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Abstract— In the absence of accurate channel probability
distribution information or in broadcast scenarios, code de-
sign for consistent channel-by-channel performance, rather
than average performance, may be desirable. Root and
Varaiya’s compound channel theorem promises the existence
of universal codes that operate with a consistent proxim-
ity to channel mutual information on any instance of the
compound linear vector Gaussian channel that is similar
to the capacity gap of an AWGN-specific code with simi-
lar complexity on the AWGN channel. This study presents
single-dimensional trellis codes such that when multiplexed
over two, three and four transmit antennas, provide univer-
sal performance over the compound linear vector Gaussian
channel. As a result of their channel-by-channel consistency,
the universal trellis codes presented here deliver compara-
ble or in some cases superior frame-error-rate and bit-error-
rate performance under quasistatic Rayleigh fading to trellis
codes of similar complexity that are designed specifically for
the quasistatic Rayleigh fading scenario.

I. Introduction

The use of multiple antennas at both transmitter and
receiver is crucial in order to harvest the capacity of rich
propagation environments. For example, when the path
gains between transmit and receive antenna pairs are in-
dependent Gaussian random variables, Foschini [1] and
Telatar [2] showed that capacity increases linearly with the
number of transmit-receive antenna pairs. As is common
in the current literature, we refer to a channel resulting
from the use of multiple antennas as a space-time channel.

An instance of signal transmission over a space-time
channel with Nt transmit antennas and Nr receive anten-
nas is often modeled as

y = Hx + w, (1)

where H is an Nr ×Nt complex matrix of path gains, x is
the complex input vector, y is the complex output vector
and w is the complex additive white Gaussian noise vector
with variance N0 per dimension. For vector channels of the
form (1), signal design criteria for average error probability
performance were established in [3] and [4] for the case
when the path gains are characterized by complex Gaussian
random variables (Rayleigh fading). Since then, the design
of coded space-time diversity schemes based on the average
performance criterion for quasistatic Rayleigh fading has
been an active research area ([5], [6], [7], [8], [9], [10], [11]).
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While good average error performance is desirable, it
does not guarantee consistently good “channel-by-channel”
performance (i.e. universal performance). In fact, most
of the code designs proposed for the average performance
cannot maintain coded performance under certain rank-
deficient channels. Such channels have been of interest due
to their deleterious effect in certain propagation environ-
ments ([12], [13], [14]). In constrast, good universal per-
formance implies good average performance irrespective of
the quasistatic distribution.

Root and Varaiya’s compound channel coding theorem
[15] indicates that a single code with rate R bits/symbol
can achieve reliable transmission of information over any
linear Gaussian channel H that induces more than R
bits/symbol of mutual information (MI), i.e. over any
channel with MI(H, Es) > R where

MI (H, Es) = log2 det
(
I +

Es

N0
HH†

)
(2)

is the mutual information I(x;y) (in bits per symbol) and
Es is the transmit energy per antenna per symbol1. The
implication of this result is that good error performance
over a set of channels does not have to come at the expense
of significant performance degradation over others.

A universal code delivers similar error performance over
all channels with the same mutual information. Consider
a code that transmits R bits per symbol over N transmit
antennas. Let E∗

s denote the transmit power per antenna
that a specific code requires to achieve the target bit-error-
rate (BER) on the (static) channel H. The excess mutual
information requirement of that specific on this channel
is the difference between the channel mutual information
MI(H, E∗

s ) and the rate R:

EMI(H) = MI(H, E∗
s ) − R bits. (3)

Let H = {H : MI(H) ≥ R} denote the set of channels
that comprise the compound N ×N channel with capacity
R bits per symbol. The goal of universal R bits per symbol
code design is to minimize, over the N×N compound chan-
nel with capacity R, the worst-case excess mutual informa-
tion supH∈H EMI(H) − R at fixed target bit-error-rate (or
frame-error-rate), latency, and decoding complexity. This
paper extends the ideas in [16] to propose universal space-
time trellis codes formed by straightforward multiplexing

1Assuming the input vector has a complex Gaussian distribution
with covariance matrix EsINt .
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of single-dimensional linear trellis-code over two, three and
four transmit antennas. The multiplexed trellis codes have
simpler maximum-likelihood decoding than general vector-
labeled trellis codes.

