
Hierarchical Scheduling for DiffServ Classes

Mei Yang†, Jianping Wang‡, Enyue Lu?, S. Q. Zheng∗
† Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV 89154

‡ Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460
? Dept. of Mathematics and Computer Science, Salisbury University, Salisbury, MD 21801

∗ Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080

E-mail:†meiyang@egr.unlv.edu,‡jpwang@georgiasouthern.edu,?ealu@salisbury.edu,∗sizheng@utdallas.edu

Abstract—Due to its simplicity and scalability, the differentiated
services (DiffServ) model is expected to be widely deployed across
the Internet. For each DiffServ compliant router, the scheduling
algorithm is critical in implementing per hop behaviors (PHBs),
according to which packets are forwarded. In this paper, we pro-
pose the hierarchical DiffServ scheduling (HDS) algorithm to sup-
port DiffServ classes on input-queued switches. The proposed
HDS algorithm features in a hierarchical scheduling scheme that
consists of two levels of schedulers. One level is the central sched-
uler which is designed to maximize the switch throughput by com-
puting a maximal size matching between input ports and output
ports. The other level is formed by input port schedulers which
provide differentiated services by serving cells belonging to dif-
ferent classes dynamically. Using such a hierarchical scheme, the
implementation complexity and the amount of information needs
to be transmitted between input ports and the central scheduler
are dramatically reduced compared with existing maximal weight
matching based DiffServ scheduling algorithms. The tradeoff of
its slightly worse delay performance is acceptable.

I. I NTRODUCTION

Differentiated Services (DiffServ) is proposed to meet differ-
ent quality of service (QoS) requirements for various types of
clients and network applications. The DiffServ model [1] is ori-
entated toward edge-to-edge service across a single domain. It
pushes the flow-based traffic classification and conditioning to
edge routers of the domain. Core routers of the domain do not
need to maintain per-flow state information, but only need to
forward packets according to the per hop behavior (PHB) asso-
ciated with each traffic class, which is identified by the DiffServ
code point (DSCP) field in the header of each packet. The Diff-
Serv model matches the heterogeneous feature of the Internet
and it is capable of providing end-to-end QoS guarantees by
bilateral agreements between neighboring domain owners [2].
Due to its simplicity and scalability, DiffServ is expected to be
widely deployed across the Internet.

Currently, the IETF defines a set of PHBs which include Ex-
pedited Forwarding (EF) PHB, Assured Forwarding (AF) PHB
group, and Best Effort (BE) PHB. The EF PHB provides low
loss, low delay, low jitter, assured bandwidth, and end-to-end
service through the DiffServ domain. The EF PHB is ideally
suitable for voice over IP (VoIP), audio-, video- streaming, and
other real-time applications. The AF PHB group provides ser-
vices with minimum rate guarantee and low loss rate [3]. Four
AF classes (AF1, AF2, AF3, and AF4) are defined and each
class has three levels of drop precedence [3]. The level of for-
warding assurance of an IP packet belonging to an AF class

depends on the amount of resources allocated to the AF class,
the current load of the AF class, and the drop precedence of the
packet. AF PHBs are suitable for network management proto-
cols, such as Telnet, SMTP, FTP, HTTP. All IP packets belong-
ing to the BE class are not policed and are forwarded with the
best effort.

The implementation of PHBs relies much on the schedul-
ing and queuing schemes used in DiffServ complaint switches
and routers. In order to provide premium service to EF traffic,
packets belonging to EF class should be served prior to pack-
ets belonging to other classes. Meanwhile, to prevent the in-
fluence of damaging EF traffic to other traffic, the service rate
(bandwidth) for EF traffic should be limited to its peak infor-
mation rate (PIR). For each AF class, a minimum service rate,
referred as committed information rate (CIR), should be guar-
anteed. On the other hand, to avoid starvation of BE traffic,
backlogged BE queues should be served if excess bandwidth is
available. In practice, we desire those scheduling and queuing
schemes which are efficient in providing differentiated services
for different traffic classes, with high throughput, and simple in
implementation.

