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Abstract— Viewing an n-length vector over F;~ (the finite field
of ¢" elements) as an m X n matrix over F,, by expanding
each entry of the vector with respect to a basis of F,» over
F,, the rank weight of the n-length vector over Fim is the rank
of the corresponding m x n matrix over Fj. Using appropriate
Discrete Fourier Transform (DFT), it is known that under some
conditions, n-length cyclic codes over Fym, (n|¢™ —1 and m < n),
have full-rank (= m). In this paper, using this result, we obtain
designs for Full-diversity Space Time Block Codes (STBCs)
suitable for block-fading channels from n length cyclic codes
over Fym. These STBCs are suitable for m transmit antennas
over signal sets matched to F;, where ¢ = 2 or ¢ is a prime of
the form 4k + 1, (k =1, 2, ---). We also present simulation
results which illustrate the performance of a few of these STBCs
and show that our codes perform better than the well known
codes for block-fading channels.

I. INTRODUCTION

An m x [ (m < l) Space Time Block Code (STBC) C
for m transmit antennas over a complex signal set S is a
finite number of m X [ matrices with entries from S. Let
us consider a system with N, transmit antennas, N, receive
antennas and codeword length . In the block-fading model,
the codeword is considered to be composed of multiple blocks.
The channel fading coefficients are constant over each block
and are independent from block to block. For an STBC for a
block-fading channel, [ is an integral multiple of the length of
the block. Let M denote the numbgr of blocks in a codeword.
Then, the size of each block is § = ﬁ When, the codeword
length extends over several quasi-static blocks, as in the case
of block-fading channels, El Gamal and Hammons [1] have
shown that the diversity can be made to increase indefinitely
with increase in length of the codeword. In [2], it was shown
that the limiting performance in terms of codeword error
rate can be improved by coding across multiple blocks. In
particular, it was shown that the negative of the exponent of
SNR in the codeword error rate for a fixed data rate can be
increased to any value by coding across multiple blocks. The
following base-band design criteria for block-fading channels
have been derived in [1].

Design Criteria for block-fading channels [1]: Let C be
an n x [ STBC code where ¢’ = [¢[1],c[2],---¢/[M]] and

I'This work was partly funded by the IISc-DRDO programme on Advanced
Research in Mathematical Engineering through a grant to B.S.Rajan.

IEEE Communications Society
Globecom 2004

566

e =[e¢'[1],€'[2] - - - /[ M]] are any two distinct codewords and
c'[7],€'[r],1 < 7 < M are the 7*" blocks of codewords c’, e’
respectively. The pairwise probability of error is

Mo B T
P(c—»e)ng_[_1<4NO) (1)
where .
pr = (Mlrlelr] - Aa, [7]) 7, (2)
d, = rank(d'[t] — €'[7]) 3)
and A\ [7], A2[7], - A4 [7] are the non zero eigen values of
A[7] = (<'[7] — €'[7])(c/[7] — €'[7]), Hence the generalized

diversity and product distance criteria for STBCs over MIMO
block-fading channels can be stated as follows :

(i) Block-fading sum of ranks criterion : Maximize the transmit
diversity advantage,

M M
d= Z d, = Z rank(c'[t] — €'[7]) “4)
=1 =1

over all pairs of distinct codewords ¢, e’ € C.

From this criterion, it follows that the diversity advantage
increases rapidly with increase in the number of blocks M
in the codeword if, for all pairwise differences of codewords,
the difference blocks (¢/(7) — €/(7)),1 < 7 < M have full-
rank.

(i) Block-fading Product distance criterion :
coding advantage,

Maximise the

Lo = I {ulelr] - 2D} ©

over all pairs of distinct codewords ¢’,e’ € C.

In [1], full-diversity codes over BPSK and QPSK signal
sets have been constructed. In these codes, the coding is done
across 2, 3 and 4 blocks. In [3], full-diversity codes with
coding across 2, 3 and 4 blocks were constructed for QPSK
signal set.