Section II summarizes our results on the worst-case
minimum-distance of a space-time code under linear trans-
formations with equal mutual information and derives
a simple approximate criterion for universal behavior.
This section also formulates the encoder rate, constella-
tion size and trellis complexity requirements for universal
space-time trellis codes formed by multiplexing a single-
dimensional trellis code.

Section III presents linear trellis codes found by exhaus-
tive searches over their respective encoder classes, such
that when multiplexed over two, three and four transmit
antennas provide universal performance with maximum-
likelihood decoding. The performance variation of univer-
sal codes as compared to other existing space-time codes
over different channel instances is illustrated via extensive
simulations. Our discussion ends with simulation results
showing that the average error performance of the proposed
universal codes over quasistatic Rayleigh fading is compa-
rable, and in some cases superior to existing space-time
codes with similar decoding complexity designed specifi-
cally for the average error probability performance. Section
IV delivers the conclusions.

II. Design guidelines for universal space-time

trellis codes

Let X and X̂ be two different codewords of a space-time
code C for Nt transmit antennas, and let E = X̂ − X de-
note the codeword difference matrix. Under maximum-
likelihood (ML) decoding, the probability that the de-
coder mistakes X̂ for X conditioned on the perfect knowl-
edge of the channel matrix H at the receiver is given by
P (X → X̂|H) = Q(

√
d2(E|H)/2N0) where d2(E|H) =

||HE||2 = trace(HEE†H†) is the squared Euclidean norm
of the codeword difference matrix E when transformed by
the channel H, and Q(·) is the standard Gaussian tail in-
tegral function. For a fixed channel H, the minimum of
the squared-distances d2(E|H) over all E will be called the
d2
min(H) of the code. Universal codes should have good

d2
min(H) for all instances H of the compound channel.
The smallest value of d2

min(H) over the compound chan-
nel is a function of the eigenvalues of the codeword differ-
ence matrices. For a given codeword difference matrix E,
ζ = (ζ1, ..., ζNt

) will be the vector of eigenvalues of EE†

with the ordering ζ1 ≥ ζ2 ≥ ... ≥ ζNt
, and we will write

E ∼= ζ. The eigenvalues of HH†, where H is an Nr × Nt

channel gain matrix, will be denoted by λi, i = 1, ..., Nr

with the ordering λ1 ≥ λ2 ≥ ... ≥ λNr
, and we will write

H ∼= λ where λ = (λ1, ..., λNr
). Throughout the paper, we

will assume that Nr ≤ Nt.

A. Worst-case distance over the compound channel
Consider the Nr × Nt compound channel with capacity

R bits per symbol, H =
{
H ∈ C

Nr×Nt : MI(H) ≥ R
}
. We

are interested in the minimum of the squared Euclidean

norm, d2(E|H), of a codeword difference matrix E ∼= ζ as
transformed by all instances H of the compound channel H.
Subject to the MI constraint MI(H) =

∑Nr

i=1 log2 (1 + λi) ≥
R, the worst case channel has its eigenvalues along the
weakest eigenvectors of the error event, with magnitudes
determined by a waterpouring solution using the geomet-
ric mean of the error event eigenvalues. This exact solution,
however, does not yield a simple criterion for universality
except for Nr = 1. An approximate criterion for uni-
versality over the N × N compound channel is obtained
by bounding the worst-case distance over the compound
channel. The following lemma summarizes this result.
We have omitted the proof for brevity.

