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Abstract— In this paper, we consider wireless networks
with multiple distributed users. The users transmit their
data packets to a communication node via some multi-access
protocol. Then the communication node transmits the pack-
ets to a remote destination via a lossy wireless link. The cost
for each user’s transmission is modelled as a function of its
transmission rate. If a user’s packet is successfully transmit-
ted to the destination, a profit will be obtained. However,
this profit is reduced by the transmission contention among
users and the lossy wireless channel. Each user controls
its transmission rate to maximize its profit in a distributed
manner. If no rule is applied for rate control, each user will
select a large transmission rate resulting in having a low
performance. In order to improve the system performance,
we develop a distributed rate control algorithm using opti-
mal Cartel maintenance strategy. In this strategy, each user
prefers to cooperate for rate control, because deviation from
cooperation will be punished by other users for a period of
time. Since the users want to optimize their performances
over time, there is no incentive for them to deviate to gain
a benefit while they have to endure more punishment in the
future. From the simulation results, we can see that the
proposed distributed scheme can enforce the cooperation
among users and achieve much better performance than the
noncooperative transmission. 1

I. Introduction

In wireless networks, there exists competition among
users to share the system resources. Efficient resource al-
location such as rate control is an important technology to
increase the system performance by controlling users’ ap-
petite for resources. In some wireless networks with scat-
tered topology, resource allocation scheme must be imple-
mented in a distributed way. Moreover dynamic optimiza-
tion over time is necessary for the wireless system with fluc-
tuating channels and long term goals. The above aspects
challenge the design of a dynamic distributed resource allo-
cation scheme, which becomes an important research topic
recently.

Dynamic resource allocation in different wireless net-
works was discussed in details in [1]. Since individual mo-
bile users do not have the knowledge of other users condi-
tions and cannot cooperate with each other, they act self-
ishly to maximize their own performances in a distributed
fashion. Such a fact motivates us to adopt the game theory
[5]. Repeated game theory analyzes the behaviors of users
in multiple stages, so it can be applied to analyze the dy-
namic optimization of the wireless resource allocation. In
[2], repeated game theory was applied to routing problems.
In [3], multiple access resource allocation was studied using
game theory approach. In [4], repeated game was further
applied to physical layer problems.

1The authors would like to thank Professor Peter Cramton for his
teachings and helps

In this paper, we consider a special case of wireless net-
works. Suppose there are many distributed users in a local
area. They share a communication node to communicate
with a remote destination. There are costs for the users
to transmit their packets and also benefits if their packets
are successfully transmitted. The successful probability is
affected by two factors: the channel condition from the
communication node to the destination and the competi-
tion among users to share the communication node. So
the problem is how to control each user’s transmission rate
in a distributed manner such that the overall profit (i.e.
benefit minus cost) will be maximized. The above wireless
networks fit a variety of practical situations such as wire-
less sensor networks, where a strong communication node
collects sensors’ data and transmits them back.

In order to solve the above problem, we are inspired by
the micro-economy approach in [6]. We propose a scheme
that users agree to cooperate at some transmission rates
first. At each time, users will observe the probability of
the successful transmission. If the probability is lower than
some threshold, it probably means some users deviate from
the agreed transmission rates and cause more contention in
the communication node. Under this condition, the other
users will transmit non-cooperatively at much higher rates
for a period of time. Consequently, the probability of suc-
cessful transmissions drops dramatically. Since users opti-
mize their rates over time, the gain for the deviation will be
wiped out by the loss caused by the punishment. Because
of this reason, all users have no incentive to deviate from
the agreed transmission rates. So the proposed scheme can
force the users to cooperate in a distributed manner.

This paper is organized as follows: In Section II, the
wireless multiuser system is described and system model is
presented. In Section III, we propose the distributed rate
control scheme using optimal Cartel maintenance strategy.
In Section IV, simulation results are provided. Conclusion
is given in Section V.