Let C be an [n,k] linear code over Fj~. For any pair of
codewords, ¢, e € C, the rank distance between them is de-
fined to be the rank over F;, of the m x n matrix corresponding
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to ¢ — e obtained by expanding each entry of c — e as an m-
tuple along a basis of Fym over Fy. The rank of C, denoted
by rank,(C) is defined as the minimum of rank,(c—e) over
all possible pairs of distinct codewords. The rank distance be-
tween two codewords ¢ # e is at most equal to the Hamming
distance between them. Combining this with the Singleton
bound one gets, ranky(C) < min {m,n—k+1}. The
case where rank,(C) = n — k + 1 has been studied in [4],
[5], and are called Maximum Rank distance (MRD) codes.
The rank properties of (n,k) cyclic codes over finite fields
Fym, (n|¢™—1, (n,q) = 1) have been studied in [6], [7]. In
these, exact expressions and tight bounds for the rank of the
code have been derived by making use of the Discrete Fourier
Transform (DFT) description of these codes.

In this paper, we derive m x n STBCs having diversity
equal to n, suitable for use over block fading channels, from
n-length cyclic codes over Fy,m where n|¢™ — 1, m < n by
making use of the rank characterization for cyclic codes [6],
[7]. This characterization has been performed by making use
of the DFT domain description of cyclic codes [8].

The rest of the content in the paper is organized as follows:
In the next section, we will briefly state the theorems asso-
ciated with the characterization of cyclic codes for the rank
metric. In Section III, we obtain m x n STBCs with diversity
equal to n for block-fading channels. In section IV, we present
simulation results to show that our codes perform better than
the well known codes in terms of codeword error probability
and conclude the paper in Section V.

II. CHARACTERISATION OF CYCLIC CODES FOR THE
RANK METRIC

We summarize the results relevant to the design of STBCs in
Theorems 2.1, 2.2 and 2.3. The proofs of the first two theorems
are given in [6], [7] and that of the third is omitted due to space
limitations.

Theorem 2.1: Let C be a cyclic code of length n|¢™ —

1, (m < n) over Fym such that the transform component
Ajgs € Ay, 7]l = ej,ejm is free and all other transform
components are constrained to zero. Then rankq(C) = e;. In
other words, for a length n|¢™ — 1 cyclic code over Fym with
only one transform component non zero, the rank of the code
is equal to the size of the g-cyclotomic coset to which the free
transform component belongs.
In practice, we choose the free transform domain component
Ajqs € Ap) where e; = |[[j]] = m from a full size g¢-
cyclotomic coset. Then from Theorem 2.1 it follows that the
rank of the resulting code is m. This code has ¢"* codewords.
These codes are defined over Fim, have length equal to n and
dimension equal to 1.

Theorem 2.2: Let C be a cyclic code of length n|¢™ — 1
over Fyym whose free transform domain components are A,
and Ajgr+s. (the indices of the free transform domain compo-
nents belong to the same ¢- cyclotomic coset and s denotes the
seperation between them. (1 < s <e;—1), (0<r <e; —2).
Let all other transform components be constrained to zero.
Then, rank,(C) = (e; — gcd(s, €;)).
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This Theorem shows that if we try to increase the number
of codewords by considering codes with two free transform
components from the same g-cyclotomic coset and constrain-
ing all other transform components to zero, we can no longer
obtain full-rank cyclic codes. Hence, in our search for full-
rank STBCs for block-fading channels, we shall confine our
study to one dimensional cyclic codes of length n over
Fyn, (nlg™ — 1),

Theorem 2.3: Let C be a cyclic code of length n|¢™ — 1
over Fym such that the transform domain component
Ajqs € Ay is free and all other transform components are
constrained to zero. Let |[j]| = e;. Consider any non zero
codeword a € C.

