
Maintaining Flow Isolation in Work-Conserving
Flow Aggregation

Jorge A. Cobb Zhe Xu
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
Email: {cobb,xuzhe}@utdallas.edu

Abstract— In order to improve the scalability of scheduling
protocols with bounded end-to-end delay, much effort has focused
on reducing the amount of per-flow state at routers. One
technique to reduce this state is flow aggregation, in which
multiple individual flows are aggregated into a single aggregate
flow. In addition to reducing per-flow state, flow aggregation has
the advantage of a per-hop delay that is inversely proportional to
the rate of the aggregate flow, while in the case of no aggregation,
the per-hop delay is inversely proportional to the (smaller) rate
of the individual flow.

Flow aggregation in general is non-work-conserving. Recently,
a work-conserving flow aggregation technique has been proposed.
However, it has the disadvantage that the end-to-end delay of
an individual flow is related to the burstiness of other flows
sharing its aggregate flow. Here, we show how work-conserving
flow aggregation may be performed without this drawback, that
is, the end-to-end delay of an individual flow is independent of
the burstiness of other flows.

I. INTRODUCTION

Let flow denote a sequence of packets generated by a real-
time application. To provide quality of service guarantees, the
network must reserve resources along the path of the flow.
Currently, the Internet does not provide service guarantees.
However, much effort is being focused on designing Internet
protocols to support these guarantees. Two general approaches
have been proposed: Integrated Services (IntServ) [4] and
Differentiated Services (DiffServ) [12], [13].

The seminal paper by Cruz [8] introduced the deterministic
analysis of network traffic, which spawned the design of many
real-time packet scheduling protocols [23]. In the IntServ
approach, quality of service is provided via these scheduling
protocols. Their main drawback is the need to maintain per-
flow state at each router. This introduces several overheads
as compared to the traditional datagram model. Due to these
overheads, the scalability and robustness of IntServ has been
questioned, which lead to the introduction of DiffServ.

In DiffServ, the inter-network is divided into access net-
works and a core network. Routers in access networks main-
tain per-flow state. However, routers in the core network
maintain no per-flow state. Instead, a few bits in the packet
header are reserved to indicate the service category, also
known as per-hop behavior, that applies to the packet. Before
a packet enters the core network, the access router assigns
a per-hop behavior to the packet, according to the desired
quality of service. At each core router, packets are classified

and forwarded according to their per-hop behaviors. DiffServ
is scalable, because no per-flow state is required. However,
this limited amount of state provides only a coarse allocation
of resources, and falls short of the quality of service level
available in IntServ [21].

In an effort to reduce the amount of state at each router, but
without sacrificing the quality of service provided by IntServ,
we introduced flow aggregation [6]. For efficiency, multiple
flows are aggregated into a single flow, and routers after the
point of aggregation are aware only of the aggregate flow, and
are unaware of the flows constituting the aggregate flow. Due
to the reduction in the number of flows, packet scheduling is
simplified, and signaling may also be aggregated [9]. At a later
point in the network, the aggregate flow is separated into its
constituent flows, which then continue on their own to their
respective destinations. Flow aggregation has the additional
advantage that end-to-end delay bounds can be proven to be
lower than in the case of no aggregation [6], [5].

Another approach to reduce the per-flow state at routers
has been presented in [21], [14]. Here, the quality of service
level of IntServ is achieved, but without any flow state in
routers. In [21], [14], the scheduling of packets is based
on dynamic packet state, that is, each packet carries enough
information to reproduce its deadline at each router, without
per-flow state. These techniques have the disadvantage that
the signaling methods with no per-flow state are in general
observation methods [1], [21] that inherently lead to an inac-
curate estimation of the rates of flows traversing the router. In
addition, the lower end-to-end delay bound achievable under
flow aggregation is not achieved using dynamic packet state.

