
Hierarchical Max-Flow Routing
Chansook Lim

Dept. of Computer Science
Univ. of Southern California, Los Angeles

chansool@usc.edu

João P. Hespanha
Dept. Electrical & Computer Eng.
Univ. of California, Santa Barbara
hespanha@ece.ucsb.edu

Stephan Bohacek
Dept. Electrical & Computer Eng.

Univ. of Delaware, Newark
bohacek@eecis.udel.edu

Katia Obraczka
Computer Eng. Dept.

Univ. of California, Santa Cruz
katia@cse.ucsc.edu

Abstract— This paper describes a technique to reduce the
computational complexity of max-flow routing, based on a
hierarchical decomposition of the network. The computational
complexity of this hierarchical max-flow routing is comparable to
that of Dijkstra’s and Bellman-Ford’s algorithms. It is shown that
in many of today’s networks, this hierarchical approach provides
nearly the same performance as flat (i.e., non-hierarchical)
routing, with significantly less computation.

I. INTRODUCTION

At any given point in time, traditional Internet routing
uses a single path to send packets from a source to a
destination. However, there are many advantages in deviating
from this principle. In multi-path routing, packets are spread
over multiple distinct paths in their way from a source to a
destination. The use of multiple paths have been proposed
to increase data throughput [1], reduce traffic congestion [2],
improve network utilization [3, 4], increase network security
[5–8], and improve robustness [8–10]. Alternate path routing
(APR) is often used to rapidly find alternate paths between
source and destination [11], but sometimes it is also used to
switch some load to longer paths when the shortest paths are
overloaded [12]. Although end-to-end flows are generally not
spread over multiple paths, APR still provides some degree of
load balancing and route failure protection.

The computation of multi-path routing tables is a chal-
lenging problem. Equal-Cost Multi-Path (ECMP) and OSPF
Optimized Multi-Path (OSPF-OMP) are multi-path routing
algorithms that provide alternate paths of equal cost [13, 14].
However, by only using distinct paths that have the same
cost, these algorithms do not make full use of the redundancy
available in the network. Game Theoretic Stochastic Routing
(GTSR) is a particular approach to multipath routing that
provides a rigorous way to determine which routes should
be used and with what frequency [5, 8]. GTSR finds all
paths between a source-destination pair and computes next-
hop probabilities, i.e., the probabilities that a packet takes a
particular next-hop. This contrasts with single-path algorithms
that simply determine the next-hop.

This material is based upon work supported by the National Science
Foundation under Grant No. ANI-0322476.

GTSR computes the next-hop probabilities using a max-
flow computation. This computation has a game theoretical
interpretation because GTSR’s routing policies are saddle
solutions to a zero-sum game, in which we regard routing as
one player that attempts to defeat worst-case link/node faults.
In this game, one associates to each link ` a percentage p` of
packets that will not be forwarded in the event of a fault. It
was shown in [15] that optimal saddle routing policies for this
game can be computed by solving a max-flow optimization
[16] over a graph with arc capacities given by 1/p`. When
GTSR is utilized to improve robustness, the designer typically
selects low values for p` in links that are perceived to be
more robust. This favors sending more traffic through these
links. We thus call 1/p` the level-of-robustness (LOR) of link
`. As mentioned above, GTSR solves max-flow optimizations
with link capacities given by the LOR. With some abuse
of terminology, we use the expression LOR of a source-
destination pair to denote the maximum flow between two
nodes. Routing schemes that compute next-hop probabilities
by solving max-flow problems are called max-flow routing.

Perhaps the main practical obstacle to using max-flow rout-
ing is the fact that the max-flow optimizations needed to com-
pute the next-hop probabilities require significant computation.
The main contribution of this paper is a technique (described
in Section II) to reduce the computational complexity of max-
flow routing based on a hierarchical decomposition of the net-
work. Hierarchical decompositions to reduce routing computa-
tion is commonly used in minimum-cost routing. However, to
the best of our knowledge, this is the first paper that proposes
a method for hierarchical decomposition for max-flow routing.
We show in Section III that the computational complexity
of this hierarchical max-flow routing is comparable to that
of Dijkstra’s and Bellman-Ford’s algorithms. This is in spite
of the fact that we cannot use the very efficient Goldberg-
Tarjan max-flow algorithm [17] in all the computations of our
hierarchical approach.