a= (a0, a1, " Ge;—1, " Qheys* Akt+1)e;—15 " " An—1)
There are two cases:
i) e divides n o If  ejln, the = sets

J

{aOa T Qe;—1, } ) {aeja e a26]‘—1} e {an—ej co an—l)}
are linearly independent sets over Fj,. If these sets are viewed
as m x e; matrices over Iy, then each matrix has F-rank
equal to e;.
(ii) e; does not divide n: If e; does not divide n, the L%J
sets {ao, e, 1}, {ac,, 20, 1},

an,% J—e; an,u% j—1( are linearly independent and
have rank e; when viewed as m X e; matrices over Fy. The
last set {an,L£J . -an,l} consisting of n — Leﬁjjej terms is
also linearly independent and has Fj,-rank equal to n — Li] €;

when viewed as a m X (n — Leﬂjjej) matrix over Fy,.
This theorem is particularly useful in deriving STBCs suitable
for block-fading channels from cyclic codes. Also, it follows
that a codeword of length n over Fym can be divided into
several blocks of length e;, each of which can be viewed as
a full-rank m x e; matrix over Fj. If the length of the fading
block is equal to e, it follows from the block-fading sum of
ranks criterion, that the effective diversity advantage offered
by the code is increased.

We shall use Theorems 2.1 and 2.3 to derive STBCs for
block-fading channels from n-length cyclic codes over Fim.

III. DESIGNS FOR BLOCK-FADING CHANNELS FROM
cycLiC CODES

Definition 1: A rate-k/n, n x [ linear design over a field

F € C is an n x [ matrix with all its entries F-linear
combinations of k complex variables and their conjugates
which are allowed to take values from the field F'.
Let (n,q) = 1 and n|¢" — 1, where ¢ is either 2 or a prime
of the form 4k + 1. Let [j],, be a g-cyclotomic coset of I, of
size m. By restricting A;, j € [j]n, to Fym and constraining
all other transform components to zero, we have a n-length
cyclic code over Fy;= whose codewords are of the form,

[ A]7 /BijAjv ﬁ72jAj7 67(n71)JAJ ]

where (3 is a primitive n-th root of unity in Fym and
Aj € Fym. Viewing A; as a m-length column vector over
Fy, the codewords can be viewed as m X n matrices over Iy,
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given by,

0,0 ap,1 agp,2 ag,n—1
ai,o ai,i a2 a1,n—1
(6)
Um—-1,0 Am—1,1 Am—-1,2 Am—1,n—1

where 37 A; = ZZBI a; ko', a; ) € F, and « is a primitive
element of F7~. Notice that (6) is a design over Fj,. Also, note
that this is in general, possible for any linear code, however,
we have information about the rank, only in the case of cyclic
codes.

Example 1: Let the number of transmit antennas N; = 2.
We take n = 3. The 2-cyclotomic coset of 1 modulo 3
is {1,2}. With A; taking all of F; and other transform
components constrained to zero, we have a rank-2 cyclic code
C, over Fy. Let a be a cube root of unity in F;. With z2+z+1
as the minimal polynomial of «, the codewords of C are of
the form,

ap aop + ai ax
ax ag ap + ax

)

where ag,ay, € Fs.

This is an example of a rate 2/3 design. A design based
on a cyclic code of length n over Fy= is used over a block-
fading channel where the channel is known to remain invariant
over m successive signalling intervals. These m successive
signalling intervals constitute a block. Therefore, we have two
cases.

(1) m divides n : In this case, each codeword encompasses
an integral number of fading blocks. As these codes, can be
decomposed into - blocks, the components of each of which
are linearly independent, we have a m X n matrix over F,,
which can be decomposed into % submatrices, each of Fj-
rank m.

(ii)) m does not divide n : In this case, we can either delete
(n—[Z]m) columns or add m — (n— [2]m) columns
such that the last block also consists of linearly independent
elements. In the first case, we gain in code rate at the expense
of diversity and in the second case we loose in rate and gain
in diversity.