II. System Descriptions and Models

Fig. 1 shows the block diagram of the multiuser wireless
networks. There are many distributed users and one com-
munication node. Each user can transmit its data packets
to the communication node by using the multiple access
protocols such as Aloha, CSMA, etc. The communication
node has the ability to transmit the data packets to the re-
mote destination via a wireless link. We assume there is a
reliable feedback channel. So, the system can be described
as multiple users sharing a communication link. Without
loss of generality, we assume users are homogenous. (Het-
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erogeneous case can be extended in a similar way of this
paper.) Each user can control its transmission rate. The
users need to compete with each other for the communica-
tion link which is fluctuating due to the wireless channel.
Thus one user’s rate can affect the performances of itself,
other users, and the whole system. So it is necessary to find
a rate control algorithm such that the system can operate
at the optimal point. Moreover, it is hard to have com-
munication channels among users. Distributed algorithm
is required for rate control.

There are N users in wireless networks. The transmis-
sion time for the data packets is divided into time slots.
The users transmit their packets by the Poisson distribu-
tion. The average transmission rate vector for all users
is denoted by −→

λ
t

= [λt
1, ..., λ

t
N ]′, where λt

i is the rate of
user i in period t. Total arriving rate at the communica-
tion node is then Λt =

∑N
i=1 λt

i. Each user intends to in-
crease its transmission rate. However, arbitrary increases
of the transmission rates will result in a higher probability
of collision at the communication node and reduce the sys-
tem throughput. In addition, the probability of successful
transmission at the communication node is also affected by
the wireless link quality from the communication node to
the destination. The overall probability of successful trans-
mission can be observed by all users and can be expressed
as:

P̂t = P (Λt)θt, (1)

where P : �+ → �+ denotes the system throughput which
is a function of Λt for the multiple access protocol. θt is the
channnel error probability, which is an identically and in-
dependently distributed sequence of random variables with
mean µ, probability density function (PDF) f , and cumu-
lative distribution function (CDF) F . In this paper, for
simplicity, we approximate P as a linear and decreasing
function in total arriving rate Λt as

P (Λt) = a − bΛt, (2)

where a and b are positive constants. This approximation
fits the scenarios of the highly-loaded wireless networks,
where the attempted transmissions at each time slot is
high. Other approximations can also be applied in a similar
way.

For each user, the cost function for the transmissions is
hypothesized to be homogeneous as

Ct = c0 + c1λ
t
i, (3)

where c0 is the basic cost to maintain the link and c1 is the
cost per transmission rate.

Then, we omit subscript t for simplicity. For each suc-
cessful transmission, the user has the benefit of c2. User i
has the profit as the benefit minus cost as

πi(
−→
λ ) = c2P̂tλi − C = c2θ(a − bΛ)λi − c0 − c1λi. (4)

Given Λ−i = Λ − λi =
∑

j �=i λj , the total arrival rate of
the other users, the single time slot expected profit can be
further represented as:

πi(
−→
λ ) = [A − B(Λ−i + λi)]λi − c0, (5)

where A = µa − c1 and B = µb. It is assumed that

0 < c1 < µa (6)

and
0 < c0 < (µa − c1)2/µb(N + 1)2. (7)

(6) and b > 0 imply that A and B are positive constants.

III. Cartel Maintenance Strategy

In this section, we first present the motivation of our
proposed strategy. Then we formulate the problem and
construct a distributed algorithm for each user. Finally,
the optimal parameters of the algorithm are deduced.