Lemma 1: The worst-case minimum distance of a space-
time code over the compound N × N channel H(N,N,R)
of capacity R bits per symbol is bounded as

(
2

R
N − 1

)
∆∗

E ≥ inf
H∈H(N,N,R)

d2
min(H)

≥ min
E

(
2R

ζN
∆E(E) − 1

)
∆E(E) (4)

where ∆∗
E = minE trace(EE†) is the minimum squared

Euclidean-distance of the code. The first inequality of
Lemma 1 implies that a universal code should have good
minimum Euclidean-distance. The second inequality of
the lemma leads us to choose, among good minimum
Euclidean-distance codes, those codes with high minimum
eigenvalue ζ∗Nt

= minE ζNt
(EE). Ultimately, the univer-

sal performance of a code over the compound channel will
be measured by its excess mutual information requirement.
Nevertheless, this criterion provides us with a basic rule to
prune the search for universal space-time trellis codes.

B. Encoder rate and constellation size requirements for
universal space-time codes

Consider a rate-k/n convolutional encoder with memory
ν. For R bits per symbol transmission over Nt transmit
antennas using a 2mPSK/QAM constellation, we use this
encoder l = R/k times (assume for simplicity that k di-
vides R evenly). Let (b0, ..., bn−1), ..., (b(l−1)n, ..., bln−1)
denote the ln codeword bits that the binary encoder would
produce for lk input bits in succession. If ln = Ntm, then
we map (b(i−1)m, ..., bim−1) onto the 2mPSK/QAM con-
stellation for the ith transmit antenna, i = 1, ..., Nt. If
ln > Ntm, we puncture ln−Ntm out of ln bits and group
the remaining Ntm bits similarly, keeping the index or-
der. Universal performance over the compound channel
dictates the following design rules for multiplexed single-
dimensional trellis codes.
• Binary encoder rate and constellation size: When the
channel has only one nonzero column, the encoder rate
effectively rises to kNt/n, therefore n > kNt is required.
Also, the constellation should be large enough to host R
bits redundantly, i.e. m > R.
• Trellis complexity: The effective code length (duration
of the shortest error event) of a k-bits/symbol linear trellis
code is ECL = �ν/k� + 1 where ν is the memory of the
encoder [17]. In general, for r-levels of transmit diversity,
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TABLE I

Linear trellis codes for multiplexing onto Nt transmit antennas to produce R bits per symbol space-time codes. A rate-1/n

binary convolutional encoder outputs nR code bits which are mapped on Nt × 2m
PSK/QAM. Codes #1-#10 are universal

codes found via exhaustive searches. Codes #11-#16 are trellis codes with good-AWGN performance and/or good

periodic-erasures performance. 16QAM, QPSK: Gray labeling, 8PSK: Gray labeling 0,2,3,1,5,7,6,4 in octal going around the

circle.

# Nt R 1/n, ν gi Const. ζ∗∆H,min
∆∗

P ∆∗
E Mapping

1 2 1 1/4, 4 03 22 36 04 QPSK ζ∗2 = 5.53 80 20 (b0, b1), (b2, b3)
2 2 2 1/3, 4 31 05 35 8PSK ζ∗2 = 0.67 16.32 12.6 (b0, b1, b2), (b3, b4, b5)
3 2 2 1/3, 5 71 31 61 8PSK ζ∗2 = 0.89 ≤ 25.02 13.4 (b0, b1, b2), (b3, b4, b5)
4 2 2 1/3, 6 161 041 171 8PSK ζ∗2 = 1.05 17.7 17.2 (b0, b1, b2), (b3, b4, b5)
5 2 3 1/3, 3 06 16 13 16QAM ζ∗2 = 0.4 1.6 4 (b0, b1, b2, b3), (b4, b6, b7, b8)
6 3 1 1/6, 3 15 03 07 05 04 11 QPSK ζ∗3 = 2.44 248 26 (b0, b1), (b2, b3), (b4, b5)
7 3 2 1/3, 5 62 55 47 QPSK ζ∗3 = 0.24 32 22 (b0, b1), (b2, b3), (b4, b5)
8 3 3 1/2, 5 75 62 QPSK ζ∗2 = 2.0 15.5 12.0 (b0, b1), (b2, b3), (b4, b5)
9 4 2 1/4, 4 33 23 26 06 QPSK ζ∗2 = 4.60 78.6 24 (b0, b1), (b2, b3), (b4, b5), (b6, b7)
10 4 2 1/4, 5 75 71 67 53 QPSK ζ∗3 = 0.29 49.1 36 (b0, b1), (b2, b3), (b4, b5), (b6, b7)

