration uj+2
a∈φ0 = (u<j+1, a,×, . . . ,×) and

keep the other sequences uj+1
a�=i that fulfill the criteria to be

used as a bases for further iterations later. If only a single
uj+1

i fulfills the criteria, then set u = uj+1
i as the current

basis for the next iteration uj+2
a∈φ0 = (u<j+1, a,×, . . . ,×).

The iterations continue until uK
a∈φ0 = (u<K−1, a). If the

MW
K

resulting from uK
00, uK

01, uK
10 or uK

11 is lower than
d∗, then set d∗ to MW

K
. This leads to a reduction in the

number of bases to be considered in the next iterations and
thus fewer input sequences must be tested, leading to lower
computational complexity. To make sure that all possible
(4K − 1) non-zero input sequences are tested, the input
sequences u1 = (⊗,×, . . . ,×) = (01/10/11,×, . . . ,×),
u2 = (00,⊗,×, . . . ,×), u3 = (00, 00,⊗,×, . . . ,×),. . . ,
uK−1 = (00, . . . , 00,⊗,×) must be used as bases for the
next iterations, where ⊗ ∈ φ = {01, 10, 11}. The unique
offsets corresponding to u<1 = (⊗), u<2 = (00,⊗), u<3 =
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(00, 00,⊗),. . . ,u<K−1 = (00, . . . , 00,⊗) must be used to
guarantee the exact values for distance d, multiplicity Ad and
information bit multiplicity Wd.

To find the exact distance spectrum for tail-biting turbo
codes the algorithm should be run (δ1 ·δ2) times, where δ1 and
δ2 are the number of states of ENC1 and ENC2, respectively.
As expected, it has been observed for tail-biting that most of
the computation is used in finding dmin for the case where
both encoders are assumed to start in state zero, because the
number of surviving paths to be tested is significantly higher
than for other starting state combinations.

V. TECHNIQUES TO REDUCE THE COMPUTATIONAL

COMPLEXITY

Some of Garello’s techniques that reduce the computational
complexity are explained. A new efficient early stopping rule
that significantly reduces the computational complexity is also
presented.

A. Garello’s modified definition for WE1 and WE2

Garello’s modified definition for WE1 and WE2 are ex-
plained. The computational complexity of the distance mea-
surement method presented here depends strongly on the
number of bases that must be considered for later testing. This
number in turn depends on the value of MW

j
for each basis

uj , j ∈ {1, . . . , K−1}. The aim now is to increase the value of
MW

j
, because the higher MW

j
is, the lower the number of

bases that must be considered and thus fewer input sequences
must be tested.

Note that any recursive convolutional double binary code
of M delays can be driven from any state sx to any state
sy by an input sequence of length less than or equal to M
symbols (2M bits) and weight less than or equal 2M . Given
uj , ENC1 is guaranteed to be driven into the initial state with
M input symbols. Also, the weight of the systematic symbols
resulting from the (K−j) unknown consecutive input symbols
in MWE1

j
will not bring any significant weight. It is better to

consider their weight in MWE2
j
, because the (K−j) unknown

consecutive symbols get scattered and enter ENC2 in non-
consecutive order leading to higher MWE2

j
. The modified

definition for weight of ENC1 is

WE1 =


-Weight of both systematic and parity of ENC1
for known input symbols, plus

-Weight of parity of ENC1 for unknown input
symbols.

(5)
This modified definition (WE1) leads to a lower weight for
MWE1j compared to MWE1

j
from the previous definition

(WE1), i.e.,

MWE1j < MWE1
j
. (6)

The modified definition for weight of ENC2 is WE2

WE2 =


-Weight of parity of ENC2 for known input
symbols, plus

-Weight of both systematic and parities of ENC2
for unknown input symbols.