A. Motivations

Since users are located distributively, they act non-
cooperatively and independently to increase their profits
by adapting their rates, i.e.,

arg max
λi

πi. (8)

Let −→s = [s1, ..., sN ]′ denote the optimal rate vector for the
above noncooperative optimization. By taking the deriva-
tive, we have

si = s = A/B(N + 1), ∀i, (9)

and
πi(−→s ) = [A2/B(N + 1)2] − c0, ∀i. (10)

(7) guarantees that users earn positive profits.
On the other hand, if there exists a centralized control,

users can cooperate to maximize the system overall profit.
Then, the optimization goal is

arg max−→
λ

N∑
i=1

πi. (11)

Denote the rate vector which maximizes expected joint
overall profit by −→r = [r1, ..., rN ]′. Given Λ−i, we have
the solutions as

ri = r = A/2BN, ∀i (12)
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and
πi(−→r ) = (A2/4BN) − c0, ∀i. (13)

From (9), (10), (12) and (13), we can see that, as long as
there is more than one user, single user’s expected profits
with centralized control will be higher than those noncoop-
erative results. However there exist two problems for cen-
tralized control. First, the network topology is distributed
and it is hard to implement the centralized control. Sec-
ond, it can be shown that if any user deviates from (12)
and transmits at a higher rate, it can get a greater ben-
efit in (13). So instead of cooperating, users will deviate
because of their greediness. At a result, the competition
for the communication node becomes intense and P will
decrease. Consequently, each user’s profit will drop to the
noncooperative value in (9). So our goal is to construct a
distributed scheme such that users have to cooperate and
have no incentive to deviate.

One possible solution comes from game theory literature
[6]. In staged repeated games, the player’s overall payoff
is weighted average payoffs over time. At each stage, the
“noncooperative” game can be played, which means that
the players’ choices are based only on their perceived self-
interest. On the other hand, players can also play “cooper-
ative” games, which allows the cooperation among users to
achieve better payoffs. If some consequences of the player’s
actions can be observed at the end of each stage, it becomes
possible for players to adjust their strategy, which can lead
to better equilibrium outcomes that do not arise when the
game is played only once. So we want to construct the
scheme based on the following underlying rationale: At the
beginning, all players agree to operate in the cooperative
way. If any player deviates, in the next stage, other players
will observe the deviation and play in the noncooperative
way instead. So this deviating player will get less because
of the punishment due to the other players. Since each
player tries to optimize the payoff over time, no player will
have the incentive to deviate from the cooperative stage.
So using the threaten of punishment from other users, sys-
tem forces all users to act cooperatively in a distributed
manner.

For the system shown in Fig. 1, each user can play ei-
ther non-cooperatively or cooperatively. Each user tries to
optimize its rate such that the overall profit over time can
be optimized. At each time slot, each user can observe
the transmission status such as the successful transmission
probability in the communication node. The above facts
motivate us to apply the repeated game approach.

B. Problem Formulation and Algorithm

In the wireless networks, each user’s goal is to maximize
a discounted expected payoff over time slots. We define
the discount factor as β. For most applications of wireless
network, β is close to 1. The optimization problem can be
represented as

max
λt

i

∞∑
t=0

βtπi(λt
i,Λ

t
−i), ∀i. (14)

TABLE I

Cartel Maintenance Algorithm

Initialization:
t = 0 is a cooperative period;
Strategy:
If t is a cooperative period and P̂t ≥ P ∗,

then t + 1 is a cooperative period;
If t is a cooperative period and P̂t < P ∗,

then t + 1, ..., t + T − 1 are noncooperative periods
with λi = s,∀i, and t + T is a cooperative period.

Intuitively, every user wants to maximize its own ex-
pected profit by increasing its transmission rate. It will
result in too many collisions among users which limit each
user’s profit. Thus, we need to introduce certain mecha-
nism, namely, the game rule, to force the users act coop-
eratively to achieve better profits and being robust to the
cheating phenomenon.

In [6], Porter developed a Cartel trigger-price strategy for
dynamical industry model, where a company deters others
from deviating from collusive output levels by threatening
to produce at noncooperative quantities for a period of du-
ration whenever the market price falls below some trigger
price. Based on the similar idea, we develop the Cartel
maintenance algorithm in Table I.