A low amount of state, in combination with lower end-
to-end delays, make flow aggregation an attractive technique
for scalable packet scheduling. However, it is non-work-
conserving, and thus, the output channel may be left idle even
though packets remain to be transmitted.

Recently [22], a work-conserving flow-aggregation method
was presented. Work-conservation is achieved by assigning a
deadline to each packet of each individual flow at the mo-
ment of aggregation, and then performing intra-flow deadline
sorting, i.e., the packets of each aggregate flow are sorted at
intermediate routers according to the assigned deadlines.

Since the method is work-conserving, the average end-to-
end delay of packets is lower. However, the guaranteed upper-

bound on delay is dependent of the burstiness of other flows (it
is independent in non-work conserving flow aggregation and in
dynamic packet state). Hence, all flows must be leaky-bucket
constrained, preventing flows from exceeding their reserved
rate significantly to take advantage of unused bandwidth.

In this paper, we present a work-conserving flow aggre-
gation technique also based on intra-flow deadline sorting.
However, the end-to-end delay bound is independent of the
burstiness of other flows. This low end-to-end delay bound
in combination with a work-conservation comes at a price:
the per-hop delay is slightly higher than in traditional flow
aggregation, and strict requirements are necessary on the
scheduling protocols at intermediate routers.

II. QUALITY OF SERVICE MODEL

In this section, we define the quality of service model that
the network will provide to each real-time flow. We base our
service model on the models of [11], [19].

A. Virtual Finishing Times and Guaranteed-Rate Schedulers

A flow is a sequence of packets generated by an application.
Each output channel of a computer is equipped with a sched-
uler, whose function is to schedule packets in an order which
guarantees quality of service to each input flow. We say a
packet exits/arrives from/to a scheduler when the last bit of the
packet is transmitted/received by the scheduler. For simplicity,
we assume the propagation delay between schedulers is zero.

Each flow is characterized by its reserved packet rate and
its maximum packet size. We adopt the following notation for
each flow f and each scheduler s along the path of f .

Cs output channel bit rate of s
Rf bit rate reserved for flow f
f.i ith packet of flow f

As
f.i arrival time of f.i at s

Es
f.i exit time of f.i from s

Lf.i length of packet f.i
Lmax

f.i maximum of Lf.j , where 1 ≤ j ≤ i
Ls

max maximum packet size at s

Consider a scheduler s and a flow f . We define the virtual
finish time1 F s

f.i of packet f.i at scheduler s as follows.
Assume s were to forward the packets of f at exactly Rf

bits/sec.. Then, F s
f.i is the time at which the last bit of f.i

is forwarded by s. More formally, let f be an input flow of
scheduler s. Then,

F s
f.1 = As

f.1 + Lf.1/Rf (1)
F s

f.i = max(As
f.i, F s

f.(i−1)) + Ls
f.i/Rf , for every i, i > 1

Because scheduler s will forward the packets of f at a rate at
least Rf , each packet f.i exits from s close to F s

f.i. Schedulers
with this property are known as guaranteed-rate schedulers

1The virtual finishing time is also known as the guaranteed rate clock value
in [11], and it is also equal to the timestamp assigned by a virtual clock
scheduler [24].

[11]. More formally, a scheduler s is a guaranteed-rate (GR)
scheduler if and only if, for every input flow f of s and every
i, i ≥ 1,

Es
f.i ≤ F s

f.i + βs
f (2)

for some constant βs
f . We refer to βs

f as the scheduling
constant of f at s.2

Since the virtual finishing time of a packet determines its
exit time from a scheduler, then a bounded end-to-end delay
requires a bounded per-hop increase in the virtual finishing
time. This bound is well known (it was shown in [11] and
also follows from the results in [7], [19]) and is as follows.
Let t1, t2, . . . , tk be a sequence of k GR schedulers traversed
by flow f . For all i,

F tk

f.i ≤ F t1

f.i +
k−1∑
x=1

(
Lmax

f.i

Rf
+ βtx

f

)
(3)

B. Flow Aggregation

To reduce the amount of state managed by each router,
multiple flows can be combined together to form a single
aggregate flow [6], [5], [9], [17].