Hierarchical approaches ignore topological information in
order to reduce computational complexity. The computed flow
may therefore be smaller than the maximum one allowed by

LOR 1 LOR 2

LOR 3

u’1
u’2

u’3

u’4

u’5

v1
v2

v3

200 400 600 800 1000
10

6

10
8

10
10

10
12

10
14

10
16

C
om

pl
ex

ity

N - number of nodes

hierarchical
flat

200 400 600 800 1000
10

6

10
8

10
10

10
12

10
14

10
16

C
om

pl
ex

ity

N - number of nodes

hierarchical
flat

Topology Metanode topology Intra-metanode
topology

metanodes

Fig. 1. The inter-metanode routing determines LORi between metanodes. The intra-metanode topology constructs fictitious nodes u′

j . The constraints are
LOR2fv1u′

1

= 2 × LOR1fv1u′

2

, LOR3fv1u′

1

= 2 × LOR1fv3u′

5

, fv1u′

2

= fv2u′

3

, and fv2u′

4

= fv3u′

5

. The right-hand-side figure compares the
computational complexity of the hierarchical and flat routing.

the links’ LOR and consequently the robustness provided by
multi-path routing may also be reduced. Sections IV and V
explore this performance/computation trade-off. In Section IV
it is shown that if the connectivity within the subdomains (or
“metanodes”) is higher than the inter-metanode connectivity,
then hierarchical max-flow routing performs as well as flat
(i.e., non-hierarchical) routing. In Section V we examine
several topologies, both simulated and real, and we show that
the decrease in performance due to the hierarchical approach
is generally small.

In the past, an important deterrent to the use of multipath
routing was the fact that TCP is known to exhibit significant
performance degradation when subject to persistent packet
reordering, which will likely happen under multipath routing.
A number of TCP variants have recently been proposed to
obviate this problem [18–20]. Among these, TCP-PR [20] has
been specifically designed for stochastic multipath routing.

II. HIERARCHICAL MAX-FLOW ROUTING

In this section we discuss how the next-hop probabilities
are computed for hierarchical max-flow routing. We begin
by partitioning the directed graph G = (V, E). The partition
used impacts significantly the performance and computational
complexity of hierarchical max-flow routing. For high perfor-
mance, partitioning with high-connectivity within each com-
ponent is desirable whereas partitioning into optimally-sized
components enables low computational complexity. Since
these two objectives are often conflicting, optimal partitioning
is a challenging problem. While there are many possible
techniques to partition a graph, we have found that the method
described in the [21] works well. We call each component
in the partition a metanode and denote the set of metanodes
by Vmeta. In addition, a border link −→vw is a link connecting
two nodes v ∈ P ∈ Vmeta and w ∈ Q ∈ Vmeta in distinct
metanodes P 6= Q. Let FPQ be the set of border links that
span from nodes in P to nodes in Q. These links are collapsed
into a single link

−−→
PQ, with LOR equal to the sum of all the

LOR provided by all links in FPQ. The metanode-level graph

is denoted by Gmeta := (Vmeta, Emeta), where

Emeta =
{−−→

PQ : ∃ v ∈ P and w ∈ Q such that −→vw ∈ E
}

.

This graph provides the top level of the hierarchy.
The routing table computation is performed in two steps:

inter-metanode routing and intra-metanode routing. The inter-
metanode routing is computed using the graph Gmeta and is a
straightforward application of max-flow routing. Specifically,
for each metanode source and destination, a max-flow problem
is solved on Gmeta with the capacity of each meta-link defined
as above.

Once the inter-metanode routing is known, the intra-
metanode routing can be computed. Depending on whether
the source and destination are within the metanode or if
data merely transits through the metanode, the intra-metanode
routing computation is performed slightly differently. We first
examine the intra-metanode routing for a metanode P when
the source s is in P but the destination is not in P . In this
case, the intra-metanode routing is determined by solving a
constrained type of max-flow problem over the graph defined
by the metanode P , along with some extra nodes and links
that represent egress links. The flow over the egress links
are constrained for two purposes: first, in order to satisfy the
inter-metanode routing, and second, for load-splitting. Figure 1
depicts how the extra nodes and links are constructed and how
the constraints are found. Formally, a constrained max-flow
problem is solved over the graph GP with source s where the
graph, destinations, and constraints are defined as follows.