At the beginning, all users are in a cooperative period
with rate −→λ . Then they will monitor the overall probability
of successful transmission in (1). If the probability is higher
than some threshold P ∗, it means that all users transmit
at the cooperative operating rate probably. On the other
hand, if the probability drops lower than the threshold, it
means that some users may cheat. Then the other users
will play punishment by transmitting non-cooperatively ac-
cording to (9) for a period of T . Then they will come back
to play the cooperative period again. Since users are afraid
of future punishment, they are inclined to play coopera-
tively.

The probability of successful transmission in the commu-
nication node is determined by two factors: the users’ rates
and the wireless channel link condition. It is possible that
all users act cooperatively but the probability is still un-
der the threshold because of the bad channel. Under this
situation, the users will play the non-cooperative period,
because they cannot tell if the low successful transmission
probability is caused by the deviations or the bad channels.
This is a penalty for the distributed implementation.

C. Derivation of Optimal Parameters

The remaining problem is how to find the optimal val-
ues of cooperative rate −→

λ , threshold P ∗ and punishment
duration T , which we will show in this subsection.

In cooperative periods, the expected discounted profit of
user i is given by

Vi(
−→
λ ) = πi(

−→
λ ) + Pr{P̂t ≥ P ∗}βVi(

−→
λ ) +
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Pr{P̂t < P ∗}
(

T−1∑
τ=1

βτπi(s) + βT Vi(
−→
λ )

)
, (15)

where the first term on right hand side (RHS) is the current
expected value, the second term on RHS is the expected
value of next period if cooperation, and the third term on
RHS is the expected value of next period if noncooperation.
(15) can be rewritten as:

Vi(
−→
λ ) =

πi(s)
1 − β

+
π(−→λ ) − π(s)

1 − β + (β − βT )F (P ∗/P )
, (16)

where F is CDF of random variable θ. In order to find
the optimal transmission rate vector, threshold, and pun-
ishment duration, the following derivatives are set to zeros:

∂Vi

∂
−→
λ

= 0,
∂Vi

∂P ∗ = 0, and
∂Vi

∂T
= 0. (17)

Since the system is homogenous, the optimal transmis-
sion rate is the same for all users. Heterogeneous case can
be analyzed in a similar way. The detailed deductions is
similar in [6]. The optimal λ∗, P ∗, and T ∗ can be deter-
mined by the following steps:

λ∗ =
A

2BN
(
N + η∗ + (N + 1)(a/A)

N + 1 + η∗ ), if η∗ > η0,

= s, otherwise; (18)

where

η0 =
(N + 1)[(N + 1)(a/A) − N ]

(N − 1)
and

η∗ =
f(P ∗/P (λ∗))
F (P ∗/P (λ∗))

P ∗

P (λ∗)
.

P ∗ is determined by:

f(P ∗/P (λ∗))
F (P ∗/P (λ∗))

P ∗

P (λ∗)
− f ′(P ∗/P (λ∗))

f(P ∗/P (λ∗))
P ∗

P (λ∗)
= 1, (19)

where f and f ′ is the PDF and its derivative of θ, respec-
tively. The optimal P ∗ and λ∗ are calculated by (18) and
(19) iteratively. Obviously we have λ∗ ∈ (r, S], and λ∗ → r
when η∗ → ∞. After the values converge, we can calculate
the optimal punishment period as:

T ∗ =
1

ln β
ln{β − (1 − β)[A − (N + 1)Bλ∗]

f(θ∗)(bθ∗/P (λ∗))∆ − F (θ∗)[A − (N + 1)Bλ∗]
}

(20)

where θ∗ = P ∗/P (λ∗) and ∆ = πi(λ∗) − πi(s).

IV. Simulation Results

We assume there are N = 10 users in the networks. The
basic cost is c0 = 0.001, profit per success transmission is
c2 = 1, and β is a number very close to 1. We assume the
slotted nonpersistent CSMA as the multi-access protocol
in the communication node. Without loss of generality,
we assume unit service rate. The probability of successful
transmission is represented as [7], [8]

P =
αΛe−αΛ

1 − e−αΛ + α
, (21)
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Fig. 2. Linear Approximation

where Λ is the offered load and α is one-way normalized
propagation delay which is assume equal to 0.01. In Fig.
2, we show the linear approximation of P using function
P ≈ a − bΛ. The linear approximation is shown to be
accurate when Λ > 20, i.e., when the system is overloaded.
Here a = 0.9331 and b = −0.0036.