An aggregate flow g is obtained by merging, at a sin-
gle point in the network, the packets of multiple flows
f1, f2, . . . , fn. In this case, f1, f2, . . . , fn are said to be
the constituents of g. The reserved rate, Rg , of aggregate flow
g is at least the sum of the reserved rates of the immediate
constituent flows of g. Schedulers after the aggregation point
are not aware of the constituents of an aggregate flow. At a
later point in the network, the aggregate flow is separated again
into its constituent flows.

We consider aggregation over a core network model, shown
in Figure 1. It consists of a network of core routers surrounded
by access networks. Ingress/egress routers manage the in-
put/exit of flows from/to the access networks to/from the core
routers. Core routers maintain small amounts of flow state,
while ingress/egress routers maintain state for each individual
flow.3

We assume that all flows entering and exiting the network
via the same ingress and egress routers are aggregated together
at the ingress router. In this case, the total number of flows
visible to a core router is approximately N2

M , where N is the
number of ingress/egress routers, and M is the number of core
routers. For each aggregate flow g, each core router is unaware
of the constituent flows contained by g (or simply chooses to
ignore them). It thus schedules the packets of g as if g were
a simple flow with reserved rate Rg .

2The value of βs
f determines the type of delay guaranteed by s. If βs

f > 0

(typically Ls
max/Cs), then it is rate-dependent delay, such as the delay bound

provided by the Virtual-Clock and Weighted-Fair Queuing protocols [16],
[10], [24]. On the other hand, if βs

f < 0, then we have rate-independent
delay, such as the delay bound provided by the protocols in [25]. In this paper,
we will focus on the former, i.e., on rate-dependent delay, where βs

f > 0.
3This network is similar to a SCORE network in [21], [14]. However, in a

SCORE network, core routers maintain no per-flow state.

Core router

Access network
Ingress/egress router

Fig. 1. Core Network

h

scheduler t
e

hf aggregator s

g
g

Fig. 2. Need for fair aggregation

A scheduler that receives as inputs a set of flows
f1, f2, . . . , fn, and produces as output a single aggregate
flow g, by merging the packets of the input flows, is called an
aggregator. Thus, ingress routers contain N − 1 aggregators,
one for each egress router. A scheduler whose set of input
flows is the same as its set of output flows is called a
non-aggregating scheduler, or simply scheduler for terseness.
Thus, core routers contain schedulers but no aggregators.

We assume all schedulers, aggregating or not, are GR
schedulers. Thus, for any scheduler s and any input flow h
of s (regardless of whether h is a simple or aggregate flow),
every packet ph.i exits s no later than time F s

h.i + βs
h.

A separator is a process that receives as input an aggregate
flow, and produces as output the set of constituents of the input
flow. Thus, egress routers contain a separator for every ingress
router. We assume a separator causes no packet delay.

Even if an aggregating scheduler is a GR scheduler, it is not
sufficient to guarantee a bounded end-to-end delay bound to
its input flows. E.g., consider Figure 2, where two flows, e and
f , are input to an aggregating scheduler s, whose aggregate
output is g, and the next scheduler after s is t. Assume e
generates packets at a rate greater than Rg , i.e., greater than
Re +Rf , f is generating few packets, if any, and aggregator s
does not delay packets. Since scheduler t forwards the packets
of g at a rate of Re +Rf , the queue of g may grow arbitrarilly
large at t. Therefore, the next packet of f encounters a large
number of packets ahead of it in the queue of g at t, and
suffers an excessive delay.