Let w be an edge node of P and define NP (w) :=
{u /∈ P : −→wu ∈ E} , i.e., the neighbors of w that are not in
P . For each node in NP (w), we construct the fictitious node
u′ and link

−−→
wu′. We say that u′ is derived from the link −→wu.

Then GP = (VP , EP) where

VP = {v ∈ P} ∪ {u′ : u′ is derived from −→wu

with w ∈ P, u /∈ P , and −→wu ∈ E} ,

EP := {vw ∈ E : v, w ∈ P} ∪
{−−→
wu′ : u′ is

from −→wu with w ∈ P, u /∈ P , and −→wu ∈ E} .

The set of derived u′ are the destinations.
Two sets of constraints are imposed on the flows across the

egress links. The first set of constraints imposes that the ratio
of flows from one metanode to another one must coincide with
ratio of the LOR that results from the inter-metanode routing.
Suppose that the inter-metanode routing yields a LOR between
metanodes P and Qi equal to LOR (PQi). Then the following
constraints are imposed

LOR (PQj)
∑

v∈P
u′derived from −→vu with u∈Qi

fvu′

= LOR (PQi)
∑

v∈P
u′derived from −→vu with u∈Qj

fvu′.

The second set of constraints imposes that all the links that
“go to the same metanode” must have the same flow. That is,
if −→vu1 ∈ E and −−→wu2 ∈ E, with u1 and u2 both in the same
metanode, Q 6= P , then the constraint

f−−→
vu′

1

= f−−→
wu′

2

is imposed, where f−→
vu′

i

is the flow from v to u′

i and u′

i is
derived from −→vui for i = 1, 2. In addition to these two sets
of constraints, the flow in every link is limited by the link’s
LOR.

For the case where the destination is in P but the source is
not in P , the approach is nearly the same, but the border links
are ingress links instead of egress links. If neither the source
nor destination are in P , then there is flow over ingress and
egress links. If the source and destination are within P , then
no flow is carried out of P and the intra-metanode routing is
computed by solving the max-flow problem over the subgraph
of nodes in P and links that have both ends in P .

III. COMPUTATIONAL COMPLEXITY

The main motivation behind hierarchical max-flow routing
is to reduce the computational complexity. In this section,
the complexity of the flat and hierarchical approaches are
compared. In this analysis we do not account for the com-
putation needed for graph partitioning, because most changes
in network topology do not require a re-partitioning of the
graph and therefore the computation needed for partitioning
can be amortized over many routing table computations.

Let N denote the total number of nodes in the network
G, i.e., N = |V |. In addition, let M denote the number of
metanodes, i.e., M = |Vmeta|. For simplicity, we assume that
the network G is partitioned into M metanodes with the equal
number of nodes and denote by n := N/M the number of
nodes in each metanode.

For regular max-flow problems (i.e., where there are no
constraints of the relative flows across different links), Gold-
berg and Tarjan’s algorithm [17] is known to be the fastest.
For flat routing and for inter-metanode routing, this algorithm
can be used. Given a sparse network, such as most Internet
networks, with the average node degree much smaller than

the total number of nodes, Goldberg and Tarjan’s algorithm
has a computational complexity of O

(

k2 log k
)

for k nodes.
Thus, in the case of flat routing, we must solve O

(

N2
)

problems, each of complexity O
(

N2 log N
)

, resulting in a
total complexity of O

(

N4 log N
)

.

For intra-metanode routing, if the source and the desti-
nation are in the same metanode, then the problem reduces
to a standard max-flow problem and Goldberg and Tarjan’s
algorithm can be used. However, when the source and the
destination are in distinct metanodes, a constrained max-flow
problem must be solved. The constraints make it impossible to
use Goldberg and Tarjan’s algorithm, hence we employ a fast
linear programming (LP) algorithm. The fastest LP algorithms
using interior point methods are at least as fast as O(n3L

log n
),

where, in this case, L = nd + log(n2d) and d is the average
node degree [22]. Note that O(n3L

log n
) ≈ O(n4d

log n
) and d � n

for typical Internet networks. Thus the inter-metanode routing
requires O

(

M2
)

regular max-flow problems to be solved,
each with M nodes, yielding a complexity of O

(

M4 log M
)

.
For the intra-metanode routing, there are O

(

M2
)

cases where
neither the source and destination are in the metanode, and
O (nM) cases where either the source or destination are within
the metanode, and O

(

n2
)

cases where both the source and
destination are within the same metanode. In the first two
cases, linear programming must be used, hence the com-
plexity for those problems is O

(

M(nM + M2)
)

O(n4

log n
).

