
Achieving 100% Success Ratio In Finding The
Delay Constrained Least Cost Path

Gang Cheng and Nirwan Ansari

Abstract— In this paper, we introduce an Iterative All Hops k-
shortest Paths (IAHKP) algorithm that is capable of iteratively
computing all hops k-shortest path (AHKP) from a source to
a destination. Based on IAHKP, a high performance algorithm,
Dual Iterative All Hops k-shortest Paths (DIAHKP) algorithm,
that can achieve 100% success ratio in finding the Delay
Constrained Least Cost (DCLC) path with very low average
computational complexity is proposed. The underlining concept
is that since DIAHKP is a k-shortest-paths-based solution to
DCLC, implying that its computational complexity increases with
k, we can minimize its computational complexity by adaptively
minimizing k, while achiving 100% success ratio in finding the
optimal feasible path. Through extensive analysis and simula-
tions, we show that DIAHKP is highly effective and flexible. By
setting a very small upper bound to k (k=1,2), DIAHKP still
can achieve very satisfactory performance. With only an average
computational complexity of twice that of the standard Bellman-
Ford algorithm, DIAHKP achieves 100% success ratio in finding
the optimal feasible path in the typical 32-node network.

Index Terms— Delay Constrained Least Cost (DCLC), All
Hops k-shortest Paths Selection (AHKP), NP-complete.

I. INTRODUCTION

Selecting feasible paths that satisfy various (QoS) require-
ments of applications in a network is known as QoS routing.
In general, two issues are related to QoS routing: state dis-
tribution and routing strategy [1]. State distribution addresses
the issue of exchanging the state information throughout the
network [2]. Routing strategy is used to find a feasible path
that meets the QoS requirements. In this paper, we focus on the
routing strategy, especially finding the delay constrained least
cost path, and assume that accurate network state information
is available to each node.

It has been proved that the delay constrained least cost path
selection is NP-complete [3]. Hence, tackling this problem
requires heuristics. The limited path heuristic proposed by
Yuan [4] maintains a limited number of candidate paths, say
x, at each hop. The computational complexity is O(x2nm)
for the Extended Bellman-Ford algorithm for two constraints,
where n and m are the number of links and nodes, respectively.
For the purpose of improving the response time and reducing
the computation load on the network, precomputation-based
methods [5] have been proposed. Korkmaz and Krunz [6]
provided a heuristic with the computational complexity com-
patible to that of the Dijkstra algorithm to find the least cost

Authors are with the Advanced Networking Laboratory, ECE Dept., NJIT,
Newark, NJ 07012, U.S.A. (corresponding author to provide phone/fax: 973-
596-3670; e-mail: ansari@njit.edu).

This work has been supported in part by the New Jersey Commission
on Higher Education via the NJ I-TOWER project, and the New Jersey
Commission on Science and Technology via NJWINS.

path subject to multiple constraints. An algorithm [7], called
A*Prune, is capable of locating multiple shortest feasible paths
from the maintained heap in which all candidate paths are
stored. For the case that only inaccurate link state information
is available to nodes, approximate solutions [8] have been
proposed for the Most Probable Bandwidth Delay Constrained
Path (MP-BDCP) selection problem by decomposing it into
two sub-problems: the Most Probable Delay Constrained Path
(MP-DCP) and the Most Probable Bandwidth Constrained
Path (MP-BCP). A LAgrange Relaxation based Aggregated
Cost (LARAC) was proposed in [9] for the Delay Constrained
Least Cost path problem (DCLC). This algorithm is based on
a linear cost function cλ = c+λd, where c denotes the cost, d
the delay, and λ an adjustable parameter. It was shown that the
computational complexity of this algorithm is O(m2 log4 m).
Many researchers have posed the QoS routing problem as the
k-shortest path problem [10]. The authors in [11] proposed
an algorithm, called TAMCRA, for Multiple Constrained Path
selection (MCP) by using a non-linear cost function and a
k-shortest path algorithm. The computational complexity of
TAMCRA is O(kn log(kn)+k3mM), where k is the number
of shortest paths and M is the number of constraints.