To prevent the above, in addition to being a GR scheduler,
the aggregating scheduler should be fair [6]. That is,

F t
g.j ≤ F s

f.i + λs
f (4)

where g.j = f.i and λs
f is the aggregating constant of s. If

so, combining (3) with (4) we have the following. Let f be an
input flow of an aggregating scheduler s, g be the output flow

of s, and g traverses GR fair schedulers t1, t2, . . . tk. Then,

F tk

g.j ≤ F s
f.i + λs

f +
k−1∑
x=1

(
Lmax

g.j

Rg
+ βtx

g

)
. (5)

Notice that the bound in (5) above is similar to earlier bound
(3), except that the per-hop delay is based on Lg/Rg with
aggregation, and based on Lf/Rf without aggregation. In
general, Rg À Rf and Lg ≈ Lf , and hence, aggregation
provides a much smaller per-hop delay.

III. WORK-CONSERVING AGGREGATION WITH ISOLATION

Fair aggregating schedulers, as defined in [6], are non-work-
conserving. They solve the problem of a large queue of flow
g at scheduler t in Figure 2 by ensuring that the output rate
of s is restricted to Rg. Hence, since t is a GR scheduler, the
queue of g at t is always kept small.

An alternative work-conserving solution, known as Coordi-
nated Aggregate Scheduling (CAS), is presented by Sun and
Shin in [22]. Aggregators are allowed to be any GR server.
However, the excessive delay of packets from f due to a large
queue of g at t is avoided as follows. At s, the packets of e and
f are tagged with their virtual finishing times, as measured at
s4. Then, at subsequent hops, the packets of g are maintained
sorted by their tags. Thus, the queue of an aggregate flow is
no longer a FIFO queue, as is the case in regular aggregation.
In this manner, packets from f with a low virtual finishing
time can “jump” over packets of g (more precisely, of e) with
higher virtual finishing time, and hence not be delayed.

Consider again Figure 2. The packets of f are not delayed
significantly because, if the queue of g has an excessive
number of packets of e, these will be sorted by virtual finishing
time along with the packets of f , and hence, the packets of f
may overcome the packets of e.

Allowing the intermediate schedulers to be any GR sched-
uler provides flexibility of implementation, but significantly
impacts the end-to-end delay. For example, assume intermedi-
ate nodes implement an unfair GR scheduler, such as Virtual
Clock. Then, the packets of f may be delayed excessively at
t, as follows.

Assume t forwards all packets of e (which are also packets
of g). Then, packets of f arrive at t. Since t served flow g at a
rate higher than Rg for a significant amount of time, the virtual
finishing times of the packets of g at t are significantly greater
than real-time. This allows t to temporarilly deny service to
g, and hence to f , for some time by transmitting the packets
of other flows, such as h, until the virtual finishing time of h
becomes equal to that of g. In consequence, all constituent
flows must be leaky-bucket constrained, and furthermore,
flows with different bucket sizes should not be aggregated
together.

Below, we present an alternative flow aggregation method
where the end-to-end delay of an individual flow is similar

4This particular timestamp remains fixed, it does not change on a per-hop
basis. It is simply used to determine the relative order of the packets of e and
f .

m1
f1

m2
f2
a2

m3
f3
a3

a1

scheduler
g

n

b

b
g
n

aggregator

aggregator

aggregator

Fig. 3. Ingress router configuration

to Relation (5), and is thus independent of the leaky-bucket
parameters of other flows. Since the flow is guaranted its end-
to-end delay bound independently from other flows, we refer to
this method as Coordinated Aggregation with Isolation (CAI).

In CAI, we also take advantage of intra-flow sorting to mit-
igate the effect of queue buildups at intermediate schedulers.
However, to prevent temporary denials of service to individual
flows, we focus on scheduling protocols whose Time Worst-
Case Fair Index [2] is small, such as WF2Q. We show that
these scheduling protocols guarantee to each flow an end-to-
end delay that is independent of the burstiness of other flows.
In addition, we show that using the virtual finishing time as a
tag value is not the only choice, and that other choices may
improve fairness among flows.