In the case where both source and destination are within
the metanode, the total complexity is O

(

Mn2
(

n2 log n
))

.
Thus, the total complexity for the hierarchical approach
is O

(

M(nM + M2) n4

log n
+ Mn4 log n + M4 log M

)

. This
bound can be minimized by selecting an optimal partition size
n := N/M .

Figure 1 shows a comparison of the computational com-
plexity of flat routing compared to hierarchical where the
hierarchical routing uses the optimal value of n. Curve fit-
ting shows that the resulting complexity of the hierarchical
approach is O

(

N3.2
)

. Recall that the time to calculate the
shortest paths for all source/destination pairs is O(N 2 log N)
for sparse networks when Dijkstra’s algorithm is used. In the
case of Bellman-Ford, the complexity is O

(

N3
)

[16]. Hence,
the hierarchical approach yields substantial savings over the
flat approach and results in a complexity that is comparable
to today’s algorithms.

IV. ANALYSIS OF FLAT VERSUS HIERARCHICAL
MAX-FLOW ROUTING

Flat routing uses complete topology information whereas,
in order to reduce the computation, hierarchical routing uses
only limited information. This has the potential to result in
sub-optimal routing. However, there are some cases for which
hierarchical routing is as good as flat routing. To gain intuition
into this issue, we note the LOR of a route is equal to the
LOR of the bottleneck. Thus, if the inter-metanode routing
provides a LOR equal to µ and each metanode can support
a LOR that meets or exceeds µ, then the LOR provided by

the hierarchical routing would be µ. Therefore, if the nodes
within the metanodes are better connected than Gmeta, then
the hierarchical approach performs as well as the flat approach.
This idea can be formalized through the following series of
propositions.

Proposition 1: Hierarchical routing provides a LOR that is
no higher than the LOR provided by flat routing.

Proof: Flat routing is an unconstrained maximization,
hence the set of next-hop probabilities that are considered in
the maximization includes the set of next-hop probabilities that
are considered by the hierarchical routing. Hence, the LOR
provided by hierarchical routing cannot be higher than that
provided by the flat routing.

Proposition 2: The LOR provided by the inter-metanode
routing (i.e., routing between metanodes and neglecting the
topology and LOR provided within the metanodes) is no less
than the LOR provided by flat routing.

Proof: The LOR increases with the LOR provided by
each link. Since the inter-metanode routing assumes that the
links within the metanode provide infinite LOR, the LOR
provided by the inter-metanode routing is no less than the LOR
provided by the flat routing, which uses the correct topology
and LOR within the metanodes.

Proposition 3: If, for a particular source-destination pair
{S, D} that are in distinct metanodes, the inter-metanode
routing demands a LOR Si from each metanode Mi, and, for
the source and destination, each metanode is able to provide
a LOR greater or equal to Si, then the hierarchical routing
provides the same LOR as flat routing.

Proof: As shown in [8], finding the routing that maxi-
mizes the LOR is equivalent to solving a max-flow problem
over the graph with each router a vertex and each link an
arc with capacity equal to the LOR provided by the link.
The resulting LOR is the maximum flow. The LOR provided
by the inter-metanode routing is equivalent to the max-flow
over Gmeta, with capacities of each link equal to the LOR of
the links between metanodes. Suppose that for a particular
source-destination pair, the max-flow problem over Gmeta

results in a flow Si transiting metanode Mi. If the flow
Si is less than amount of flow that can be accommodated
by metanode Mi, then the hierarchical max-flow problem
yields a feasible solution. Here the solution of the hierarchical
max-flow problem is the flow given by the inter-metanode
routing and the resulting flows that cross the links within the
metanodes. If Si surpasses the max-flow that can transit the
metanode, then hierarchical flow problem results in a flow that
is not feasible, that is, the flows computed either do not satisfy
conservation of flow (i.e., more flow enters a node than exits)
or the flow across a link exceeds the capacity of the link. On
the other hand, if the transit flow can be accommodated by
all metanodes, then the hierarchical flow problem results in a
maximum flow that is feasible, hence the LOR provided by
the hierarchical routing matches the max-flow over Gmeta. By
Proposition 2, the LOR possible over Gmeta is not surpassed
by the LOR provided by flat routing, and by Proposition 1

the LOR provided by the flat routing is not surpassed by the
LOR provided by the hierarchical routing. Hence, the LOR
provided by the flat routing is equal to the LOR provided by
the hierarchical routing.

