
A Flexible Awareness Measurement and Management
Architecture for Adaptive Applications

Qiang Wang, Liang Cheng
Department of Computer Science and Engineering

Lehigh University, Bethlehem, PA
qiw3@lehigh.edu, cheng@cse.lehigh.edu

Abstract—Advancements in heterogeneous and pervasive
computing introduce many dynamic features that require
applications to be adaptive. To become adaptive, an application
first needs to be aware of its computing environment
characteristics (awareness) as well as its peer’s awareness. This
paper presents flexible awareness measurement and management
architectures for adaptive applications in a pervasive computing
environment. We investigate how our system can be beneficial to
adaptive applications by providing an integrated interface
(adding, deleting, and querying) to different types of awareness,
the measurement extensibility, and application controlled
measurement behaviors. To efficiently manage awareness, we
then discuss pull/pull method, and flexible consistency
management. A hybrid architecture is used to efficiently
distribute awareness for both wired and wireless networks.

Keywords-Adaptation, awareness measurement, awareness
management, heterogeneous environments.

I. INTRODUCTION
In today’s decentralized Internet, end-to-end network

characteristics exhibit great variance [9]. Available bandwidth
between two hosts can vary from several gbps to few kbps.
Round trip time varies from less than one millisecond to a few
thousand milliseconds. Jitter may change significantly in one
communication session, depending on traffic flows and
congestion in the network. Above mentioned network
characteristics can affect the quality of service of a distributed
system. In contrast to resource reservation in ATM networks,
applications in IP networks generally use built-in adaptation
mechanisms to accommodate different network conditions.

Moreover, the advancement in heterogeneous and pervasive
computing introduces more dynamic features that require
applications to be adaptive. Today’s IP networks are largely
heterogeneous; wired and wireless connections coexist. Wired
channels are typically more reliable and wireless channels are
subject to interference and fading. The design of distributed
applications therefore should consider the different features of
wired and wireless networks. In a pervasive computing
environment, almost any type of electronic device is connected,
ranging from embedded sensors and handheld devices to
traditional PCs. Computing devices and their applications have
to be aware of their surroundings and peers in order to be
capable of effectively providing services to and using services
from their peers. Because of the wide range of possible
characteristics in heterogeneous and pervasive computing, it is
desirable for distributed applications to adapt to their

computing environments, and make different adaptation
decisions based on current, historical, and/or predicted
characteristics of the computing environment.

To become adaptive, applications first need to be aware of
computing environment characteristics and their changes. In
this paper, awareness is defined as the information of
computing environment characteristics that are needed to
perform adaptations. The notation of awareness in this paper
extends the concept of network-awareness [2] to incorporate
device awareness, application awareness, end user awareness,
and physical environment awareness.

Adaptive applications are not only interested in their own
awareness information, but also the awareness of their peers. In
a pervasive computing environment, the inequity of the devices
and networks in a system requires an application to know its
peers’ awareness in order to make a proper adaptation decision.
How to efficiently retrieve and distribute awareness
information is one of our interests in this research.

Usually, an adaptation technique is specific to the
application scenarios being implemented. To facilitate the
generation of adaptive applications, we are developing an
adaptation middleware called AwareWare [11], which provides
common adaptation functions for component-based
applications (CORBA in current implementation). This paper
presents the early stages of development of a flexible
awareness measurement and management architecture in
AwareWare. Some important challenges are identified in the
process, which we discuss, as well as possible solutions. The
rest of this paper is organized as follows. Section II introduces
the overall architecture of AwareWare. Section III introduces
integrated awareness measurement for five types of awareness
in AwareWare. Section IV presents a hybrid awareness
management architecture for wireless and wired heterogeneous
networks. We summarize related work in section V and
conclude in section VI.