The introduction of work-conservation does come at a
price. The per-hop delay increases from L/Rg in non-work-
conserving aggregation to 2 · L/Rg in work-conserving ag-
gregation. However, this is a relatively small increase that is
outweighed by the advantages of a work-conserving system.

A. Internal Aggregators and Coordinated Virtual-Finishing-
Time

As described above, ingress routers aggregate all flows that
exit the core network via the same egress router. This results
in an internal structure of an ingress router as shown in Figure
3, where the router has three input channels and one output
channel. Input flows leading to the same egress router (e.g.,
flows f1, f2 and f3) are aggregated into a single flow (i.e.,
g) before being transmitted to the output channel, along with
other aggregate flows, via a scheduler.

Note that, aggregators are internal, and thus their output
channel capacity is, in principle, unbounded. Hence, we as-
sume Cs = ∞ for any aggreator s.

Consider the general case of an aggregator s whose input
flows include f , its aggregate output is g, f.i = g.j, and g
is an input to scheduler t. Aggregator s assigns a tag Tf.i to
each input packet f.i. We initially choose a tag equal to the
virtual finishing time of the packet at s, i.e., Tf.i = F s

f.i. We
consider other tag values in Section IV.

If t serves g in FIFO order, as in regular flow aggregation,
then g.j exits t near time F t

g.j . From the definition of virtual

finishing times (Equation 1), F t
g.j depends only on packets

g.1 . . . g.j. However, if t sorts each input flow by tag value,
then the exit time of g.j depends not only on packets of g
arriving before g.j, but also on packets of g arriving after g.j
whose tag is at most that of g.j.

To capture the above behavior, we define the Coordinated
Virtual-Finishing-Time, Φ. Intuitively, Φt

g.j is the time at which
g.j would exit t if t served the packets of g at exactly the rate
Rg, and, furthermore, t serves every packet of g whose tag is
at most Tg.j before it serves g.j.

We next provide a formal definition of Φ. We begin with
some auxiliary definitions.

Function filter(g, t, τ) returns a flow that differs from g
only by removing those packets of g whose tag is greater than
τ. More formally, g′ = filter(g, t, τ) iff the following two
conditions hold.

〈∀ k, g′.k ∈ g ∧ (g.k ∈ g′ ≡ Tg.k ≤ τ)〉
〈
∀ k, k′, (g.k = g′.k′) ⇒

(
At

g.k = At
g′.k′

)〉

Function advance(g′, t, f.i) returns a flow similar to g′. The
difference is that all packets in g′ that arrive after f.i, where
f.i is a packet of g′, are moved ahead of f.i if their tag is at
most that of f.i. I.e., they arrive at the same time as f.i. More
formally, assume f.i = g′.j. Then, g′′ = advance(g′, t, f.i)
iff the following three conditions hold.

〈∀ k, g′.k ∈ g′′ ∧ g′′.k ∈ g′〉
〈∀ k, 1 ≤ k < j, g′.k = g′′.k ∧At

g′.k = At
g′′.k

〉
〈∀ k, j ≤ k, At

g′′.k = At
g′.j

〉

Definition 1: Let s be an aggregator with an input flow f
and with output flow g. Let f.i = g.j, and let t be the next
scheduler after s. Then,

Φt
g.j = F t

g′′.|g′′|

where g′ = filter(g, t, Tf.i) and g′′ = advance(g′, t, f.i).
Given the above definition of Φ, we next provide an upper

bound on Φ as the aggregate flow exits the aggregator that
created it.

Theorem 1: Let s be an internal aggregator with an input
flow f and with output flow g. Let f.i = g.j, and let t be the
scheduler after s in the same router. Then,

Φt
g.j ≤ F s

f.i

Below, we discuss the properties required from a scheduler
to ensure a small per-hop increase in Φ that is independent of
the burstiness of other flows. This, along with the above bound
on the initial value of Φ , provides a bounded end-to-end delay.