This proposition implies that it is possible to check if the
hierarchical routing has a negative impact on the LOR by
simply determining if the metanode’s LOR meets or exceeds
the LOR required by the inter-metanode routing.

Definition 1: A worst-case connection is the source-
destination pair that has the least LOR.

Corollary 1: Suppose that Gmeta is k-connected and each
metanode is j-connected with j ≥ k. The worst-case con-
nections of the hierarchical approach that have source and
destination in distinct metanodes are provided the same LOR
as they are by flat routing.

Proof: Since Gmeta is k-connected, the LOR required
by each metanode must be greater than k, which can be
accommodated by the metanodes. Hence Proposition 3 applies.

In summary, if the metanodes are better connected internally
than the graph connecting the metanodes and the source and
destination are in distinct metanodes, then hierarchical routing
will yield the same LOR as the flat routing. Considering a
graph such as the graph of routers, one expects a natural
partition of the graph into subnetworks. For example, the entire
Internet can be partitioned into ASs. If the subnetworks are
better connected than the network connecting the subnetworks,
then hierarchical routing provides a LOR that is the same as
the flat routing. As will be seen in the next section, such
good connectivity of subnetworks appears to be common in
the Internet.

V. NUMERICAL COMPARISONS BETWEEN FLAT AND
HIERARCHICAL MAX-FLOW ROUTING

A. Methodology

To compare flat vs. hierarchical max-flow routing, we
investigated the robustness of the two routing policies. To
this effect, we measured the fraction of packets that would
be affected by a worst-case single-link failure. For simplicity,
we assumed that all links have the same LOR. Flat max-flow
routing leads to the least possible fraction of packets, which
is exactly the reciprocal of the min-cut for a given source-
destination pair.

We considered two types of networks: generated by topolo-
gies generators and real topologies observed in the Internet.
For the generated topologies, we used the popular Transit-
Stub topology generator of GT-ITM, which generates graphs
based on a three-level hierarchy consisting of transit domains,
stub domains, and LANs attached stub nodes. The number of
nodes or domains and the connection probability between two
nodes in a domain are parameterized. For redundant paths,
transit-to-stub edges and stub-to-stub edges are added.

For a comparison on more realistic topologies, we used two
ISP topologies recovered from the Rocketfuel datasets [23]:

o

o
o

o

o
oo

o o
oo

o
o

oo
o

o

o

o

o

o

o
oo oo

o

o
o

o
o

o
o

oo
o

o
o

o
o

oo

o
o

oo
o o

o

o

o

o

o

o
o

o

oo o

o o

o oo
o

o

o
o

o
o

o

o o
o

oo o

o

o

o
o

o
o o

o o

o

oo
oo o

o
o o

o oo

o
o 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Difference of maximum
fraction of packets affected

C
D

F o

o

o
o

o

o

o
o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o
oo

o

o

o o
o

o

o

oo

o
o oo

o
o

o
o

oo

o o

o

o

o
oo oo

o oo o
o

o
o o

o
o

oo

o
o

o o

o

oo o o

o
o

o

o

o
o

o
o

o

o
o o

o

o

oo o
o

o o
o

o
o

o
o

o
o

o

o o
o
o

o
o

o o

o

oo o

o
o

oo

o
o

o
o o

o

o o
o

o
o

o

o o

o
oo

oo
o o

o
o

o

o
o

ooo
o o

o

o

o

o
o 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Difference of maximum
 fraction of packets affected

C
D

F

(a) (b) (c) (d)
Fig. 2. Transit-Stub topology. In (a), the nodes within each metanode are better connected than in (c). The plots (b) and (d) show the difference between
the fraction of packets that would be affected by a single link failure for the two types of routing (horizontal axis) vs. the percentage of source/destination
pairs (vertical axis). For both topologies, the figures show the difference is small for a very large percentage of pairs. However, hierarchical routing performs
better in the topology (a) because of the better intra-metanode connectivity.