II. AWAREWARE MIDDLEWARE
AwareWare [11] is middleware situated between the

Operating System and adaptive applications. The architectural
design of AwareWare is depicted in Figure 1. Awareness
measurement tools measure and collect network characteristics
(i.e. awareness), device characteristics, end-users’ preferences,
applications’ internal states and physical environments that are
relevant to adaptation. The awareness manager organizes these
tools and provides system independent query and notification

Globecom 2004 2118 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

interfaces for adaptive applications. To address issues in
wireless and wired heterogeneous networks, awareness data is
distributed across the network by using a hybrid architecture
with flexible consistency controls. The adaptation decision
module takes awareness as input and initiates adaptation
directives to the application. It also provides a feedback control
loop to the awareness manager, which in turn controls the
behaviors of measurement tools. The awareness manager
selects proper tools to accommodate application’s requirement
for the measurement. Adaptation decisions are driven by a
script, which is written by programmers in an adaptation policy
language. The adaptation policy defines rules to determine how
the application changes its behaviors, by changing the
application’s component inter-connections and tuning
parameters.

application

Adaptation
Decision

Awareness
Manager

component

component

component

Component
Reconfiguration
Commands

Feedback
Loop & control

Consistency
control

Device
Awareness

User Preference
Specification

Network
Awareness

Adaptation
Policy

Language

Application
Awareness

Environment
Awareness

O
perating System

IP Network

connection

AwareWare

Query
interfaces

Measurement
tool selection

Awareness measurement layer

Awareness management layer

Adaptation decision layer

Component
parameter tuning

Notification
interfaces

Adaptation execution layer

Figure 1. AwareWare middleware architecture

Dynamic reconfiguration [1] is the basis of application
adaptation in AwareWare. Adaptation can be achieved by the
reconfiguration of the application’s components in response to
environment changes and/or operator’s commands.
Programmers develop their applications using a set of separated
components connected via CORBA. These components
interact with others only via their interfaces, without explicitly
binding to any other components, unlike normally do in
CORBA applications. (Otherwise, the inter-connection can not
be reconfigured at run time.) Each component is then turned
into a dynamic reconfigurable component by applying a
CORBA packaging template. After packaging, each component
has a set of standard reconfiguration primitives, e.g.,
blocking/unblocking a connection, adding/removing a
connection, serializing/restoring internal states, etc. Packaging
codes respond appropriately to reconfiguration commands
initiated from the adaptation decision module. Since the
packaging codes are automatically created by the packaging
template, the complexity of reconfiguration is handled
transparently to the programmers.

III. AWARENESS MEASUREMENT

A. Awareness for Adaptation
To incorporate adaptation, applications first need to be

aware of the computing environment characteristics

(awareness). There are some existing awareness measurement
tools that collect network and device information. However,
these tools are not integrated, system-independent APIs for
developers. One of our goals in this research is to provide an
easy integrated interface to allow adaptive applications to query
awareness information. In table I, we summarize what aspects
of awareness are to be measured and how they are measured in
AwareWare. We then provide more detailed explanations for
network awareness and environment awareness.

TABLE I. AWARENESS AND DETECTION APPROACHES

Awareness Measurement Awareness
types what to measure how to measure

Network
awareness

End to end capaticy,
available bandwidth,
latency, jitter.

Active probing tools, explained
latter in this section.

Device
awareness

CPU usage, display
size, memory usage,
display refresh rate,
battery consumption
(for mobile devices).

Operating System APIs and by
integrating with existing tools,
e.g. vmstat and uptime for CPU
and memory under Unix/Linux
systems, and Performance Data
Helper Library provided by
MS Windows.

User
awareness

A user’s high level
expectations of a
service.

A user can specify their
preferences through Graphic
User Interfaces (i.e. by
selecting menus/dialog boxes).

Application
awareness

Internal states of local
and remote
applications.

Exported by the local
application to a shared
memory, which is accessible
by the middleware.

Environment
awareness

Physical and
environmental data
(e.g. temperature).

Measured by WSNs (wireless
sensor networks) and
integrated into the
Internet/intranet.