Many ε-approximation algorithms (the solution has a cost
within a factor of (1+ε) of the optimal one) subject to DCLC
have been proposed in the literature. Lorenz et al. [12] pre-
sented several ε-approximation solutions for both the DCLC
and the multicast tree. Among them, the algorithm subject
to DCLC possesses the best-known computational complexity
of O

(
nmlog n log (log n) + nm

ε

)
. Hassin [13] presented two

ε-approximations algorithms for the Restricted Shortest Path
problem (RSP) with complexities of O((nm

ε) log log U) and
O(mn2

ε log(n
ε)), where U is the upper bound of the cost of

the path computed. Raz and Shavitt [14] proposed an efficient
dynamic programming solution for the case in which the QoS
parameters are integers, and a sub-linear algorithm for the
case in which all link costs use the (same) function of their
corresponding delays.

Existing algorithms reviewed above may have the following
drawbacks.

1) Although the algorithms such as the ε-approximation
approaches [12], [13] can achieve 100% or near 100%
success ratio, their worst-case computational complexi-
ties are too high to be practical (assume ε is very small in
ε-approximation algorithms so that their success ratios
are close to 1).

2) The algorithms such as [11] have the advantage of
having low computational complexities. However, they

Globecom 2004 1505 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Fig. 1. A 4-node network.

cannot guarantee in finding a feasible path when it exists.
Moreover, their success ratios in finding a feasible path
may decrease sharply with the network size. In order
to increase the success ratio, many proposed algorithms
deploy k-shortest paths selection solutions (the number
of shortest paths are generally fixed in these algorithms),
instead of the shortest path selection solutions. How-
ever, the computational complexities of the algorithms
increase unnecessarily in the case in which a feasible
path can be found with only one shortest path searching
algorithm.

In this paper, we propose an algorithm to solve the DCLC
problem (defined below) that can overcome the above draw-
backs. We denote p1 + p2 as the concatenation of two paths
p1 and p2, and min{p1, p2} as the shortest path between p1

and p2. The least weight path is also referred to as the shortest
path in this paper.

Definition 1: Delay Constrained Least Cost Path Selection
(DCLC) [9]: Assume a network is modeled as a directed graph
G(N,E), where N is the set of nodes and E the set of links.
Each link connected from node u to v, denoted by e(u, v),
is associated with a cost c(u, v) and a delay d(u, v). Given a
delay constraint and a pair of nodes, s and t, the objective of
DCLC is to find a path p that has the least cost among the
paths from s to t subject to D(p) =

∑
e(u,v)∈p d(u, v) < d.

II. AN EFFICIENT SOLUTION TO AHKP

In this section, we propose an efficient solution, the Iterative
All Hops k-shortest Paths (IAHKP) algorithm, to All Hops k-
Shortest Paths (AHKP) selection problem defined below:

Definition 2: All Hops k-shortest Paths (AHKP) Selection
Problem: Given a network G(N,E) in which each link e(u, v)
is associated with an additive weight w(u, v). For a given
source node s ∈ N and maximal hop count H , H < n, find,
for each hop count value h, 1 ≤ h ≤ H , and a destination
node u ∈ N , the k shortest h-hop constrained paths from s to
u.

Given a network shown as Fig. 1, k = 1, and H = 3, by
the above defintion, we can compute the shortest h-hop paths
from 1 to 4 (the solutions to AHKP) as (1,4), (1,2,4), and
(1,2,3,4), respectively, when h equals to 1, 2, and 3, where
(α1, α2, ..., αh) represents an (h− 1)-hop path from node α1

Fig. 2. Node d has three neighboring nodes, a, b, and c.

to node αh sequentially traversing nodes α1, α2, ..., αh. Intu-
itively, given any path, the predecessor node of the destination
must be one of its neighboring node(s). Hence, for any hop
count value h, 2≤ h ≤ H , the k shortest h-hop paths from
s to a node must be in the set of the paths constructed by
concatenating the k least weight (h−1)-hop paths from s to its
neighboring nodes and the corresponding links. For instance,
as shown in Fig. 2, assume the neighboring nodes of node d
are nodes a, b, and c, the 3 shortest h-hop paths from s to
d, ph

1 (s, d), ph
2 (s, d), and ph

3 (s, d), must be included in the set
of paths {ph−1

g (s, u) + e(d, u), u = a, b, c and g = 1, 2, 3},
where ph

g (s, i) represents the gth shortest h-hop path from s to
i. Denote di as the degree of node i and i1, i2, . . . , idi

as its
neighboring nodes. Assume there exists a virtual link ê(s, i)
between the source node s and any other node i, whose cost
is infinity. We can compute the least cost h-hop paths from s
to i, ph

1 (s, i), ph
2 (s, i), . . . , ph

k(s, i), as follows:

1) ∀i ∈ N , p1
1(s, i) = e(s, i) and p1

g(s, i) = ê(s, i), g =
2, 3, ..., k, (if, in reality, no link between the source s
and node i exists, p1

1(s, i) = ê(s, i)).
2) ph

1 (s, i), ph
2 (s, i), . . . , ph

k(s, i) are computed by se-
lecting the k least weight h-hop paths from the paths
ph−1

g (s, id) + e(id, i), d = 1, 2, ..., di, g = 1, 2, ..., k. If,
in reality, the total number of h-hop paths from s to i
is less than k, we assume that there exist virtual h-hop
paths whose costs are infinity.

We can apply the above two steps to the previous example
to verify its correctness. The theoretical proof that ph

1 (s, i),
ph
2 (s, i), . . . , ph

k(s, i) computed as above are the k shortest h-
hop paths from s to i was detailed in [15]. We do not present it
here due to the page limit. For the purpose of avoiding loops,
we adopt a simple method: associating paths with indicators.
For example, we associate a path traversing nodes s, 1, 5, and
7 with an integer array of size n, in which 1st, 5th, and 7th
array elements are set to 1, and the rest to 0. Hence, we can
easily find out if a node is in the path by only checking the
corresponding array element’s value. By this method, we can
prevent loops without increasing the worst-case computational
complexity.

Namely, IAHKP is capable of iteratively computing the all
hops k-shortest path, i.e., it computes the all hops shortest
paths from the source to all other nodes in the first iteration,
the all hops second shortest paths in the second iteration, and
so on. We first intuitively introduce how IAHKP works, i.e.,

Globecom 2004 1506 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Fig. 3. The relaxation procedure of IAHKP

how IAHKP computes the all hops kth shortest paths when the
all hops (k−1) shortest path have been computed. As shown in
Fig. 2, assume the three paths on any node are in the increasing
order of their costs, and ph

1 (s, d) = ph−1
1 (s, a) + e(d, a),

ph
2 (s, d) = ph−1

2 (s, a) + e(d, a), and ph
3 (s, d) = ph−1

1 (s, c) +
e(d, c). Hence, since ph

4 (s, d) is selected as the 4th shortest
path of {ph−1

g (s, u) + e(d, u), u = a, b, c and g = 1, 2, 3, 4},
and on any node, the paths are in the increasing order of
their costs, ph

4 (s, d) = min{ph−1
3 (s, a)+ e(d, a), ph−1

1 (s, b)+
e(d, b), ph−1

2 (s, c)+ e(d, c)}, i.e., ph
4 (s, d) is the shortest path

of ph−1
3 (s, a) + e(d, a), ph−1

1 (s, b) + e(d, b), and ph−1
2 (s, c) +

e(d, c). Therefore, denote pre(i, h, g) as the predecessor
node of node i on ph

g (s, i) and count(i, h, g) as the num-
ber satisfying that ph

g (s, i) = ph−1
count(i,h,g)(s, pre(i, h, g)) +

e(i, pre(i, h, g)), i.e., ph
g (s, i) is the path constructed by

concatenating the count(i, h, g)th shortest (h − 1)-hop path
from s to pre(i, h, g) and the link e(i, pre(i, h, g)). De-
note v(i, h, k, α) as the maximum number among all the
count(i, h, g), g = 1, 2, ..., k, that satisfy pre(i, h, g) = α
(for the neighboring node α of i satisfying that for all g =
1, 2, ..., k, pre(i, h, g) �= α, v(i, h, k, α) = 0). For instance, in
the previous example, v(d, h, 3, a) = 2, v(d, h, 3, b) = 0, and
v(d, h, 3, c) = 1. Hence, it can be observed that ph

4 (s, d) =
min{ph−1

v(d,h,3,a)+1(s, a) + e(d, a), ph−1
v(d,h,3,b)+1(s, b) + e(d, b),

ph−1
v(d,h,3,c)+1(s, c) + e(d, c)}. Therefore, if all hops k-shortest

paths have been computed, IAHKP computes the all hops
(k + 1)th shortest paths as follows:

1) ∀i ∈ N , p1
k+1(s, i) = ê(s, i).

2) ph
k+1(s, i) = min{ph−1

v(i,h,k,α)+1(s, α) + e(i, α), α =
i1, i2, . . . , idi

}.

Note that since IAHKP iteratively computes the all hops
k-shortest paths, for any node and hop count h, the paths
computed sequentially are in increasing order of their costs.