DiffServ supporting scheduling schemes proposed for
output-queued (OQ) switches include priority queuing (PQ),
weighted round-robin (WRR), PQWRR [4], and class-based
queuing (CBQ) [5]. Among these algorithms, PQWRR is
shown to have appealing performance and is simple in imple-
mentation. However, the aforementioned schemes are all based
on unscalable OQ switch architectures. Compared with OQ
switches, input-queued (IQ) switches are more scalable since
they only need the switching fabric and memories to run at
the line rate. In the literature, many QoS supporting schedul-
ing algorithms have been proposed for IQ switches [6], [7],
[8], [9], [10], [11]. Most of them are maximal weight match-
ing (MWM)-based algorithms [12] with different definitions of
the weight. Due to the lack of service reservation schemes,
these algorithms cannot provide bandwidth or delay guarantee
for each traffic class. The distributed mutlilayered scheduler
(DMS) proposed in [13] for multistage switches can provide
delay bounds for EF flows, and guaranteed bandwidth for AF
flows. However, the complex structure of DMS and mainte-
nance of per-flow queues prevent its practical use. In [14], we
proposed the dynamic DiffServ scheduling (DDS) algorithm,
which provides minimum bandwidth guarantees for EF and AF
traffic and fair bandwidth allocation for BE traffic. DDS is also
a MWM-based algorithm, for which the implementation com-

plexity is still high.
In this paper, we focus our study on efficient and practical

DiffServ supporting scheduling algorithms for IQ switches. Ex-
tending the idea of hierarchial scheduling [8], we propose the
hierarchical DiffServ scheduling (HDS) algorithm which pro-
vides minimum bandwidth guarantees for EF and AF classes
and fair bandwidth allocation for BE class as the DDS algo-
rithm but with a much simpler implementation.

To reduce the implementation complexity of the scheduler,
we separate the tasks of providing differentiated services and
maximizing switch throughput. The proposed HDS algorithm
features in a hierarchical scheduling scheme which consists of
two levels of schedulers. One level is the central scheduler
which is designed to maximize the switch throughput by com-
puting a maximal size matching (MSM) between input ports
and output ports. The other level is input port schedulers which
provide differentiated services by serving cells belonging to dif-
ferent classes dynamically. In light of the idea of exhaustive
matching [15], the central scheduler employs a three-phase ex-
haustive MSM algorithm. At the granted input port, the ser-
vice policy changes according to the bandwidth utilization at
the destined output port such that minimum bandwidth guaran-
tees for EF and AF classes and fair bandwidth allocation for
BE class are provided. Using such a hierarchical scheme, the
implementation complexity of the HDS algorithm is dramat-
ically reduced compared with existing MWM-based DiffServ
scheduling algorithms. Through simulations, we also evaluate
the delay/jitter performance of HDS and compare them with
PQWRR and DDS.

The rest of the paper is organized as follows. Section II intro-
duces the IQ switch architecture. Section III presents the HDS
algorithm. Section IV discusses simulation results. Section V
concludes the paper.

II. IQ SWITCH ARCHITECTURE

Figure 1 shows anN ×N IQ switch architecture which con-
sists ofN input/output ports and a central scheduler. We as-
sume that the switch architecture is cell-based, which means
that all IP packets arriving at the switch are segmented into
fixed-size cells, transmitted through the switching fabric, and
reassembled into original IP packets before they leave the
switch. We also assume that time is slotted such that one cell
slot is equal to the transmission time of one cell on the in-
put/output line. To remove head-of-line (HOL) blocking, each
input port maintainsN groups of virtual output queues (VOQs),
and each group of VOQs is used to buffer cells destined for an
output port.

As shown in Figure 2, at input portIi, VOQ groupQi,j is
composed ofK separate FIFO queuesQi,j,k ’s, whereQi,j,k is
used to buffer cells belonging to traffic classk, 1 ≤ k ≤ K,
and destined for output portOj , 1 ≤ j ≤ N . For DiffServ
model, we haveK = 6 with k = 1..6 representing class of EF,
AF1, AF2, AF3, AF4, and BE respectively. When a cell arrives
at an input (port), it is classified based on its DSCP field and
destination address, and buffered in the VOQ corresponding to
its traffic class and output (port).

In each cell slot, a scheduling algorithm is needed to de-
termine whichN cells in theN2K VOQs to be transmitted

.
.
.

Q
1,1

Q
1,2

Q
1,N

.
.
.

Q
2,1

Q
2,2

Q
2,N

.
.
.

Q
N,1

Q
N,2

Q
N,N

.

.