Among five types of awareness supported in the
middleware, network awareness exposes greater challenges and
it has been a continuing interest for research and industry
communities to provide reliable network-awareness
measurement tools. Our end-to-end capacity detection tool uses
packet probing techniques, and it is discussed in detail in [4].
The essence of the algorithm is a variation of multi-packet
model: in order to measure the bottleneck link between two
network nodes A and B, A sends a train of back to back
packets to B. The bottleneck capacity from A to B can be
estimated from the time interval of the received packets at B
and the probe packet size. The probe packet train in [4] is
generated by a smooth traffic generator, which efficiently
eliminates the side effect of traffic shaping in xDSL network.

The physical environment is measured by integrating with
WSNs (wireless sensor networks). A WSN consists of many
tiny sensors with sensing capability of a physical environment,
and sensors communicate with each another through wireless
links. The ability to detect changes in a physical environment is
useful for some adaptive applications. For example, in
distributed fire fighting planning, the adaptation has to be made
by using on-site temperature. By integrating WSNs with the
Internet, AwareWare serves as a gateway for traditional
applications to query awareness from a WSN [5]. In our current
system, environmental awareness collected by sensors include

Globecom 2004 2119 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

temperature, acceleration of a particular sensor node, and the
distance between two sensor nodes.

B. Extensibility
Besides the awareness described above, AwareWare has the

ability to add new types of awareness. Similar to [12],
awareness is organized in a hierarchical architecture and can be
easily added, retrieved, and modified according to a naming
convention. This hierarchical organization also conforms to the
SNMP [3] MIB standard for simplicity, extensibility, and
compatibility, providing a flexible way to integrate more
measurement tools, if needed in the future.

C. Application-Controlled Measurement
A measurement tool needs to be controlled by the adaptive

application. In this session, we use bandwidth measurement as
the example to specify our design consideration of application
controlled measurement, since measuring bandwidth is
particularly complex compared to others (e.g., measuring the
screen size), and the interaction between bandwidth
measurement tools and the application is complicated.

An active network bandwidth measurement tool consumes
a certain amount of network resources. Active probing tools,
such as our measurement tool [4], Packet Bunch Mode [9],
Pathchar [6], and Packet tailgating [8], usually send several
kilobytes into the network to generate a single bottleneck
bandwidth measurement. Active probing traffic competes with
application traffic. Too much active probing traffic will
consume bandwidth, therefore degrading an application’s
performance. One goal of measurement, however, is to
efficiently utilize the existing bandwidth and to improve
application performance.

On the other hand, a bandwidth measurement tool can
acquire bandwidth awareness with differing accuracy and
overhead. Generally speaking, sending more probing packets
into the network and measuring the network more frequently
can generate more accurate results. However, the degree of
accuracy may not be beneficial to an adaptive application. For
example, in a network-aware application, if the application
only needs to adapt to significant bandwidth change (e.g., a
50% bandwidth drop), measurement tools should reduce the
measurement frequency and the amount of probing traffic if a
relatively stable bandwidth is predicated based on measurement
history. To address this problem, feedback loop control and
interaction from the application is needed. AwareWare
integrates a set of bandwidth measurement tools and lets the
application specify measurement accuracy. The accuracy
specifications for the adaptation decision module will help
AwareWare to select the proper tool and proper parameters to
perform the measurement.

IV. AWARENESS MANAGEMENT
In addition to the application’s own awareness information,

the application may also need to know the awareness
information of its peers. Therefore awareness information
needs to be distributed to whatever other applications that are
interested in. There are two basic methods for querying and
distributing awareness information. One is pull, another is

push. An interested application can explicitly query awareness
sources using a pull method. In contrast, with the push method,
an awareness source pushes information to interested
applications without the need of an explicit inquiry from them.

A. Pull method
Existing distributed awareness architectures generally use

peer-to-peer and client-server architectures, as shown in Fig
2.A and Fig. 2.B. In Figure 2, a circle represents an end host,
and a filled rectangle represents a piece of awareness
information. Node 1 represents a wireless client, and others are
all wired clients.

In a pervasive environment, communication is made across
both wired and wireless domain. A wireless link is a very
constrained resource, especially when used by handheld
devices. Existing architectures to manage the awareness are not
efficient in this environment, as analyzed below.