To obtain STBCs from the above designs, we have to map the
elements of F;, into the complex field such that the full-rank
property of the finite field design is preserved. We call a signal
set, which is a finite subset of the complex field, as a signal set
matched to [y, if there exists a map from F7j, to the signal set
which is an isometry for the F;-rank to the complex field rank.
There are two methods for obtaining maps, the Hammons and
El Gamal map [9] (suitable for codes over extension fields of
F5) and the map proposed by Lusina, Gabidulin and Bossert
[10].

An n-length cyclic code over Fym will give rise to an m xn
STBC with 2™ codewords for m transmit antennas. Hence, the
code rate in bits per channel use is < log,(2™) = m/n. Now,
assuming that we want full-rank STBCs, we have the condition
m < n. Therefore, for the case of cyclic codes over Fom, the
data rate is always upper bounded by 1 bit per channel use
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and we will not consider the Hammons and El Gamal map
here. To achieve higher code rates, we derive STBCs from
non binary cyclic codes by making use of the Lusina et al.
map.

A. q = 4k + 1, Lusina, Gabidulin and Bossert[10]

Let ¢ be a prime of the form ¢ = 4k + 1. By definition
a Gaussian integer w is a complex number defined as w =
a+ib, a, b € Z, i = /—1. From number theory, it is
known that every prime number g of the form ¢ =1 mod 4
can be written as ¢ = (u + i) x (u — iv) = u? — v% The
number II = u + ¢v is known as Gaussian prime number
where u, v € Z. Let II' = u — 7v. Then calculation modulo
IT is defined as, { = w modulo Il = w — [ﬁgi
[.] performs the operation of rounding to the nearest Gaussian
integer. The Gaussian integers modulo II form a field, G, =
{¢o=0, ¢t =1, {2, -,(q—1} and the map ¢ : F;, = Gn

givenby@:imodﬂ:z’—[%} M, i=0,1,2-, p—1

} II where

is an isomorphism [10]. Therefore when we map codewords
from a linear cyclic code over Fym, ¢ = 5,13,17,--- which
are m x n matrices over I, to m x n matrices over the complex
Gaussian field, the full-rank property of the code over Fym is
preserved. We give below, an example of the map between Fj
and the corresponding complex Gaussian field.
Example 2: The map between F5 and Gy where IT = 1442
is defined by,
0 —0,1—1,2~ 044,33 — 0—41, 4 — —1
Example 3: Let Ny = 2 and g = 5. Let the length of the
cyclic code be n = 6. The 5 -cyclotomic coset of 1 mod 6 is
{1,5}. With A; taking all of Fy; = F[z]/(z* +z + 1) and
all other transform components constrained to zero, we have
a rank-2 cyclic code over F5 with 25 codewords which can be
expressed as 2 x 6 matrices over F5. We make use of the map
proposed by Lusina et al. to derive a full-rank 2 x 6 STBC.
From the block-fading sum of ranks criteria, the diversity of
this code is 6. The codewords of the STBC are of the form
given in (8), where ag,a1 € F5. £ : F5 — G149;. The code
rate of this code in bits per channel use is, % = 0.774.
Example 4: Let N; = 2 and ¢ = 13. Let the length of the
cyclic code be n = 7. The 13 -cyclotomic coset of 1 mod 13
is {1,6}. With A; taking all of Fyg9 generated by F|[x]/(x2+
2 +2) and all other transform components constrained to zero,
we have a rank-2 cyclic code over F'3 with 169 codewords
which can be expressed as 2 x 7 matrices over Fi3. To increase
the rate of STBC derived from this cyclic code, we will delete
the last column and then map the resulting 2 X 6 matrices over
Fy3 using the map & : Fj3 +— Gag3,. This yeilds a full-rank
2 x 6 STBC with 169 codewords. The diversity of this code
is 6. The codewords of this code are of the form given in (9).
The code rate in bits per channel use is W = 1.233.
Example 5: Let N, = 2 and ¢ = 17. Let the length of the
cyclic code be n = 6. The 17 -cyclotomic coset of 1 mod 6 is
{1,5}. With A; taking all of Fhgg = F[z]/(z% + 2 + 3) and
all other transform components constrained to zero, we have
a rank-2 cyclic code over Fy; with 289 codewords which can
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£(4ao + a1)
&(2a0 + 2a1)