.

N x N

Switching fabric

Input ports

 1

Scheduler

2

N

.

.

.

 1

2

N

Output ports

Fig. 1. The IQ switch architecture.

Q
i,N,1

Q
i,N,2

Q
i,N,3

Q
i,N,4

Q
i,N,5

Q
i,N,6

VOQ group Q
i,N

Q
i,1,1

Q
i,1,2

Q
i,1,3

Q
i,1,4

Q
i,1,5

Q
i,1,6

.

.

.

EF

AF
1

AF
2

AF
3

AF
4

BE

EF

AF
1

AF
2

AF
3

AF
4

BE

PS
i

VOQ group Q
i,1

PS: Port scheduler

To/From the

central scheduler

...

Fig. 2. Queuing and scheduling schemes at input portIi.

through the switching fabric.

III. T HE HDS ALGORITHM

Three factors need to be considered when designing a Diff-
Serv supporting scheduling algorithm for IQ switches. First, to
provide minimum bandwidth guarantees for EF and AF classes,
the scheduling algorithm needs to consider the PIR for EF class
and CIRs for four AF classes. Meanwhile, to avoid starvation
of BE class, backlogged queues should be served if the excess
bandwidth is available. Hence, class differentiation, bandwidth
reservation and measurement schemes need to be introduced
in the scheduling algorithm. Second, the switch throughput
should be kept as much as possible. Third, the scheduling algo-
rithm should be simple in implementation.

In order to reduce the implementation complexity of the
scheduler, we propose the hierarchical DiffServ scheduling al-
gorithm based on the idea of separating the tasks of provid-
ing differentiated services and maximizing switch throughput.
The idea of hierarchical scheduling was first introduced in [8]
to provide QoS guarantees for real-time traffic as well as high
switch throughput. We extend the idea here to support DiffServ
classes. The HDS algorithm features in a hierarchical schedul-
ing scheme which consists of two levels of schedulers. One

level is the central scheduler which is designed to maximize the
switch throughput by computing a maximal size matching be-
tween input ports and output ports. The other level is formed
by input port schedulers which provide differentiated services
by serving cells belonging to different classes dynamically.

A. Preliminaries

Before we present the HDS algorithm, we first introduce the
bandwidth measurement schemes at each output port, which
are similar to the DDS algorithm [14]. We useL to denote
the bandwidth at each output link, which is divided into two
categories, reserved bandwidth and excess bandwidth. To pro-
vide bandwidth guarantees for AF classes in a finer granularity
and enforce smooth AF traffic, we introduce the time unit of
frame, which is composed ofT time slots. Each output port
Oj , 1 ≤ j ≤ N , maintains the following variables.
• Rj,k denotes the reserved (guaranteed) bandwidth for class

k, where1 ≤ k ≤ K − 1. Rj,1 = PIR for EF class,
Rj,k = CIR for AF(k − 1) class,2 ≤ k ≤ K − 1, and∑K−1

k=1 Rj,k ≤ 1.
• Cj,k denotes the cell counter for classk. Cj,1 counts

the number of EF cells up to the current slot, andCj,k,
2 ≤ k ≤ K − 1, counts the number of AF(k − 1) cells
transmitted in the current frame. We setCj,1 = 0 at cell
slot t = 0, andCj,k = 0 at cell slott mod T = 0 for
2 ≤ k ≤ K − 1.

• Sj,k denotes the bandwidth utilization status for classk.
Sj,k = 1 if Cj,1/t < Rj,1 for EF class orCj,k/T < Rj,k

for AF(k − 1) class,2 ≤ k ≤ K − 1; Sj,k = 0 otherwise.
At the beginning of each cell slot, each output portOj , 1 ≤

j ≤ N , sendsSj to the central scheduler. Each input portIi,
1 ≤ i ≤ N , collects the waiting time of the HOL cell of each
non-empty VOQQi,j,k aswi,j,k = t− t′i,j,k, wheret′i,j,k is the
entering time slot of the HOL cell. We use a mapping function
to map the weight value into the range of0 to 2bk − 1, where
bk is the number of bits used to represent the weight range of
traffic classk. In this paper, we use a saturation function which
is defined as follows.

f(wi,j,k) =
{

wi,j,k if 0 ≤ wi,j,k < 2bk ,
2bk − 1 otherwise.