3

4
1

2

(A)

network

2

1
server

3

(B)

network
Wireless
channel

3

1

2

(C)

proxyWireless
station

Wireless
channel

1

2 3

3 2

14

1 2 3

host

awareness
Consistency
Management

1

Mobile client

Mobile client

Figure 2. Distributed awareness architectures

The pure peer-to-peer architecture (Fig 2.A) doesn’t scale
well – when many hosts request awareness information 1 from
mobile host 1, query and response traffic will all go through the
wireless channel. Even worse, many repeated queries for the
same awareness from many peer applications will consume a
large portion of wireless bandwidth.

The client-server architecture (Fig 2.B) also suffers
problems of scalability, where the server is the central
depository of all awareness information from all hosts. While
the client-server architecture may simplify the consistency
management algorithm, a single server is a “single point of
failure” of the whole system. In addition it may be the
bottleneck for system performance.

We address these problems by using a hybrid architecture
(Fig 2.C). A proxy is used to separate the wireless from the
wired domain. The proxy is a high end computer attached to a
wireless access point. In a wired network, the architecture is
peer-to-peer while in a wireless network the architecture is
client-server. Advantages of using a hybrid architecture are two
fold:

First, some awareness detection methods can be directly
performed at the powerful proxy, instead of in the less

Globecom 2004 2120 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

powerful handheld mobile devices. For example, the awareness
information of bottleneck capacity from a mobile device (A) to
another computer (B) can be measured in the proxy instead of
in the mobile device: The proxy first measures the bottleneck
capacity from the proxy to A, which equals to the bottleneck
capacity from A to the proxy, given the fact that upward and
downward communication channels generally are symmetric
(one exception is aDSL, which is asymmetric). The proxy then
measures the bottleneck capacity from the proxy to B. The
minimum of two measures is the bottleneck capacity from A to
B. A to B available bandwidth can also use a similar approach.

Second, awareness information inquiries to mobile devices
will be satisfied directly from the proxy. Repeated and large
volume queries do not need to go through wireless channels. In
case the awareness is produced at the mobile client side, the
wireless channel is only used to maintain consistency between
the awareness and its replica at the proxy (section IV.B).

Awareness Producer A Proxy 1 Awareness Consumer B

Access awareness X
Clone awareness X

Redirect to proxy 1

Access awareness X

Access awareness X

Proxy 2

Register client A (old proxy is none)

Service advertisement

Service advertisement

Register client (old proxy is proxy 1)

Deregister client A

Access awareness X

…. …. ….

Redirect to proxy 2
Access awareness X

The client moves to
another access point

…. …. ….

Figure 3. Message exchanges for allocating awareness

By introducing the proxy, several message exchanges are
needed to allocate the appropriate awareness. As shown in
Figure 3, when a proxy (proxy1) is active, it automatically
advertises its services through a well-known port to all mobile
clients covered by the wireless access point to which proxy 1 is
attached. After receiving the advertisement, mobile client A
(awareness producer) registers itself to proxy1. Assuming A
produces awareness X at its local side instead of at the proxy
side, A then clones a replica of X in proxy1. When B (an
awareness consumer) wants to get awareness X from A, since
B only knows A’s IP address, therefore it first queries A for X.
A returns the value of X to B, along with a redirect message
containing proxy1’s information, notifying B that awareness X
needs to be queried from proxy1. In this approach, if B only
needs to query for X once, it is satisfied by A’s return message.
However, later access to X from B will be directly satisfied
from proxy1.

When mobile client A moves to a new location covered by
proxy2 (proxy1 now is out of range), A will register itself to
the new proxy, and tells the new proxy the information of the
old proxy. Since A can not communicate with proxy1, the new
proxy, proxy2 then deregisters A from its old proxy (proxy 1).
Proxy1 also redirects all incoming query message of awareness
X to the new proxy (proxy 2).