(7)
For the case (K − j) >> M , the modified definition (WE2)
leads to significantly higher weight for MWE2j compared to
MWE2j

in the previous definition (WE2), i.e.,

MWE2j >> MWE2j
. (8)

The lost weight in equation (6) is more than compensated
for by the gained weight in equation (8). The effect of
this compensation becomes especially clear if the number of
unknown symbols (K − j) in uj is significantly larger than
M ((K − j) >> M), which is the case for all interleavers
of practical length. The modified definitions increase the
minimum weight MW j = MWE1j + MWE2j resulting from
the sum of minimum weights of ENC1 and ENC2, which leads
to a tighter lower bound on dmin and eliminates the test of
many input sequences, which in turn significantly reduces the
computational complexity. That is,

MW
j ≤ MW j ≤ (w(umin) = dmin). (9)

B. Other useful techniques to reduce the complexity

The following techniques have also been used to reduce the
computational complexity in Garello’s distance measurement
routine:

1. Finding a tight upper bound for dmin at the begin-
ning of the recursive process reduces the number of in-
put sequences to be tested and thus lowers the computa-
tional complexity. Hence, use uj=K−1 = (00, . . . , 00,⊗,×),
uj=K−2 = (00, . . . , 00,⊗,×,×), . . . ,uj=1 = (⊗,×, . . . ,×)
successively as the basis for the next iteration uj+1

a∈φ0 , where
⊗ ∈ φ = {01, 10, 11} and × ∈ φ0 = {00, 01, 10, 11}. This
will quickly lower the upper bound d∗ because the first bases
tested will have large numbers of consecutive leading zero
symbols and very few trailing unknown symbols.

2. To reduce the computational complexity of MWE1j for
all j ∈ {K − 1,K − 2, . . . , 1}, ENC1(u≥j = (×, . . . ,×))
can be computed off line for all states and all trellis sections
{K − 1,K − 2, . . . , 1} by applying the backward MVA.
Similarly, the value ENC2(u≥j = (×, . . . ,×)) for all j ∈
{K−1,K−2, . . . , 1} can also be computed offline. The values
of ENC2(u≥j = (×, . . . ,×)) are used by the early stopping
during the computation of the forward MVA (see below).

3. The MWE2j+1
a∈φ0 resulting from the input sequence uj+1

a

can be computed separately by applying the forward MVA
for each individual a = 00, 01, 10 or 11, but this leads
to unnecessarily repeated computation over trellis sections
(0, . . . , π−1(j−1) and (π−1(j +1), . . . , K−1). To lower the
computational complexity, MWE2j+1

00 , MWE2j+1
01 , MWE2j+1

10

and MWE2j+1
11 can be computed in a single run by applying

(See Fig 1):
a. Forward MVA from t = 0 until t = (π−1(j) − 1).
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2( 1)S

Forward MVA

1( )j

Backward MVA

Early stopping

at trellis section

ES_LEFT

Early stopping

at trellis section

ES_RIGHT

K-10

X=

00/01/10/11

Fig. 1. This Figure illustrate how to obtain MWE2j+1
00 , MWE2j+1

01 ,
MWE2j+1

10 and MWE2j+1
11 . It also shows the early stopping rule.

b. Backward MVA from t = K until t = (π−1(j) + 1).
c. Combining the results of (a) and (b) at time t = π−1(j)

for cases × = 00, 01, 10 and 11 to get MWE2j+1
00 ,

MWE2j+1
01 , MWE2j+1

10 and MWE2j+1
11 respectively.