(1)

Each input portIi only needs to send a2N -bit vectorPi to the
central scheduler, wherePi,j = 2 if Ii has more than one EF
cells in VOQ groupQi,j , Pi,j = 1 if Ii has at least one cell in
VOQ groupQi,j , andPi,j = 0 otherwise.

B. The HDS Algorithm

The HDS algorithm works in two stages.
Stage I:The central scheduler finds a maximal size matching

in a three-phase exhaustive scheme iteratively. We assume that
each input portIi has an accept pointerai indicating the accept
starting position, and each output portOj has a grant pointergj

indicating the grant starting position. Each iteration of stage I
consists of the following three steps.

Step 1: Request. EachIi sends a request to everyOj for
which it has a queued cell.

Step 2: Grant. If an unmatchedOj receives any request,
it selects one request to grant starting from the input
port thatgj points to in a round-robin manner. Forthe
first iteration, if Pi,j = 2 for someIi, gj is updated to
i, otherwise,gj is updated to one beyond the granted
input port.

Step 3: Accept. If an unmatchedIi receives any grant, it
selects one grant to accept starting from the output
port thatai points to in a round-robin manner.ai is
updated to the accepted output port.

After Stage I finishes, the central scheduler will send to each
input portIi an N -bit grant vectorGi, andSj if there exists
Gi,j = 1 for somej.

Stage II: For each inputIi that receives a non-zero
grant vector (assuming thatGi,j = 1 for some Oj), if∑K−1

k=1 Sj,kf(wi,j,k) 6= 0, then it will selectQi,j,k such that
Sj,k = 1 starting fromk = 1 to K − 1; otherwise, it will select
Qi,j,k with max{f(wi,j,k) | f(wi,j,k) > 0, 2 ≤ k ≤ K}.

Figure 3 illustrates an example of the exhaustive scheduling
algorithm used at stage I for a4 × 4 switch. At the beginning
of the cell slot, grant pointers are set asg1 = 1, g2 = 3, g3 =
3, andg4 = 2, and accept pointers are set asa1 = 2, a2 =
4, a3 = 3, anda4 = 1. Given the request matrixP , in the
request step, each input portIi sends a request to each output
Oj with Pi,j > 0 for 1 ≤ i, j ≤ 4 as shown in Fig. 3 (a).
As shown in Fig. 3 (b), in the grant step, each output grants
one request starting from its grant pointer and updates its grant
pointer accordingly. Notice thatO3 grants the request fromI3

and letg3 stay atI3 sinceP3,3 = 2. In the accept step, each
input port accepts one grant starting from its accept pointer and
updates its accept pointer to the accepted output port as shown
in Fig. 3 (c). The generated grant matrixG is shown in the
figure. Using such a pointer updating scheme, in the next cell
slot, request from VOQ groupQ3,3 will continue to be favored,
thereby serving EF traffic with the highest priority.

(a) Request

Inputs
 Outputs

4

3

a
1
a
2

a
3
 a
4

g
1

g
2

g
3

g
4

1

2

3

4

1

2

3

4

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

(b) Grant

Inputs
 Outputs

4

3

a
1
a
2

a
3
 a
4

g
1

g
2

g
3

g
4

1

2

3

4

1

2

3

4

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

 1
 2
 0
 1

0
 1
 1
 1

1
 1
 2
 1

1
 2
 1
 1

(c) Accept

Inputs
 Outputs

4

3

a
1
a
2

a
3
 a
4

g
2

g
3

1

2

3

4

1

2

3

4

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

4

3

1

2

g
1

g
4

P =

 1
 0
 0
 0

0
 0
 0
 1

0
 0
 1
 0

0
 0
 0
 0

G =

Fig. 3. An example of the exhaustive scheduling algorithm used at the central
scheduler.

C. Hardware Implementation Scheme

The HDS algorithm distributes the selection of the highest
weight request to each input port, hence simplifies the opera-
tion at the central scheduler. In each cell slot, the central sched-
uler only needs to find a maximal size matching. The number
of iterations needed for the central scheduler to find a maximal
size matching is at mostN . Through simulations, we find that

1

2

.

.

.

N

1

2

N

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

S
ta

te
 m

em
or

y
an

d
up

da
te

 lo
gi

c

R
eq

ue
st

 v
ec

to
rs

fr

om
 in

pu
ts

.
.
.