B. Consistency management
In our hybrid architecture, the proxy maintains replicas of

awareness for mobile clients. A consistency policy is assigned
to each individual awareness replica at the time when the
replica is initially cloned. Since different awareness may
require a different level of consistency, several consistency
policies are necessary. Figure 4 shows five consistency
mechanisms included in the middleware, and their interaction
protocol among awareness producers, replicas, and awareness
consumers (i.e., applications that query the information).

producer

replica
at proxy

consumer

Value changes

query return

producer

replica
at proxy

consumer

Value changes

query return

producer

replica
at proxy

consumer

Value changes

query return

producer

replica
at proxy

consumer

Value changes

query return

Condition
meet

Condition
Not meet

update
update

update

(A) Automatic Synchronization (B) Lazy Synchronization

query

(C) Conditioned Synchronization (D) No Synchronization

producer

replica
at proxy

consumer

Value changes

query return

update

(E) TTL Synchronization

TTL

wireless
wireless

wireless wireless
wireless

Figure 4. Consistency mechanisms

1) Automatic synchronization (Fig. 4.A): awareness
producers at a mobile client synchronize the replica whenever
any awareness change occurs. Automatic synchronization
provides timely update of the awareness to its consumers.
However, the wireless bandwidth between mobile clients and
the proxy (i.e., wireless channel) is not fully utilized, since not
every update is useful if access from consumers is infrequent.

2) Lazy synchronization (Fig. 4.B): The proxy
synchronizes a replica with an awareness producer only when
a consumer looks at the replica. This lazy consistency
mechanism is beneficial for systems with limited network
access, and it reduces wireless bandwidth usage.

3) Conditioned synchronization (Fig. 4.C): An awareness
producer only needs to synchronize the replica when certain
conditions are met. One example of the condition is: only
when the change of bandwidth exceeds a predefined value, the
producer updates the replica.

4) No synchronization (Fig. 4.D): The proxy only
maintains a snapshot of awareness without any update
mechanism. It is used for static awareness information, e.g.,
the screen size of a device (assuming that it is fixed).

5) TTL synchronization (Fig. 4.E): As in Web caching, an
awareness replica is cloned in the proxy when awareness is
first accessed. A time to live (TTL) property is associated with
the replica. For each query arriving within the TTL, the cached
object (replica) is returned without accessing the awareness
producer. When the TTL expires, the replica is validated
through an update.

Globecom 2004 2121 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

If awareness Y in a remote application A < a
predefined value, then …

C. Push Method
One problem for distributing awareness information using

the pull method is that sometimes it is difficult for an adaptive
application to decide when to pull the awareness source. One
example of an adaptation policy in an application B is shown as
followings:

If B continuously pulls for Y from A, it may not be
efficient. Instead, application B needs to register to a particular
event at A, and the adaptation rule in B is the trigger function.
The awareness manager in A then checks these registered event
conditions every time the measurement tools finish a
measurement. An event notification will be sent to interested
applications if conditions are met. The push method is
essentially same as the publish/subscribe paradigm, where the
publisher pushes certain messages to subscribers who have
registered an interest.

V. RELATED WORK
Simple Network Management Protocol (SNMP) [3] is the

most widely used and deployed network management
framework. SNMP also supports queries and notification.
However, event notifications from an SNMP agent are
generally very simple. Events are detected by device-drivers
and only include cold or warm start of a device, up or down of
a link, and the loss of a neighbor. Another event category is the
authentication failure. There is no quantity notification in
SNMP; for example, a bandwidth utilization of a certain link
exceeds a predefined value. Clearly, SNMP is used not just to
monitor network-awareness, but also to control network
devices. However, the control is initiated from the SNMP
manager without further consideration of the adaptive
application’s specific requirements.

Mark Stemm et al. have proposed SPAND [10], a shared
passive network performance discovery architecture and
adaptive application framework. SPAND is essentially a client-
server architecture, where Performance Server is a central
server that contains performance reports generated from clients
and Packet Capture Hosts. SPAND provides extensibility to
integrate new applications and new metrics. The concept of
application specific metrics in SPAN is similar to application-
awareness in our system. In this paper, we specifically
consider the case when the number of possible peers is large
and wireless link is involved. We also consider the interactions
between an adaptive application and its measurement tools.