C. A new effective early stopping rule

As illustrated in Fig 1, the computation of the forward MVA
can be stopped early at the trellis section ES LEFT if the
minimum weight over all states resulting from the sum of the
current obtained weights at trellis section ES LEFT and the
offline computed ENC2

(
u≥ES LEFT

)
weights is higher than

d∗.
During the computation of MWE2j+1

a∈φ0 the forward MVA
starts at trellis section LEFT=0 and ends at trellis section
ES LEFT or (π−1(j) − 1) and the backward MVA starts
at trellis section RIGHT=K-1 and ends at trellis section
(π−1(j) + 1). The computation of MWE2j+2

a∈φ0 will also use
LEFT=0 and RIGHT=K-1, which leads to a re-computation
of backward and forward MVA over many trellis sections
resulting in higher computational complexity. To avoid this
re-computation the following strategy is proposed:

- For all bases uj=K−1 = (00, . . . , 00,⊗,×),
uj=K−2 = (00, . . . , 00,⊗,×,×), . . . ,uj=1 =
(⊗,×, . . . ,×), ( previously kept input sequences uj),
the computation of MWE2j+1

a∈φ0 is done by setting
LEFT=0 and RIGHT=K-1. The computed weights for all
states at each trellis section must be stored in a matrix
(i.e., MVA MATRIX[K+1][δ2]) .

- The values LEFT and RIGHT for the computation of
MWE2j+2

a∈φ0 for the next iteration depend on the positions
π−1(j) and ES LEFT from the previous iteration and the
current position π−1(j + 1) and can be obtained using
the following simple structure

- LEFT=min(π−1(j + 1), π−1(j), ES LEFT).
- RIGHT=max(π−1(j + 1), π−1(j)).

The forward and backward MVA are initialized with
MVA MATRIX[LEFT] at trellis section LEFT and
MVA MATRIX[RIGHT] at trellis section RIGHT,
respectively. The values of the MVA MATRIX must be
updated for the trellis sections (LEFT, . . . , RIGHT) during
the computation of MWE2j+2

a∈φ0 , so they can be used for

the computation of MWE2j+3
a∈φ0 , if needed. It has been

observed that this strategy leads to an average computational
complexity reduction by a factor of 2.

The computation of the backward MVA can also be stopped
earlier at the trellis section ES RIGHT as shown in (Fig 1), if
the minimum weight over all states resulting from the current
obtained weights at trellis section ES RIGHT is higher than
d∗. However, it has been observed that an early stopping
during the computation of the backward MVA does not lower
the average computational complexity. In fact, the computa-
tional complexity is the same for a short interleaver (e.g.,
K <= 100 symbols) and is significantly higher for medium or
large interleavers. Early stopping during the backward MVA
is therefore not recommended.

VI. DISTANCE RESULTS

The new interleaver design for the DVB-RCS turbo codes is
based on the dithered relative prime (DRP) approach [7], [8].
DRP interleavers are highly structured and ideal for designing
low-memory interleaver banks for turbo codes. Each inter-
leaver can be stored and implemented using only a few
parameters. These parameters can be computed at run-time,
if desired. The interleaver bank resolution is determined by
the dither window size (WS). A WS of 4 works well for
short blocks (e.g., K < 200) and a WS of 8 is better for
medium blocks (e.g., 200 ≤ K ≤ 1000). A value of WS=16 or
higher is recommended for larger blocks. The DRP approach is
applied to the interleaving of the double binary symbols. The
bits within the symbols can also be manipulated, for example
as per the original DVB-RCS standard. A number of different
bit manipulations were investigated.

Using tail-biting turbo codes and structured interleavers,
such as DRP interleavers, the distance spectra must repeat
every Z symbols, where Z is the least common multiple of
WS and all the puncturing mask lengths of the systematic and
parity symbols. Also, the distance spectra must be a multiple
of K/Z. This nice property of tail-biting turbo codes using
structured interleavers is useful in testing the distance spectra
obtained from a distance measurement method.

Table I shows the distance spectra of the 12 standardized
DVB-RCS interleavers for the 7 standardized code rates. K
is the packet length in symbols, Rc is the code rate and
the 3 values (d/Ad/Wd) represent distance, multiplicity and
information bit multiplicity, respectively. The lowest distance
in each case is dmin. Some of the distance results shown in
Table I have also been independently computed by Rosnes, et
al. [14] using a different modified version of Garello’s original
algorithm. The results in Table I agree exactly with the subset
of cases considered in [14].