The relaxation procedure and pseudo codes of IAHKP are
shown in Figs. 3 and 4, respectively, where w(p) denotes the
weight of path p and π(i) the predecessor node of node i.

Computational Complexity: As mentioned above, ph
g (s, i)

is computed by selecting the shortest path among the set of
paths {ph−1

v(d,h,g,a)+1(s, α)+e(i, a), α = i1, i2, . . . , idi
}, whose

computational complexity is O(di). Hence, the computational
complexity of computing the gth shortest h-hop paths for all
nodes is

∑N
i=1 O(di) = O(m). Since there are H hops and k

shortest paths, the computational complexity of IAHKP is

O(kHm). (1)

Fig. 4. The pseudo code of IAHKP

Memory Complexity: We can divide memory complexity
into two parts: the memory used to record the paths and the
memory used in the process of computing. For any given node
i, hop count h, and 1 ≤ g ≤ k, define

• n0 = i and g0 = g.
• nj = pre(nj−1, h − j, gj−1) and gj = count(nj−1, h −

j, gj−1), j ≤ h.

Hence, it can be observed that ph
g (s, i) =

(s, nh−1, nh−2, ..., n1, i), i.e., ph
g (s, i) sequentially traverses

nodes s, nh−1, nh−2, ..., n1, and i. Therefore, all paths can
be backward reconstructed as long as for any node i, hop
count h, and 1 ≤ g ≤ k, pre(i, h, g) and count(i, h, g)
are available. Hence, for a single node, the memory cost to
record all k shortest h-hop paths is O(k). Since there are
H hops and n nodes, the first part of the memory cost is
O(kHn). As mentioned before, we use indicator arrays (of
size n) to avoid loops, which contributes to the memory cost
of the second part. The total memory cost used by indicator
arrays is O(Hn2) for all nodes and the all hops gth shortest
paths. Since there are k shortest path, the second part of
the memory cost resulting from the indicators is O(kHn2).
Combining memory costs mentioned above together, the
memory complexity of our proposed algorithm is O(kHn2).

III. PROPOSED ROUTING ALGORITHM

In this section, based on IAHKP, a high performance QoS
routing algorithm, which can achieve 100% success ratio in
finding the delay constrained least cost path is proposed.
Note that IAHKP is only applicable to the case in which
there is only one weight associated with each link. Therefore,
we first map the cost and delay of each link into a single
weight with a weight function f(d, c), where d denotes the
delay of a link and c its cost, and then find the delay
constrained least cost path by IAHKP. In this paper, we define
the weight of a path as the sum of its link weights, i.e.,
given a path p and a weight function f(d, c), the weight
of p is

∑
e(u,v)∈p f(d(u, v), c(u, v)). The least cost path that

satisfies the delay constraint is also referred to as the least cost
feasible path and the optimal path. As a by-product of IAHKP,

Globecom 2004 1507 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

ph
k(s, i) + e(i, t) is checked if it is a feasible path and has a

weight less than that of the least cost feasible path computed
so far. Hence, the computational complexity of IAHKP is not
increased while the success ratio in finding the least weight
feasible path is increased.

We divide our routing algorithm into two parts: forward
IAHKP and backward IAHKP. We search for the feasible
path from the source to the destination using the forward
IAHKP, and reverse the search by the backward IAHKP.
Therefore, the worst-case computational complexity of our
proposed algorithm is only twice that of IAHKP. The weight
functions used in both searches are different. Since we try to
find the delay constrained least cost path, we first need to find
out if there exists a path satisfying the delay constraint. Hence,
the cost function used in the forward IAHKP is f(d, c) = d.
Since IAHKP is capable of iteratively computing all hops
k shortest path(s) between a source and a destination, no
feasible path exists if no feasible path is found by the forward
IAHKP, implying that even the least delay path has a delay
larger than the delay constraint. Therefore, we terminate the
search if we fail to find a feasible path in the first iteration
of the forward IAHKP. If a feasible path is found in the
forward IAHKP, we will try to minimize the cost in the second
search. Therefore, the weight function adopted in the backward
IAHKP is f(d, c) = c. If the least cost path in the backward
IAHKP is a feasible path, it is definitely the least cost feasible
path. Note that we can guarantee that the least cost delay
constrained path has been found if the following two cases
occur:

i If in the gth iteration of the forward IAHKP, all
computed paths (the all hops gth shortest paths) are
infeasible paths, implying that all feasible paths have
been exhausted, the least cost delay constrained path
must be the least cost feasible path among the all hops
k shortest paths of the forward IAHKP, where k < g.

ii If in the gth iteration of the backward IAHKP, all
computed paths have the costs larger than the cost, say c,
of the least cost feasible path computed so far, implying
that all the remaning paths having not been computed
also have the costs larger than c, we are sure that the
cost of the least cost feasible path is also c .