o

o
o

o
o

o o
o

o
oo

o

o

o
o

oo
o

o

o
o

o
o
oo

o
o

o
o o

o
o

o
oo

o

o
o

o
o o

o

o
o

o o

o

o

o
o

o o

o

o
o

oo o o

oo

o o
o
o

o
o

o
oo

o
o

o
o

o o o
o

o

o
o

o

o

o

oo

o
o

o

o

o

o
o
oo

o o

o

o

o
o

o

o

o
ooo

o
o

o
o

o

o
o

o

o

o o o
o

o
o

o o
o

o

oo
o

o

o o

o

o

oo

o
o

o
o

o

o
o

o

o

o

o

o

o
o

o o

o
oo

o
o

o
oo

o

o

o

o
o

o o

oo

o

o o
o

o

o

o

o

o
o
o

o
o

o

o

o

o

o

oo
oo o

o
o

o
o

oo
o o

113

424

1.00

1.00

1.00

1.001.00
1.00

1.00
1.00

113

424

0.230.120.310.33
0.500.501.001.00

1.000.330.150.52

1.00

1.000.500.500.500.50

0.36
0.64

0.37
0.631.000.44

0.56

0.67
0.33

0.500.500.120.120.620.12

1.00

1.001.000.64
0.36

1.00
1.00

1.00
0.20
0.200.200.200.201.001.00

1.001.00
1.001.00
1.00

(a) Exodus topology (b) Flat max-flow routing (c) Hierarchical max-flow routing
Fig. 3. ISP topologies. (c) shows how multiple routes are found by the hierarchical routing.

Exodus, Verio1.

B. Results

We start with the topologies generated by the Transit-Stub
topology generator. These topologies have one transit domain
which contains 12 transit nodes. One stub domain is attached
to each transit node. The probabilities of the connectivity
between the transit nodes and between the nodes in a stub
domain are 0.6 and 0.42, respectively. This topology is shown
in Figure 2(a). The whole transit domain was considered
as one metanode and each stub domain was regarded as a
metanode. Figure 2(b) shows the difference between the flat
and hierarchical routing schemes. We see that the schemes
perform nearly identical. When one link fails, over 99% of
source/destination pairs have the same degree of robustness
under the hierarchical routing as they do under flat routing.

Figure 2(c) shows another Transit-Stub topology where the
connectivity between the transit nodes and between the nodes
in a stub domain are 0.2 and 0.2, respectively. Figure 2(d)
shows that flat routing performs slightly better than the hierar-
chical routing. The key difference between the two topologies
is that the intra-metanode topologies in Figure 2(a) were better
connected than those in Figure 2(c). The results obtained are
consistent with the analysis in Section IV. Nonetheless, even
in the second topology, the difference between hierarchical

1The dataset contains three kinds of data files for each ISP. Among them,
we chose the files with the suffix .r0.cch, which include only routers that are
believed to be part of the ISP by the name.

and flat routing is small with 86% of source/destination pairs
seeing no difference in the number of packets affected by a
worst-case link failure.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference of maximum
fraction of packets affected

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference of maximum
fraction of packets affected

C
D

F

(a) Exodus (b) Verio
Fig. 4. Difference between the fraction of packets that would be affected
by a single link failure for the two types of routing (horizontal axis) vs. the
percentage of source/destination pairs (vertical axis).

Figure 3(a) shows the topology of the ISP Exodus and
Figures 3(b) and (c) show the topology of Verio. The topology
for Exodus contains 200 nodes and was partitioned into
18 components. The Verio topology used for the simulation
contains 960 nodes, many of which have high node degree.
For Verio, the partition consisted of 41 components. Figure 4
compares the performance of hierarchical routing and flat
routing for these topologies. The overall difference between
the two approaches is larger than the one observed for the
two Transit-Stub topologies in Figure 2. However, over 70%
of the source/destination pairs still see no difference in the

number of packets affected by a worst-case link failure. In
addition, for essentially all the source/destination pairs, this
difference is less than 50%.