B. Fair Schedulers

We argued above that if a scheduler has an aggregate flow
as input, and if for extended periods of time the flow is not
served, then the deadline guarantees of the constituent flows
are violated. Therefore, unfair scheduling algorithms, such as

Virtual Clock [10], [24], are inadequate, even though they
belong to the family of GR scheduling algorithms.

The amount of time that may ellapse without a scheduler
serving a flow can be formalized by the Worst-Case Fair Index
(WFI) , as defined in [3].

Definition 2: A scheduler t provides to an input flow g a
Worst-Case Fair Index (WFI) of W t

g if for any time τ , the
delay of a packet arriving at τ is bounded above by

Qt
g(τ)
Rg

+ W t
g

where Qt
g(τ) is the queue of flow g at scheduler t at time τ.

In this manner, regardless of how many packets from g have
been forwarded by t, i.e., even if g has exceeded its packet
rate, at all times t will serve g at a rate at least Rg, except
for an additional delay of at most W t

g . This ensures an exit
bound on all packets of g that is related to their coordinated
virtual-finishing time Φ, as follows.

Theorem 2: Let g be an input flow of scheduler t that sorts
the packets of g by their tags, and provides a worst-case fair
index to g. Then, the exit time from t of each packet of g is
bounded as follows.

Et
g.j ≤ Φt

g.j + W t
g

The above bound on the exit time, along with the bound
on Φ of Theorem 1, allow us to provide an end-to-end delay
bound based on the virtual finishing time F at the aggregator.
This bound is useful only if there is a bounded per-hop
increase in Φ at each intermediate scheduler. The per-hop
increase in Φ is indeed bounded, and is also related to the
WFI of the intermediate schedulers, as follows.

Theorem 3: Let g be an input flow of scheduler t that sorts
the packets of g by their tags, and provides a worst-case fair
index to g. Let t′ be the next scheduler traversed by g after t.
Then,

Φt′
g.j ≤ Φt

g.j + W t
g +

Lmax
g

Rg

C. End-to-End Delay

The results of the previous section can be combined to
form an upper bound on the end-to-end delay of a flow that
was aggregated with other flows and then traversed several
schedulers. Theorem 1 shows that the coordinated virtual-
finishing time after the aggregator is bounded by the virtual-
finishing time of the input flow. Then, Theorem 3 shows
the coordinated virtual-fishing time has a bounded per-hop
increase. Finally, Theorem 2 gives the exit time with respect
to the coordinated virtual-finishing time. In consequence we
have the following corollary.

Corollary 1: Let f be an input flow of an internal aggre-
gator s, g be the output of s, and let g traverse schedulers
t1, t2, . . . tk. Then, the end-to-end delay of any packet f.i of
flow f is as follows.

Etk

f.i ≤ F s
f.i +

k∑
x=1

W tx

g + (k − 1)
Lmax

g

Rg

We thus have that the end-to-end delay has a per-hop
increase proportional to L

Rg
, as in the case of regular flow

aggregation (see (5)). However, we have the additional WFI
term W t

g . This term should be as small as possible to ensure
a low end-to-end delay.

Given that Virtual Clock has an unbounded WFI, a more
suitable scheduling protocol could be Weighted Fair Queuing
(WFQ) [16], since it treats its input flows fairly. However, the
WFI of WFQ is actually proportional to L

Rmin
, where Rmin

is the minimum rate among the flows at the scheduler [2]. If
Rmin is allowed to be very small, this will cause a significant
end-to-end delay.

Although end-to-end delay is bounded with WFQ, we desire
a tighter bound in proportion to L

Rg
. In [2], WF2Q is proposed

as an alternative to WFQ. WF2Q provides a more accurate
emulation of the fluid server emulated by WFQ. In particular,
a packet is not considered eligible for transmission by WF2Q
until its first bit begins transmission in the emulated fluid
server. In [2], [3], it is shown that the WFI of a WF2Q
scheduler t is bounded as follows.