.
.
.

.
.
.

D
ec

is
io

n

re

gi
st

er
s

Grant

arbiters

Accept

arbiters

n

1

Fig. 4. Block diagram of the central scheduler.

on averagelog N iterations are adequate to achieve satisfying
performance. To implement the central scheduler, one can use
the scheduler architecture shown in Figure 4, in which each in-
put/output is associated with an arbiter, which is responsible
for selecting one out ofN requests. Each arbiter can be im-
plemented by the parallel round-robin arbiter proposed in [16],
which hasO(log N)-gate delay. Hence, the first stage of the
HDS algorithm can be implemented inO(log2 N)-gate delay.

As shown in Figure 5, each port scheduler majorly consists
of K N -input multiplexers, oneK-input multiplexer, and one
K-input comparator-tree, which is responsible for selecting the
maximum weight value among all traffic classes of the same
VOQ group. Each port scheduler hasO(log N + log K log b)-
gate delay, whereb = max{bk | 1 ≤ k ≤ K}. The total delay
of such an implementation of the HDS algorithm isO(log2 N +
log K log b)-gate delay, which is faster than the implementation
of the DDS algorithm, which hasO(log2 N log b)-gate delay
[14]. The construction of the central scheduler and port sched-
ulers is also simpler than that of the DDS scheduler.

In addition, the amount of information to be transmitted be-
tween each input port and the central scheduler in the HDS al-
gorithm is much less than in the DDS algorithm. In each cell
slot, in the HDS algorithm, each input port only needs to send
2N bits to the central scheduler and the central scheduler only
needs to sendN + K bits back to each input port, while in the
DDS algorithm, each input port needs to sendNKb bits to the
scheduler and the scheduler needs to send backNK bits to each
input port.

IV. PERFORMANCEEVALUATION

In the following, we evaluate the performance of the HDS
algorithm in two aspects: fairness and efficiency. Fairness is
measured by received bandwidth percentage and efficiency is
measured by average cell delay and delay jitter. Cell delay is
the time that a cell spends in the switch counted in the number
of cell slots. For EF traffic, we also consider its delay jitter
performance, which is defined as the difference between the
cell delays of two adjacent cells. To validate our evaluation, we
compare the performance of the HDS algorithm with that of the
DDS algorithm [14] and PQWRR algorithm [4].

We developed a cell-based simulator and conducted simula-
tions assuming that all queue sizes are infinite. In our simu-
lations, we consider bursty traffic arrivals using 2-state modu-
lated Markov-chain sources [17]. Each source alternately gen-

>

f(w
i,1,1
)

f(w
i
,1,K
)

.
.

.

f(w
i,2,1
)

f(w
i
,2,K
)

.
.

.

f(w
i,N,1
)

f(w
i
,N,K
)

.
.

.

1

2

K

.
.

.

.
.

.

.
.

.

Encoder
 G
i

S
j

.
.

.

.
.

.

Multiplxer

>

Comparator-

tree

Priority

encoder

Fig. 5. Block diagram of the port scheduler at input portIi.

erates a burst of full cells (all with the same destination) fol-
lowed by an idle period of empty cells. The number of cells
in each burst or idle period is geometrically distributed. Let
E(B) andE(D) be the average burst length and the average
idle length in terms of the number of cells respectively. Then,
we haveE(D) = E(B)(1 − ρ)/ρ, whereρ is the load of each
input source. We assume that the destination of each burst is
uniformly distributed.

In all the simulations, we assume that the average cell arrival
rates of EF class and AF classes to each output link are set as
18%, 24%, 20%, 16%, 12% by default. To ensure guaranteed
service to EF traffic, we set its PIR a little more than its arrival
rate [5], e.g. Rj,1 = 18% × 1.1 = 19.8%. The CIRs for
AF1 through AF4 to each output port are set as24%, 20%,
16%, 12% respectively. In the following simulations, we set
the frame size as 1000 andbk = 4 for all 1 ≤ k ≤ K.

A. Bandwidth Allocation

We first evaluate the effectiveness of the HDS algorithm sup-
porting fair bandwidth allocation when a link is overloaded. We
assume a4 × 4 switch, the average burst lengthE(B) = 32,
and the number of iterations allowed for HDS is 4. We assume
that output link 1 is the overloaded link and we vary the load to
each VOQ group destined for output link 1 from 0.10 to 1.00.