Since there are two IAHKP algorithms in our proposed
routing algorithm, we refer to it as the Dual Iterative All Hops
k-shortest Paths (DIAHKP) algorithm.

IV. SIMULATIONS

We propose two performance indices for the purpose of
performance comparison. The first performance index, success
ratio (SR), is proposed to evaluate the probability of an
algorithm to locate the optimal feasible path.

SR =
The number of optimal paths of the algorithm

The number of optimal paths of the optimal algorithm
.

(2)

The algorithm that can always locate the optimal feasible
path as long as a feasible path exists is referred to as the
optimal algorithm. Here, it is achieved simply by flooding

0 1 2 3 4 5 6
1.04

1.05

1.06

1.07

1.08

1.09

1.1

1.11

Constraint

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

 o
f D

IA
H

K
P

Fig. 5. Average number of iterations of DIAHKP in the 32-node network.

which is rather exhaustive. Many proposed algorithms can find
a feasible path if a feasible path exists, but cannot guarantee
that it is the optimal feasible path. Hence, we adopt another
performance index, the cost ratio (CR), to evaluate how close
the average cost of the solutions of an algorithm is to that of
the optimal paths, which is defined below:

CR =
Average cost of the solutions

Average cost of the optimal solutions
. (3)

Our simulations are divided into two parts. In both simu-
lations, data are obtained by running 1,000,000 requests. The
delay and cost of each link are independent and uniformly
distributed from 0 to 1. The network topology is the 32-node
network [16]. In our first simulation, we show that DIAHKP
achieves 100% success ratio in finding the optimal feasible
path in the 32-node network with the average computational
complexity of only twice that of the standard Bellman-Ford
algorithm. In our second simulation, by setting a small upper
bound on the number of shortest paths (k = 1, 2), DIAHKP is
compared with LARAC [9] and H MCOP [6]. It was shown
that our proposed algorithm outperforms LARAC [9] and
H MCOP [6] in terms of SR and CR.

A. Simulation 1:

Without setting an upper bound on k, implying DIAHKP is
always capable of locating the optimal feasible path as long
as feasible paths exit, we illustrate its average computational
complexity in the 32-node network as shown in Fig. 5. It can
be observed that it is very low: with the average computational
complexity of only twice that of the IAHKP algorithm, we
can achieve 100% success ratio in finding the optimal feasible
path.

B. Simulations 2:

Setting a small upper bound on the number of iterations, we
compare the performance of DIAHKP with that of LARAC
[9] and H MCOP [6]. Simulation results are shown in Figs.

Globecom 2004 1508 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.02

1.04

1.06

1.08

1.1

Constraint

C
os

t R
at

io
 (

W
R

)

DIAHKP (k=1)
DIAHKP (k=2)
LARAC
H−MCOP

Fig. 6. The cost ratios of algorithms in the 32-node network.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.75

0.8

0.85

0.9

0.95

1

Delay Constraint

S
uc

ce
ss

 R
at

io
 (

S
R

)

DIAHKP (k=1)
DIAHKP (k=2)
LARAC
H−MCOP

Fig. 7. The success ratios of algorithms in the 32-node network.

6 and 7. Note that the worst-case computational complex-
ity of LARAC is O(m4 log4 m), which is definitely higher
than that of DIAHKP when the number of shortest paths
(k) of DIAHKP is only 2. Even with only one iteration,
DIAHKP outperforms LARAC on both the average costs of
the solutions, success ratio in finding the optimal feasible
paths, and the worst-case computational complexity. When
the number of shortest paths is 2, our proposed algorithm
can achieve near 100% success ratio in finding the optimal
feasible path. Note that although H MCOP [6] has lower
worst-case computational complexity than that of DIAHKP,
its performance is not satisfactory. Moreover, it is generally
believed that the standard Bellman-Ford algorithm has better
performance than Disjktra algorithm in sparse networks, into
which most communication networks can be classified [5].
Hence, since the average number of iterations of our proposed
algorithm is only around 1, our proposed algorithm may
achieve better performance than H MCOP [6] on the success
ratio in finding the optimal feasible path, the average cost
of paths, and the average computational complexity in real
communication networks.