W t
g ≤

Lmax
g

Rg
+

Lt
max

Ct

WF2Q is not the only protocol with the above bound of
WFI. There is a whole family of schedulers, called Shaped
Rate Proportional (SRP) schedulers [20], [18], whose WFI is
as above. SRP schedulers are based on emulating the behavior
of a fluid server, and not considering a packet eligible for
transmission until the first bit of the packet is served by the
fluid server.

The SRP family of protocols is broad. On one end of the
spectrum is the WF2Q protocol, which is work-conserving and
distributes unallocated capacity among all flows in proportion
to their reserved rate. On the other end of the spectrum is a
non-work-conserving version of the Virtual Clock protocol,
which prevents flows from making use of any unallocated
capacity.

From the above bound we have the following corollary.
Corollary 2: Let f be an input flow of an internal aggre-

gator s, g be the output of s, and let g traverse schedulers
t1, t2, . . . tk, each of which is an SRP scheduler. Then, the
end-to-end delay of any packet f.i of flow f is as follows.

Etk

f.i ≤ F s
f.i +

(2 · k − 1) · Lmax
g

Rg
+

k∑
x=1

Ltx

max

Ctx (6)

We thus have that the end-to-end delay has a per-hop
increase proportional to L

Rg
, as in the case of regular flow

aggregation (see Relation (5)) plus the small per-hop term
Lt

max

Ct . However, most GR scheduling protocols have βt
g =

Lt
max

Ct . Hence, Relation (6) differs from Relation (5) only by
the additional per-hop delay of L

Rg
.

IV. FAIR WORK-CONSERVING AGGREGATORS

We have addressed thus far how to perform work-conserving
aggregation with a small per-hop delay bound. However, we
have not addressed fairness between the constituent flows of an

Work Schedulers Burstiness
Conserving Allowed Isolation

FA [6] No Any GR Yes
CAS [22] Yes Any GR No

CAI Yes SRP Yes

TABLE I
COMPARISON OF AGGREGATION TECHNIQUES

aggregate flow. Consider again Figure 2. If flow f generates
packets at a rate higher than Rf , then the tags of its latest
packets, i.e., their virtual-finishing times at s, become much
larger than real time. If e then begins to transmit packets, its
tags will be smaller than those of f . This may cause f to be
denied service at t until the tags of e reach the value of the
tags of f .

We can limit this fairness by using a different tag as follows.
Aggregator s tags each packet with the same tag (a.k.a.
timestamp) that a WFQ scheduler with output channel capacity
of Rg would use to tag the packet (note that the output channel
capacity of s is infinity and not Rg). That is, f.i is tagged with
the time at which it exits a fluid generalized processor sharing
(GPS) server [16] of capacity Rg. In this manner, f can exceed
its reserved rate Rf and take advantage of any unused portion
of the bandwidth of g which is currently not being used by
e. If e then generates packets, its tag values will be close to
those of f , and f will not be denied service.

This has its limitations, however. In particular, if f exceeds
the rate Rg, then its tag values will grow beyond those of the
next packets of e, and f may temporarilly be denied service.
This is summarized below.5

Theorem 4: Let s be an internal aggregator with an input
flow f and with output flow g. Let f.i = g.j, and let t be the
scheduler after s in the same router. Let T s

f.i be the time at
which f.i exits a GPS server of capacity Rg with the same
input flows of s. Then,

Φt
g.j ≤ EGPS

f.i

where EGPS
f.i is the real-time at which f.i exits the GPS server.

V. CONCLUDING REMARKS AND FUTURE WORK

Table I summarizes the main properties of all three flow
aggregation methods.

In future work, we will consider applying CAI across mul-
tiple domains, similar to our work on regular flow aggregation
across multiple domains [5]. In addition, as discussed above,
the fairness among the flows being aggregated is limited to the
aggregate rate Rg . We would like to allow a flow to exceed the
aggregate rate Rg and still be given some degree of fairness.
We speculate that this can be accomplished by incorporating
the “timestamp reuse” technique introduced in [15].