£(3ap + a1)
&(2a0 + a1)

F(ao) &(3aop + 5a1) £(4ag + 11a1) &(7ap + a1)

&(a1) €(9ao +3a1) &(ao + 3a1)

£(4ao)
§(4a1)

&(ao + 4a1)

§(2a0 —+ 4a1)
5(3(10 + 3a1)

5(3(10 + 4(11) ®

(a0 + 12a1)

3 €(3ao + 2a1) ©)
&(6ap +a1) &(Tao + 7a1) &(12a0 + 4a1)
£(3a1) 5(5110 + a1) &(bag + 4a1):| (10)

|:f(a0) §(15a0+12a1) £(l4a0+8a1) 5(16(104»5(11) 5(2a0+a1) §(3a0+2a1)

£(ar) €(12a0 + Tar) &(12a0 + Tar)

2Tx,1Rx,M=3
T

Codeword error probability

% STBC derived from (6,1) cyclic code over F25 , rate=0.774bits/sec/Hz
—o- 4-state BPSK code of El Gamal and Hammons , rate=1bits/sec/Hz

4 I I I I I I I

I I
6 6.5 7 75 8 8.5 9 9.5 10 10.5 "
SNR (dB)

Fig. 1. Performance comparison of length 6 full-rank STBC with diversity
of 6 derived from (6, 1) cyclic code over Fy2 with the best 4 state BPSK
space time code derived by El Gamal and Hammons.

be expressed as 2 x 6 matrices over F}7. We make use of the
map & : Fi7 — G4y, to derive a full-rank 2 x 6 STBC. From
the block-fading sum of ranks criteria, we conclude that the
diversity of this code is 6. The code rate in bits per channel use
S w = 1.3626. The codewords of this code are as in
(10). We can increase the rate of this code by deleting the last
two columns. By doing this we obtain a code with diversity of
4. The code rate in bits per channel use is M = 2.043.

IV. SIMULATION RESULTS

In this section, we present simulation results and compare
the performance of our codes with some well known codes for
block-fading channels. These include the codes proposed by El
Gamal and Hammons [1], Tarokh, Sheshadri and Calderbank
[11] and the Turbo Space Time Code proposed by Stefanov
and Duman [3].

In Figure 1, we have compared the error performance of our
length 6, full-rank STBC with diversity 6, rate 0.774 derived
from a (6,1) cyclic code over Fs2 (Example 3), with the 4-
state BPSK Space Time Trellis code (STTC) derived by El
Gamal and Hammons [1] which has a rate of 1. This happens
to be the best performing El Gamal and Hammons code with
rate 1bit/sec/Hz. This is the four state (5,7) optimal free
distance space time trellis code with diversity equal to 4. The
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2Tx,1Rx,M=3
T

=)
|

Codeword error probability

=)
*

—« STBC derived from (7,1) cyclic code over F.

160 rate = 1.3626bits/sec/Hz
—&- 4-state BPSK code of El Gamal and Hammons , rate = 1 bit/sec/Hz

2 I I I I I I I I I
6 6.5 7 75 8 8.5 9 9.5 10 10.5 1"
SNR (dB)

Fig. 2. Performance comparison of length 6 full-rank STBC with diversity
of 6 derived from (7, 1) cyclic code over F) 32 with the best 4 state BPSK
space time trellis code derived by El Gamal and Hammons.

parameters of this code are, N; = 2, N, = 1, number of
fading blocks per codeword M = 3, rate=1. Our code also has
the same operational parameters but has rate equal to .774.
While the rate of our code is less by about 0.226, we observe
that we are able to obtain any given probability of error with
a much reduced value of SNR (at least 5 dB less).