V. CONCLUSIONS

Observing that the number of shortest paths is fixed in
most proposed k-shortest-path-based routing algorithms, which
inevitably unnecessarily waste the running time, we have
proposed a high performance routing algorithm (Dual Iterative
All Hops k-shortest Path selection (DIAHKP) algorithm) in
this paper. DIAHKP can achieve 100% success ratio in finding
the delay constrained least cost path. DIAHKP is based on
IAHKP, a solution to the All Hops k-shortest Path selection
(AHKP) problem. Extensive simulations show that DIAHKP
is a practical, highly efficient, and flexible QoS routing al-
gorithm, i.e., DIAHKP possesses the advantage of very low
average computational complexity and 100% success ratio in
finding the optimal feasible path. Even by setting a small
upper bound on the number of iterations, DIAHKP still has
very satisfactory performance. In the typical 32-node network,
DIAHKP achieves 100% success ratio in finding the optimal
feasible paths with the average computational complexity of
only twice that of the standard Bellman-Ford algorithm.

REFERENCES

[1] S. Chen and K. Nahsted, “An overview of quality of service routing
for next-generation high-speed network: problems and solutions,” IEEE
Networks, 1998, 12, (6), pp. 64-79.

[2] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale
link state on quality-of-service routing,” IEEE/ACM Transactions on
Networking, 2001, 9, (2), pp. 162-176.

[3] Z. Wang and J. Crowcroft, ”Quality of Service routing for supporting
multimedia applications,” IEEE Journal on Selected Areas on Commu-
nications, 1996, 14, (7), vol. 14, pp. 1228-1234.

[4] X. Yuan, “Heuristic algorithm for multiconstrained quality-of-service
routing, ” IEEE/ACM Transactions on Networking, 2002, 10, (2), pp.
244-256.

[5] A. Orda and A. Sprintson, “Precomputation schemes for QoS routing,”
IEEE/ACM Transactions on Networking, 2003, 11, (4), pp. 578-591.

[6] T. Korkmaz and M. Krunz, “Routing multimedia traffic with QoS
guarantees,” IEEE Transactions on Multimedia, 2003, 5, (3), pp. 429-
443.

[7] G. Liu and K. G. Ramakrishnan, “A*Prune: an algorithm for finding
K shortest paths subject to multiple constraints,” Proceedings of IEEE
INFOCOM 2001, vol. 2, pp. 743-749, 2001.

[8] T. Korkmaz and M. Krunz, “Bandwidth-delay constrained path selec-
tion under inaccurate state information,” IEEE/ACM Transactions on
Networking, 2003, 11, (3), pp. 384-398.

[9] A. Juttner, B. Szyiatovszki, I. Mecs, and Rajko, ”Lagrange releaxation
based method for the QoS routing problem,” Proceedings of IEEE
INFOCOM 2001, vol. 2, pp. 859-868, 2001.

[10] D. Eppstein, ”Finding the k shortest path,” Proceedings of 35th Annual
Symposium on Foundations of Computer Science, pp. 154-165, 1994.

[11] H. De Neve and P. Van Mieghem, ”A multiple quality of service routing
algorithm for PNNI,” Proceedings of 1998 IEEE ATM workshop, pp.
324-328, 1998.

[12] D. H. Lorenz and A. Orda, ”Efficient QoS partition and routing of
unicast and multicast,” Proceedings of 8th International Workshop on
Quality of Service, pp. 75-83, 2001.

[13] R. Hassin, ”Approximation schemes for the restricted shortest path
problem,” Mathematics of Operations Research, 1992, 2, (2), pp. 36-
42.

[14] D. Raz, and Y. Shavitt, “Optimal partition of QoS requirements with
discrete cost functions,” IEEE Journal on Selected Areas in Communi-
cations, 2000, vol. 12, (18), pp. 2593-2602.

[15] G. Cheng and N. Ansari, ”Finding All Hops k-shortest Paths,” Proceed-
ings of IEEE PACRIM’03, vol. 1, pp. 474-477, 2003.

[16] S. Chen and K. Nahrsted, ”On finding multi-constrained path,” Proceed-
ings of IEEE ICC’98, vol. 2, pp. 874-899, 1998.

Globecom 2004 1509 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