Figure 6 and Figure 7 show the received bandwidth of each
traffic class for PQWRR and HDS respectively. For a load be-
low 0.25, the received bandwidth of each traffic class is able
to keep up with its arrival rate for both schemes. However, for
a load beyond0.25, the received bandwidth of EF traffic by
PQWRR still follows the arrival rate regardless of the limita-
tion of its PIR. For a load beyond0.30, due to the influence of
damaging EF traffic, the received bandwidth of AF traffic by
PQWRR is degrading dramatically, and BE traffic cannot get
any service at all.

On the other hand, similar to DDS, HDS guarantees but lim-
its the received bandwidth of EF traffic to its PIR,19.8%, as-
sures the CIR for each AF traffic, and avoids the starvation
of BE traffic when the load is greater than0.25. For exam-
ple, when the load is at0.40, EF traffic receives19.8% band-
width, AF1, AF2, AF3, AF4 traffic receives25.70%, 21.37%,
16.60%, and12.92% bandwidth respectively, and BE traffic re-
ceives3.6% bandwidth.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Load

R
ec

ei
ve

d
ba

nd
w

id
th

EF
AF1
AF2
AF3
AF4
BE

Fig. 6. Received bandwidth using PQWRR.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Load

R
ec

ei
ve

d
ba

nd
w

id
th

EF
AF1
AF2
AF3
AF4
BE

Fig. 7. Received bandwidth using HDS.

B. Delay Performance

We then examine the delay performance of the HDS al-
gorithm using simulations of a16 × 16 switch under bursty
arrivals assumingE(B) = 32 and the destination of each burst
uniformly distributed. The number of iterations allowed for
HDS is set as 4. Figure 8 shows the average cell delay vs.
load of EF traffic for HDS, DDS, and PQWRR. The average
cell delay of EF traffic using HDS is not as good as that using
DDS and PQWRR. Figure 9 shows the jitter distribution of EF
traffic at load0.90 for HDS, DDS, and PQWRR. Using HDS,
over 90% EF traffic has jitter less than 1 cell slot, which is
comparable to DDS and PQWRR.

Figure 10 shows the average cell delay vs. load of AF1 and
AF2 traffic for HDS, DDS, and PQWRR. The average cell de-
lay of AF1 and AF2 traffic using HDS is slightly worse than
that using DDS and PQWRR for most loads. For AF1 traffic,
HDS tends to perform better than PQWRR for loads over 0.96.
Figure 11 shows the average cell delay vs. load of AF3 and
AF4 traffic for HDS, DDS, and PQWRR. For loads lower than
0.60, HDS performs close to PQWRR. With loads going up, the
performance of HDS is degrading. Figure 12 shows the average
cell delay vs. load of BE traffic for HDS, DDS, and PQWRR.
For loads lower than 0.90, HDS performs better than DDS and

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

HDS
DDS
PQWRR

Fig. 8. Delay performance of EF traffic.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jitter (cell slots)

P
er

ce
nt

ag
e

of
 c

el
ls

HDS
DDS
PQWRR

Fig. 9. EF jitter distribution.

PQWRR.
In the worst case,N iterations are needed for the central

scheduler of HDS to find a maximal size matching. However,
in reality, the number of iterations allowed in one cell slot is
limited. Figure 13 shows the effect of the number of iterations
allowed on the average cell delay of AF1 traffic using HDS.
We can see that HDS with 2 iterations achieves significant per-
formance improvement over HDS with 1 iteration. The perfor-
mance of HDS with 4 iterations is very close to the performance
of HDS with 16 iterations. Hence we set the number of itera-
tions allowed as 4 for previous simulations on16×16 switches.