Table II shows additional distance results for the first 9
standardized interleaver sizes for DVB-RCS. These minimum
distances were obtained using DRP interleavers that were
found with an exhaustive search over all possible dither
patterns with WS=4 (except some high code rates for K=752
symbols). All 4 repeating possibilities of swapping the 2 bits
within a symbol over 2 consectutive symbols were also con-
sidered. For all the packet sizes and code rates, the minimum
distances shown in Table II are as good or better than those
shown in Table I for the standard interleavers.
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TABLE I

DISTANCE RESULTS (d/Ad /Wd) FOR THE 12 STANDARDIZED DVB-RCS INTERLEAVERS.

K in Symbols Rc = 1/3 Rc = 2/5 Rc = 1/2 Rc = 2/3 Rc = 3/4 Rc = 4/5 Rc = 6/7

48 21/72/240 17/48/192 13/72/168 8/120/360 4/8/32 4/12/36 3/16/32

64 25/192/1248 18/32/192 14/32/128 8/64/256 5/4/13 4/16/64 3/2/5

31/106/954 25/159/1325 18/159/954 11/159/901 7/10/50 6/159/742 4/9/27
212 32/265/1643 26/159/954 19/159/1431 12/265/1325 8/85/375 7/530/2544 5/194/719

33/106/901 27/159/1219 20/530/3551 13/1802/11342 9/486/2335 8/2544/12985 6/1228/5371

220 31/110/990 25/165/1265 19/165/1265 11/220/1210 7/10/35 6/110/550 4/2/8

228 30/114/855 24/57/342 18/171/1197 10/57/342 7/19/57 6/171/798 5/247/836

424 30/212/1696 24/212/1696 18/212/1696 13/530/3710 8/21/84 7/212/954 5/80/287

432 31/108/972 27/324/3132 18/108/972 12/432/2160 8/36/144 6/108/324 5/72/288

440 28/110/1100 22/110/1100 16/110/1100 12/110/440 8/27/108 8/1100/5500 4/10/40

33/376/3384 27/376/3384 19/376/3384 12/188/1316 9/27/171 9/3572/20680 6/199/826
752 35/376/3760 28/376/3008 20/376/3008 14/752/5264 10/148/1025 10/8836/56212 7/1578/7269

36/752/6392 29/376/3384 22/752/6768 15/1504/12220 11/1462/9674 11/31020/212252 8/9144/49558

848 36/848/7420 28/636/5088 20/636/5088 13/212/1272 9/1/4 8/212/848 5/67/176

856 33/428/3852 27/428/3852 19/428/3852 12/214/1498 9/8/40 9/3210/17762 5/16/64

864 36/864/7560 28/648/5184 20/648/5184 13/216/1296 9/72/144 8/648/2160 6/288/1008

TABLE II

DISTANCE RESULTS (dmin /Ad /Wd) WITH EXHAUSTIVE SEARCH FOR DRP INTERLEAVERS OF WS=4. THE STANDARDIZED PUNCTURING WERE USED.

K in Symbols Rc = 1/3 Rc = 2/5 Rc = 1/2 Rc = 2/3 Rc = 3/4 Rc = 4/5 Rc = 6/7

48 24/24/144 20/192/960 14/96/288 8/24/60 6/64/224 5/108/420 4/156/520

64 28/384/2528 22/64/384 17/256/1920 9/64/256 6/16/67 5/16/48 3/1/2

212 36/1007/7420 28/53/530 22/1908/14416 12/106/318 8/24/96 8/2173/9858 4/1/4

220 36/715/6380 28/110/880 21/220/1210 12/55/275 8/9/42 8/1815/8305 4/1/3

228 36/342/1710 29/627/3933 22/1995/14649 12/285/1197 9/133/684 8/2337/12084 6/1216/5092