Maximal-∆∗
E codes and good periodic-erasures codes

11 2 1 1/4, 4 25 27 33 37 QPSK ζ∗2 = 5.53 24 24 (b0, b1), (b2, b3)
12 2 2 1/3, 6 173 062 115 8PSK ζ∗2 = 0.56 32.3 17.6 (b0, b1, b2), (b3, b4, b5)
13 3 3 1/4, 6 117 155 145 137 16QAM ζ∗2 = 0.28 5.03 14.4 (b0, b1, b2, b3), (b4, b5, b6, b7)
14 3 3 1/2, 5 65 57 QPSK ζ∗2 ≤ 1.43 19.7 16 (b0, b1), (b2, b3), (b4, b5)
15 4 2 1/4, 4 25 27 33 37 QPSK ζ∗2 = 2.62 74.14 30 (b0, b1), (b2, b3), (b4, b5), (b6, b7)
16 4 3 1/4, 6 135 147 135 163 8PSK ζ∗2 = 0.98 45.01 24 (b0, b1, b2), (b3, b4, b5), (b6, b7, b8)

the necessary (but not sufficient) trellis complexity obeys
�ν/k� ≥ Nt(r−1). Although not universal over the Nt×Nt

rank-unconstrained compound channel, a diversity-r code
with good ζ∗r can provide universal performance over all
channels that establish at least Nt − r + 1 equally strong
spatial eigenmodes. Moreover, missing levels of transmit
diversity can be restored by an outer code.

III. Universal space-time codes from standard

trellis codes

For our exhaustive code searches we have used the stack-
based algorithm [18] following a pruning step that uses a
small set of test channels [16] to find the best worst-case
eigenvalues. Besides the worst-case eigenvalues, the mini-
mum squared Euclidean-distance, ∆∗

E , the diversity order,
∆H,min, and the minimum product-distance, ∆∗

P , are im-
portant parameters that determine the error probability
performance of the code over different channel scenarios.
The worst-case ith eigenvalue over all EE† is denoted by
ζ∗i = minE ζi(EE†). The presented codes are found by ex-
haustive searches over their class of encoders to maximize
the worst-case minimum-eigenvalue ζ∗r under a transmit
diversity constraint ∆H,min = r while sacrificing no more
than twenty percent of the maximum squared Euclidean-
distance achievable within the same class, when possible.

A. Universal codes for Nt = 2, 3, 4 transmit antennas
Table 1 lists rate-1/3 + 8PSK trellis-coded modulations

for for 16, 32 and 64 states (codes #2, #3, #4, respec-
tively) such that when multiplexed over two transmit an-
tennas, deliver universal performance over the 2 × 2 com-

pound channel. Figure 1 displays the simulated bit-error-
rate performances of code #4 as well as two other transmit-
diversity schemes over the 2 × 2 compound channel as a
function of excess mutual information. At BER=10−5 code
#4 requires no more than 0.88 bits of excess MI per trans-
mit antenna over singular channels and requires 0.93 bits
of excess MI on unitary channels. The rate-1/2 64-state
maximal-free-distance convolutional code [19] with QPSK
modulation requires 0.84 bits of excess MI on the AWGN
channel at BER=10−5. At BER=10−5, code #4 handles
every instance of the 2 × 2 compound channel within 0.09
bits of excess MI per transmit antenna of the best rate-1/2
+ QPSK convolutional code of similar complexity on the
AWGN channel. The performance of the code over singular
2×2 channels is the performance of the code over 2×1 chan-
nels. The 2 bits/symbol 64-state Z4-linear 4PSK-TCM of
[6], designed to deliver good average error-probability un-
der quasistatic Rayleigh fading channels, requires a worst-
case excess MI of 1.10 bits per transmit antenna to achieve
BER = 10−5. The uncoded QPSK transmission on the
AWGN channel has excess MI of 1.13 bits at BER = 10−5.