V. CONCLUDING REMARKS

In this paper, we proposed the HDS algorithm to provide fair
bandwidth allocation for DiffServ classes on IQ switches. The
proposed HDS algorithm features in a hierarchical scheduling
scheme which consists of two levels of schedulers: the central
scheduler to maximize the switch throughput, and port sched-
ulers to provide differentiated services by serving cells belong-
ing to different classes dynamically. Using such a hierarchi-
cal scheme, the implementation complexity and the amount of
information needs to be transmitted between each input port
and the central scheduler are dramatically reduced compared

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

HDS−AF1
DDS−AF1
PQWRR−AF1
HDS−AF2
DDS−AF2
PQWRR−AF2

Fig. 10. Delay performance of AF1 and AF2 traffic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

HDS−AF3
DDS−AF3
PQWRR−AF3
HDS−AF4
DDS−AF4
PQWRR−AF4

Fig. 11. Delay performance of AF3 and AF4 traffic.

with existing MWM-based DiffServ scheduling algorithms.
With bandwidth reservation and measurement scheme at out-
put ports, HDS provides minimum bandwidth guarantees for
EF and AF traffic with the reserved bandwidth and fair band-
width allocation for BE traffic with the excess bandwidth. The
tradeoff is the slightly worse delay performance for EF and AF
traffic using HDS than that using DDS. Due to its simplicity, the
HDS algorithm is very useful to implement the DiffServ model
and it is applicable to other differentiated service models, such
as the Olympic service [1].

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services”, IETF RFC 2475, Dec. 1998.

[2] B. Carpenter, and K. Nichols, “Differentiated services in the Internet”, in
Proc. IEEE, vol. 90, no. 9, Sept. 2002, pp. 1479-1494.

[3] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding
PHB group”, IETF RFC 2597, Jun. 1999.

[4] J. Mao, W. M. Moh, and B. Wei, “PQWRR scheduling algorithm in sup-
porting of DiffServ”, inProc. ICC 2001, vol. 3, pp. 679-684.

[5] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding PHB
group”, IETF RFC 2598, Jun. 1999.

[6] C. Chen and M. Komatsu, “An adaptive scheduler to provide QoS guar-
antees in an input-buffered switch”, inProc. ICC 2002, vol. 2, pp. 1118-
1122.

[7] A. Kam and K. Sui, “Linear complexity algorithms for QoS support in
input-queued switches with no speedup”,IEEE J. Select. Areas Commu.,
vol. 17, no. 6, pp. 1040-1056, Jun. 1999.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

HDS
DDS
PQWRR

Fig. 12. Delay performance of BE traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

Load

A
ve

ra
ge

 c
el

l d
el

ay
 (

ce
ll

sl
ot

s)

1 iteration
2 iterations
4 iterations
16 iterations

Fig. 13. Delay performance of AF1 traffic with different num-
ber of iterations allowed.

[8] H. Kim, K. Kim, and Y. Lee, “Hierachical scheduling algorithm for QoS
guarantee in MIQ switches”,IEEE Electronic Letters, vol. 36, no. 18, pp.
1594-1595, Aug. 2000.

[9] S. Li and N. Ansari, “Provisioning QoS features for input-queued ATM
switches”,Electronics Letters, vol. 34, no. 19, pp. 1826-1827, Sept. 1998.

[10] R. Schoenen, G. Post and G. Sander, “Prioritized arbitration for input-
queued switches with 100% throughput”, inProc. IEEE ATM Workshop
1999, pp. 253-258.

[11] M. Song and M. Alam, “Two scheduling algorithms for input-queued
switches guaranteeing voice QoS”, inProc. IEEE GLOBECOM 2001,
pp. 92-96.

[12] N. Mckeown, “Scheduling algorithms for input-buffered cell switches”,
Ph. D. Thesis, Univerity of California at Berkeley, 1995.

[13] F. Chiussi and A. Francini, “A distributed scheduling architecture for scal-
able packet switches”,IEEE J. Select. Areas Commu., vol. 18, no. 12, pp.
2665-2683, Dec. 2000.

[14] M. Yang, E. Lu, and S. Q. Zheng, “Scheduling with dynamic bandwidth
share for DiffServ classes”, inProc. ICCCN 2003, pp. 319-324.

[15] Y. Li, S. Panwar, and H. J. Chao, “The dual round-robin matching with
exhaustive service”, inProc. IEEE HPSR 2002, May 2002.

[16] S. Q. Zheng, M. Yang, J. Blanton, P. Golla, and D. Verchere, “A simple
and fast parallel round-robin arbiter for high-speed switch control and
scheduling”, inProc. 45th IEEE MWSCAS, 2002, pp. 671-674.

[17] N. Mckeown, “The iSLIP scheduling algorithm for input-queued
switches”,IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, Apr.
1999.