The distribution of θ is approximated by binomial dis-
tribution, which gives the probability of packet loss over
Bernoulli trails. The binomial distribution can be approx-
imated by normal distribution. Here we fix the mean of
normal distribution as unit and vary the variance to show
the performances. Any probability larger than 1 or less
than 0 will be truncated. Other probability distributions
of packet errors can be applied in a similar way.

In Fig. 3, we show the overall profit as a function of cost
per transmission rate c1 for variance equal to 0.015. Ob-
viously, the overall profit will decrease when increasing c1,
which is because of the increases of the cost. If users play
with centrally controlled rate r, the overall profit is much
greater than the profit if the users play non-cooperatively
with rate s. The proposed scheme has the performance
in between, which is because the users prefer to send the
packets at the rate λ∗ rather than s so as to avoid fu-
ture punishment. When c1 is a small number, the cost for
transmission is low and the users would like to transmit at
higher rate. If users transmit non-cooperatively, the com-
petitions for the communication nodes will be high. As a
result, the overall profit is much less than that if they play
cooperatively. For the proposed scheme, because users are
afraid of others’ punishment, they show a behavior of co-
operation. So the overall profit is close to the centralized
control result.

We vary the variance of the distribution of θ. The chan-
nel condition becomes worse when the variance increases.
In Fig. 4, we show the effects of channels on the overall
profit. In Fig. 5, we show the probability of successful
transmission vs. the channel variance. We also show the
threshold P ∗. When the variance is small, the proposed
scheme has the similar overall profit to that of central-
ized control. On the other hand, if the channel becomes
worse, the performance of the proposed scheme drops to the

Globecom 2004 3457 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

45

50

Overall Profit vs. c
1

O
ve

ra
ll 

P
ro

fit

c
1

centralized
optimal
noncooperate

Fig. 3. Overall Profit vs. Cost per Transmission

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

15

20

25

30

35

40

45

50
Overall Profit vs. Channel Condition

O
ve

ra
ll 

P
ro

fit

Variance

centralized
optimal
noncooperate

Fig. 4. Overall Profit vs. Channel Condition

noncooperative case. Under this condition, the users can-
not distinguish if the probability of successful transmission
drops because of the other user’s deviation or the channel
deterioration. Consequently, they will prefer to transmit
more and play non-cooperatively.

In Fig. 6, we show how the scheme punishes the cheating
user. Here channel variance is 0.015 and c1 = 0.1. We
assume one user deviates from the optimal λ∗ and transmit
at the higher rate s, while others transmit at λ∗. We show
the profit of this deviating user over time. For comparison,
we also show the average profit when the user transmit at
r, λ∗, and s. We can see that at first the user does get more
profit by deviating from λ∗. However this deviation is soon
detected by others and punishment phase is performed by
other users. So the gain is eliminated over time. This
shows the reason why the proposed scheme can enforce the
cooperation among users by threatening punishment.

V. Conclusions

In this paper, we develop a distributed rate control
scheme using optimal Cartel maintenance strategy. Users
will cooperate at some agreed transmission rate first. Then
they monitor the success transmission probability of the
communication node. If the probability is less than some
threshold, the users believe some user has deviated from the
agreed rate. Then they will transmit non-cooperatively at
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a higher rate for a period time to punish the deviating user.
So the users show cooperation because they are afraid of
punishment if they deviate. We deduce the optimal trans-
mission rate, punishment rate, and punishment time for the
proposed scheme. The simulation results show the overall
system profit can be greatly improved with the proposed
distributed scheme, while the cheating users are punished.
Further research can be done for the more sophisticate and
realistic wireless communication environments.
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