5A theorem similar to Theorem 4 holds when the fluid server emulated is
a fluid SRP server. However, the most practical candidate for the fluid server
being emulated, due to its fairness, is the GPS server used by the WFQ
protocol.

REFERENCES

[1] W. Almesberge, T. Ferrari, and J. L. Boudec, “SRP: A scalable resource
reservation protocol for the internet,” in Proc. of The International
Workshop on Quality of Service (IWQOS), 1998.

[2] J. C. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithms,” IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 675–
689, Oct. 1997.

[3] ——, “WF2Q: worst-case fair weighted fair queueing,” in IEEE INFO-
COM Conference, 1996.

[4] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture,” Internet RFC 1633.

[5] J. Cobb, “Scalable quality of service across multiple domains,” Com-
puter Communications, Elsevier, accepted for publication, expected
publication date Fall 2004.

[6] ——, “Preserving quality of service guarantees in-spite of flow aggrega-
tion,” IEEE/ACM Transactions on Networking, vol. 10, no. 1, pp. 43–53,
Feb. 2002.

[7] J. Cobb and M. Gouda, “Flow theory,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 661–674, Oct. 1997.

[8] R. L. Cruz, “A calculus for network delay, part i: Network elements
in isolation,” IEEE Transactions on Information Theory, vol. 37, no. 1,
Jan. 1991.

[9] H. Fu and E. W. Knightly, “A simple model of real-time flow aggre-
gation,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, June
2003.

[10] X. G. and L. S., “Delay guarantee of the virtual clock server,” IEEE/ACM
Transactions on Networking, pp. 683–689, Dec. 1995.

[11] P. Goyal, S. Lam, and H. Vin, “Determining end-to-end delay bounds
in heterogeneous networks,” in Proc.of the NOSSDAV Workshop, 1995.

[12] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forward-
ing phb group,” Internet RFC 2597.

[13] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding phb,”
Internet RFC 2598.

[14] J. Kaur and H. M. Vin, “Core-stateless guaranteed rate scheduling
algorithms,” in Proc. of the IEEE INFOCOM Conf., 2001.

[15] ——, “Core stateless guaranteed throughput networks,” in Proc. of the
IEEE INFOCOM Conf., 2003.

[16] A. K. J. Parekh and R. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, June
1993.

[17] J. Qiu and E. W. Knightly, “Measurement-based admission control with
aggregate traffic envelopes,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, Apr. 2001.

[18] D. Stidialias and A. Varma, “Rate proportional servers: A design
methodology for fair queuing algorithms,” IEEE/ACM Transactions on
Networking, Apr. 1998.

[19] D. Stiliadis and A. Varma, “Latency rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions on
Networking, vol. 6, no. 5, pp. 611–624, 1998.

[20] ——, “A general methodology for designing efficient traffic scheduling
and shaping algorithms,” in IEEE INFOCOM Conference, 1997.

[21] I. Stoica and H. Zhang, “Providing guaranteed services without per-flow
management,” in Proc. of the ACM SIGCOMM Conference, 1999.

[22] W. Sun and K. G. Shin, “Coordinated aggregate scheduling for improv-
ing end-to-end delay performance,” in Proc. of the IEEE Workshop on
Quality of Service (IWQoS), 2004.

[23] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proceedings of the IEEE, vol. 93, no. 10,
Oct. 1995.

[24] L. Zhang, “Virtual clock: A new traffic control algorithm for packet-
switched networks,” ACM Transactions on Computer Systems, vol. 9,
no. 2, pp. 101–124, May 1991.

[25] Q. Zheng and K. G. Shin, “On the ability of establishing real-time
channels in point-to-point packet-switched networks,” IEEE Transaction
on Communications, vol. 42, no. 3, Mar. 1994.