424 36/106/636 30/848/5088 23/530/4770 14/318/2014 9/2/11 9/1802/9434 5/1/4

432 36/108/648 30/864/5184 23/756/7020 14/540/3348 10/72/360 9/2160/10584 6/36/180

440 36/330/2970 30/880/5280 23/880/7260 14/330/2090 9/1/2 9/1760/9130 6/246/1155

752 36/3196/24064 30/1504/9024 22/3760/28388 14/188/1692 10/137/793 10/7332/41924 6/108/479

TABLE III

MINIMUM DISTANCES FOR CODE RATE 1/3 WITH AN EXHAUSTIVE SEARCH FOR DRP INTERLEAVERS WITH WS=1,2 AND 4.

WS K=48 K=64 K=212 K=220 K=228 K=424 K=432 K=440 K=752

1 24 27 28 28 28 28 28 28 28

2 24 27 32 32 32 32 32 32 32

4 24 28 36 36 36 36 36 36 36

Results were also generated for DRP interleavers with WS
values of 1 and 2 and a code rate of 1/3. Table III shows
that the upper bounds on dmin with WS=1,2 and 4 are 28,
32 and 36, respectively. Note that DRP interleavers with
WS=1 correspond to simple relative prime interleavers. Results
for WS=1,2 and 4 were obtained with an exhaustive search
considering the four repeating possibilities of swapping the
2 bits within symbol over 2 consecutive symbols. To get a
dmin higher than 36, the dither window size must be greater
than WS=4. Unfortunately, an exhaustive search with WS=8
is impossible in a reasonable time due to the very large

number of dither patterns to be tested. Thus, the search was
limited to randomly selected dither patterns. A dmin of 38 with
Admin=94 and Wdmin=752 was obtained for MPEG packets
(K=752 symbols) with DRP and WS=8, whereas the dmin of
the standardized DVB-RCS interleaver is 33.

Figure 2 shows simulated error rate results for rate 1/3
turbo codes using 8 full iterations. The constituent decoders
used enhanced max-log APP decoding [15] with an extrinsic
scale factor of 0.75. To reduce the statistical differences,
the same noise sequence was used for the two interleaver
designs at each SNR value. Fig 2(a) shows, for an ATM
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Fig. 2. FER and BER for ATM and MPEG packets of code rate Rc=1/3
(QPSK/AWGN). The size of overlap is 50 symbols (100 bits) and 75 symbols
(150 bits) for ATM and MPEG packets, respectively. The number of full
iterations is 8. Enhanced max-log APP (EML-APP) decoding with a fixed
scale factor of 0.75 for the extrinsic was used. For ATM packets, 100 million
packets were simulated for both interleavers at 2.5 dB. For MPEG packets,
300 million packets were simulated for both interleavers at 2.25 dB.

packet with K=212 symbols, an improvement with the DRP
interleaver of greater than 0.15 dB at high SNRs compared to
the standardized DVB-RCS interleaver. Fig 2(b) shows, for an
MPEG packet with K=752 symbols, an improvement with the
DRP interleaver greater than 0.25 dB at high SNRs compared
to the standardized DVB-RCS interleaver.

VII. CONCLUSION

Garello’s distance measurement method for single binary
turbo codes was extended to double binary tail-biting turbo
codes. An efficient early stopping rule that reduces the com-
putational complexity of the distance measurement method by
a factor of 2 was presented. This reduction in computational

complexity is significant because the measurement of high
distances (i.e., dmin > 50) can take weeks. Distance results
for the 12 standardized DVB-RCS interleavers over all stan-
dardized code rates were presented. A new interleaver design
for DVB-RCS based on the dithered relative prime (DRP)
approach was also presented. The new interleaver design
achieves, for a code rate of 1/3, an improvement of at least
0.15 dB and 0.25 dB at high SNRs for ATM and MPEG
packets, respectively, compared to the standardized DVB-RCS
interleavers.
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