Bjorn Knutsson et al. [7] designed scalable mechanisms to
distribute states of massively multiplayer games to
participating players by using peer-to-peer overlays. Their
approach can maintain consistency of a replica in the face of
node failures. The scalability is achieved by organizing game
participants into several self organized groups. Their peer-to-
peer architecture treats all nodes homogenously and works well
in massively multiplayer games, where all participants are
high-end PC users. In our research, however, we consider a
more realistic scenario in pervasive computing where the

networks across both wired and wireless domain and device
capabilities are diversified.

VI. CONCLUSIONS
This paper addresses the important topic of measuring and

managing awareness in the context of adaptive applications in a
pervasive computing environment. Awareness measurement
module within AwareWare provides an integrated interface to
different types of awareness, the ability to extend, and
application controlled measurement. We believe our systematic
approach can be beneficial to adaptive application
development. Awareness management in AwareWare employs
a hybrid architecture. Compared to client-server and peer-to-
peer architectures, the hybrid architecture has some advantages
for distributed systems across both wired and wireless domains.
Our system provides pull and push interfaces for distributing
the awareness information. Several consistency mechanisms
provide some degree of flexibility to meet the requirements of
different adaptive applications.

AwareWare is now under active development. Our ultimate
goal is to provide a high performance and flexible middleware
for component-based adaptive applications. Our continuing
work will demonstrate the performance of the architecture
through experimental tests and real-world applications.

ACKNOWLEDGMENTS
We thank Dr. Brian D. Davison for his help to improve the

presentation of the paper, and anonymous reviewers for their
insightful comments.

REFERENCES
[1] B. Agnew, C. Hofmeister, and J. Purtilo. Planning for Change: a

Reconfiguration Language for Distributed Systems. Distributed Systems
Engineering, 1(5):313-- 322, Sept. 1994.

[2] J. Bolliger and T. Gross. A Framework-Based Approach to the
Development of Network-aware Applications. IEEE Trans. on Software
Engineering, 24(5):376-390, May 1998.

[3] J. Case, R.Mundy, D.Partain, B.Stewart. Introduction to Version 3 of the
Internet-standard Network Management Framework. RFC 2570, 1999.

[4] L.Cheng. and I. Marsic. Accurate Bandwidth Measurement in xDSL
Networks. Computer Communications,25(18), pp.1899-1710.Nov. 2002.

[5] L.Cheng, Y. Zhang, T. Lin, and Q. Ye. Integration of Wireless Sensor
Networks, Woireless Local Area Networks, and the Internet. In
Proceedings of 2004 IEEE International Conference on Networking,
Sensing and Control, Taipei, China, Mar 21-24, 2004

[6] V.Jacobson. Pathchar: A Tool to Infer Characteristics of Internet Paths.
ftp://ee.lbl.gov/pathchar, 1997.

[7] B. Knutsson, H. Lu, W. Xu and B. Hopkins. Peer-to-Peer Support for
Massively Multiplayer Games. In Proceedings of IEEE INFOCOM
2004, March 2004, Hong Kong, China.

[8] K.Lai and M. Baker. Measuring Link Bandwidths Using a Deterministic
Model of Packet Delay. In Proc. of the ACM SIGCOMM, pages 283--
294, Stockholm, Sweden, August 2000.

[9] V.Paxson. End-to-End Internet Packet Dynamics. IEEE/ACM
Transactions on Networking, Vol. 7, No. 3, 1999, pp. 277-292.

[10] M.Stemm, S.Seshan, and R. H. Katz. A Network Measurement
Architecture for Adaptive Applications. In Proc. of the IEEE INFOCOM
2000, Mar. 2000, pp. 285--294.

[11] Q.Wang and L.Cheng. AwareWare: An Adaptation Middleware for
Heterogeneous Environments. In Proceedings of the 2004 IEEE
International Conference on Communications (ICC), June 20-24, 2004.

[12] G.Welling and B.R.Badrinath. An Architecture for Exporting
Environment Awareness to Mobile Computing Applications. IEEE
Transactions on Software Engineering, 24(5), pp. 391-400, May 1998.

Globecom 2004 2122 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