In Figure 2, we have compared the error performance of our
length 6, full-rank STBC with diversity 6, rate 1.233 derived
from a (7,1) cyclic code over Fi32 (Example 4), with the 4-
state BPSK STTC derived by El Gamal and Hammons. This
is the same El Gamal and Hammons code referred to in the
context of Figure 1. We observe that our code outperforms
this code in both rate and in error performance. (This code is
able to achieve any given probability of error at a SNR which
is at least 2.5 dB less than that required by the El Gamal and
Hammons code). The number of blocks, M = 3 for both the
codes.

In Figure 3, we have compared the error performance of our
length 4, full-rank STBC with diversity 4, rate 2.043 derived
from a (6,1) cyclic code over Fij72 (Example 5), with the
following:

e The linear Z, code obtained by lifting the binary (6, 7) code
with QPSK modulation [1] with parameters, N; = 2, M = 2,
rate = 2bits/sec/H z.
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2Tx,1Rx,M=2

2Tx,1Rx,M=3

10 T 10 T T T
2107 2107
3 3
© ©
Qo Q2
[ E [
a o
8 s
o 5
k4 e
o o
2 2
(7] @
° =y
o 2 S =
C107H © 10
—x— STBC from (6,1) cyclic code over ang , rate = 2.043 bits/sec/Hz
—o— linear Z4 code of EI Gamal and Hammons, rate = 2 bits/sec/Hz
—<— 16 state TSC space time encoder, rate = 2 bits/sec/Hz —«— STBC from (6,1) cyclic code over F, . , rate = 1.233 bits/sec/Hz
—+— Turbo space-time code, rate = 2 bits/sec/Hz —o— 4-state BPSK Space Time code of El Gamal et al. , rate = 1 bit/sec/Hz
107 I I I I I I I 107 I I I I I I I I I
1 115 12 125 13 135 14 14.5 15 6 6.5 7 75 8 85 9 9.5 10 10.5 1
SNR (dB) SNR (dB)
Fig. 3. Performance comparison of length 4 full-rank STBC with diversity ~ Fig. 4. Performance comparison of length 6 full-rank STBC with diversity

of 4 derived from (6, 1) cyclic code over F} -2 with the best 16 state QPSK
space time code derived by El Gamal and Hammons.

e The 16 state code derived by Tarokh, Sheshadri and Calder-
bank (TSC) code [11] with rate 2bits/sec/H z.
e New Turbo Space Time code [3] with interleaver size
N = 260, rate=2bits/sec/Hz. The path gains are assumed
to be constant for a period of 65 transmissions. We observe
that our code outperforms all of the above in rate as well as
error performance.

In Figure 4, we compare the error performance of our length
6 full-rank STBC with diversity 6, rate 1.3626 derived from
(6,1) cyclic code over Fi;2 (Example 5), with the 4 state
BPSK space time trellis code proposed by El Gamal and
Hammons which has a rate of 1. This is the same El Gamal
and Hammons code referred to in the context of the Figure 1.
The number of blocks M = 3 for both the codes. We observe
that our codes outperform the codes proposed by El Gamal
and Hammons in both rate and error performance.

V. DISCUSSION

We have shown that it is possible to obtain designs for
full-rank STBCs matched to MIMO block-fading channels
from length n|¢g™ — 1 cyclic codes over Fym. We have
derived performance curves (codeword probability of error as a
function of signal to noise ratio) for some of these codes. From
the simulation results, we see that these codes offer superior
performance as compared to the codes derived in [1], [11] and
the Turbo Space time code proposed in [3].
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