Another scheme that delivers 2 bits/symbol over two
transmit antennas consists of a good AWGN-TCM followed
by Alamouti repetition [5]. The 64-state rate-2/3 Unger-
boeck TCM [20] achieves BER = 10−5 at SNR = 8.8 dB on
the AWGN channel. On the compound 2 × 2 channel, the
excess MI requirement of this scheme is a linear function of
the sum of the channel eigenvalues [16]. On singular chan-
nels, this concatenated scheme requires only 0.55 bits of
excess MI per antenna at BER = 10−5, whereas on unitary
channels the excess MI is requirement is 1.26 bits per trans-
mit antenna. Among the three codes examined, code #4
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Fig. 1. Channel-by-channel performance of the universal 64-state
rate-1/3 + 8PSK code (#4) over the 2 × 2 compound channel.
Best- and worst-case (for BER = 10−5) singular channels are
identified via extensive simulation. For comparison, the com-
pound channel performance of the 64-state 4PSK code of Aktas
et al. [6] and the compound channel performance of the 64-state
rate-2/3 + 8PSK Ungerboeck-TCM + Alamouti STB signaling is
provided. Each frame consists of 127 data symbols and 3 symbols
for trellis termination.

has the most consistent channel-by-channel performance.
For R = 2 bits/symbol transmission over Nt = 3 trans-

mit antennas, our search originally focused on rate-1/5
convolutional encoders. The ∆∗

E-constrained optimal-ζ∗3
search over 32-state encoders and all puncturing patterns
resulted in a system that can simply be represented as two
rate-1/3 convolutional encoder outputs producing six bits
that label three QPSK points (code #7).

For the target bit error rate of BER=10−5, the excess
MI requirement of proposed trellis codes as well as several
other transmit-diversity schemes for two and three transmit
antennas over the compound channel is displayed in Table
II.

Now consider the MI penalty incurred by using an or-
thogonal space-time block (STB) scheme for transmit di-
versity. Figure 2 shows the worst-case mutual informa-
tion loss over the compound channel of two orthogonal
STB schemes as a function of the channel mutual infor-
mation. For two transmit antennas, Alamouti’s full-rate
[5] and for three transmit antennas the rate-3/4 scheme of
[10] experience heavy MI penalty for channels that support
high rates. Universal trellis codes have superior worst-case
compound channel performance as compared to orthogonal
block schemes.

For R = 2 bits per symbol over Nt = 4 transmit an-
tennas, code #10 (ζ∗3 = 0.28, ∆∗

P = 49.1, ∆∗
E = 36) is

the maximal-ζ∗3 as well as the maximal-∆∗
E among 32-state

rate-1/4 encoders mapping two QPSK points for each in-
formation bit. The R = 2 bits per symbol 32-state vector-
labeled 4PSK trellis-code of [8], which was proposed for
good average Rayleigh fading performance has ζ∗3 = 0.14
and ∆∗

P = 34.6, ∆∗
E = 36.

TABLE II

Excess mutual information (EMI) requirement of R = 2 bits

per symbol schemes for Lt = 2 and Lt = 3 as a function of

channel eigenvalue skew. Target BER is 10−5
on

127-data-symbol frames with trellis termination.

Lt = 2, R = 2 bits per symbol schemes
λ2/λ1 = 0 λ2/λ1 = 0.5 λ2/λ1 = 1

64-state rate-2/3 8PSK TCM + STB
EMI = 0.55 EMI = 1.20 EMI = 1.26
64-state universal rate-1/3 + 8PSK code (#4)

0.80 ≤ EMI ≤ 0.93 0.82 ≤ EMI ≤ 0.89 EMI = 0.88
64-state 4PSK code of Aktas et al. [6]

0.73 ≤ EMI ≤ 1.10 0.80 ≤ EMI ≤ 0.93 EMI = 0.86
64-state universal rate-2/6 + 2 × 8PSK code of [16]
0.67 ≤ EMI ≤ 0.95 0.75 ≤ EMI ≤ 0.95 EMI = 0.95

Uncoded QPSK
EMI = 1.13

Lt = 3, R = 2 bits per symbol schemes
λ3 = 0, λ2 = 0 λ3 = λ2 = λ1

32-state 4PSK code of Aktas et al. [6]
0.62 ≤ EMI ≤ 0.90 EMI = 0.81

32-state universal 4PSK code (#7)
0.67 ≤ EMI ≤ 0.85 EMI = 0.83
(31,21) binary BCH code + 32-state code (#13)
0.83 ≤ EMI ≤ 0.98 EMI = 0.94

B. Universal trellis codes under quasistatic Rayleigh fading

Universal space-time trellis codes deliver good average
error performance under quasistatic Rayleigh fading as long
as the quasistatic period is longer than several traceback
depths of the codes. Figure 3 compares the frame-error-
rate (FER) and the bit-error rate (BER) performances of
code #4 and the 64-state code of [6] over 2 × 1 and 2 ×
2 quasistatic Rayleigh fading with quasistatic duration of
130 channel symbols, three of which are used for trellis
termination. The universal code has slightly better FER
and BER over the SNR range displayed. The universal
code performs 1.7 dB away from outage capacity. Over
3 × 1 and 3 × 3 quasistatic Rayleigh fading channels, code
#7 and the 32-state code of [6] have similar BER and FER
performances over a wide range of SNRs, with code #7
performing slightly worse in FER for the 3 × 3 scenario.
Similarly, code #10 has approximately the same FER and
BER performance with the 32-state code of [8] over 4 ×
1, 4 × 2 and 4 × 4 quasistatic Rayleigh fading channels,
and slightly better BER performance over 4×1 quasistatic
Rayleigh fading.

It is interesting to note that for 2 × 2 Rayleigh fading,
the probability that the eigenvalues λ1, λ2 of HH† are more
than 10 dB apart is 0.45. For 3 × 3 Rayleigh fading, this
probability is 0.83. Universal code design which takes into
account the performance over singular channels (through
high ζN ) results in good codes for the average Rayleigh
fading performance.
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Fig. 3. Bit-error-rate and frame-error-rate performance of the 64-
state universal TCM (code #4) as compared to 64-state code
of Aktas et. al, over the quasistatic Rayleigh fading channel,
Nt = 2. Each frame consists of 127 data symbols and three
symbols for trellis termination. Maximum-likelihood decoding
on the entire frame.

IV. Conclusions

Wireless communication with multiple transmit anten-
nas exposes the transmitted signals to a rich variety of
channels. When accurate statistical characterization of the
path gains is not possible or when the code is used in a
broadcast scenario, universal code design which aims to
deliver consistently good error probability performance on
any instance of the channel may be desirable. For con-
sistent channel-by-channel performance across the rank-
unconstrained N × N compound channel with maximum-
likelihood decoding, a universal space-time code should
have good minimum Euclidean-distance and a good small-
est minimum-eigenvalue over all codeword differences. Per-

haps more importantly, universal codes should obey binary
encoder rate, effective code length and constellation size
requirements. The proposed universal codes for two, three
and four transmit antennas have similar or superior aver-
age frame-error-rate and bit-error-rate performances over
quasistatic Rayleigh fading channels as compared to trel-
lis codes of similar complexity designed specifically for the
quasistatic scenario. Rayleigh fading with independent
path gains has high occurrences of singular and almost-
singular channels taken into account by universal code de-
sign.
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