We just saw that the hierarchical approach does not suffer
from a significant reduction in performance when compared
to flat routing. It turns out that, in some cases it outperforms
flat routing. This can be seen in Figure 3(b)-(c), where flat
routing uses a single path because the min-cut is one, but
hierarchical routing makes use of multiple paths in areas of
the network where redundancy exists. This difference between
flat and hierarchical routing is significant. In the case of Verio,
the flat routing produced an average of 15.4 links at maximum
capacity (LOR), while the hierarchical routing resulted in
only 4.8 links with the maximum capacity. This shows that
hierarchical routing was able to spread packets more evenly
across the network, avoiding the creating of hot spots, which
generally improves robustness.

VI. CONCLUSIONS

Max-flow routing forwards packets to minimize the impact
of failures. However, the computational complexity of max-
flow routing is quite high, making it impractical for moderate-
size networks. Hierarchical max-flow routing provides an
approach that is far less computationally intensive. Since hier-
archical max-flow routing ignores some topology information,
it may not provide the same level of robustness as flat routing.
However, we showed that, by enlarge, hierarchical max-flow
routing can perform just as well or better than flat max-flow
routing. The reason for this is that typical topologies can be
partitioned into components, for which the nodes within each
component are well connected. This paper only considered two
levels of hierarchy. Future work will examine the performance
when there are more hierarchical levels.

REFERENCES

[1] J. Chen, S.Chan, and V.Li, “Multipath routing for video
delivery over bandwidth-limited networks,” IEEE JSAC,
2004.

[2] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE:
MPLS adaptive traffic engineering,” in Proc. of INFO-
COM, 2001.

[3] V. Mirrokni, M. Thottan, H. Uzunalioglu, and S. Paul,
“Simple polynomial time frameworks for reduced-path
decomposition in multi-path routing,” in Proceedings of
IEEE INFOCOM, 2004.

[4] S. J. Lee and M. Gerla, “Split multipath routing with
maximally disjoint paths in ad hoc networks,” in ICC,
2001.

[5] S. Bohacek, J. Hespanha, J. Lee, K. Obraczka, and
C. Lim, “Enhancing security via stochastic routing,” in
Proc. of the 11th IEEE Int. Conf. On Comput. Commu-
nications and Networks, 2002.

[6] P. Papadimitratos and Z. Haas, “Secure message trans-
mission in mobile ad hoc networks,” Elsevier Ad Hoc
Networks, vol. 1, 2003.

[7] P. Lee, V. Misra, and D. Rubenstein, “Distributed algo-
rithms for secure multipath routing,” in Proc. of INFO-
COM, Mar. 2005.

[8] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and
K. Obraczka, “Game theoretic stochastic routing,” Sub-
mitted, 2005.

[9] M. Marina and S. Das, “On-demand multipath distance
vector routing in ad hoc networks,” in Proc. of ICNP,
2001.

[10] C. Tang and P. K. McKinley, “A distributed multipath
computation framework for overlay network applica-
tions,” tech. rep., Michigan State University, 2004.

[11] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,
“Highly-resilient, energy-efficient multipath routing in
wireless sensor networks,” in ACM SIGMOBILE Mobile
Computing and Communications Review, 2001.

[12] M. Pearlman, Z. Haas, P. Sholander, and S. Tabrizi, “On
the impact of alternate path routing for load balancing in
mobile ad hoc networks,” in Proc. of the ACM MobiHoc,
2000.

[13] C. Hopps, “Analysis of an equal-cost multi-path
agorithmn,” RFC 2992, Nov. 2000.

[14] C. Villamizar, “OSPF optimized multipath (OSPF-
OMP),” draft-ietf-ospf-omp-03, p. 46, June 1999.
Available at http://www.brookfield.ans.net/
internet-drafts/ospf-omp/ospf-omp.txt.

[15] S. Bohacek, J. Hespanha, and K. Obraczka, “Saddle
policies for secure routing in communication networks,”
in Proc. of the 41st Conf. On Decision and Contr,
pp. 1416–1421, 2002.

[16] T. Cormen, C. Leiserson, and R. Rivest., Introduction to
Algorithms. Boston, MA: MIT Press, 2001.

[17] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum-flow problem,” Journal of the ACM, vol. 35,
pp. 921–940, 1988.

[18] E. Blanton and M. Allman, “On making TCP more robust
to packet reordering,” ACM Computer Communications
Review, vol. 32, 2002.

[19] N. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP:
A reordering-robust TCP with DSACK,” in Proceedings
of IEEE INCP, 2003.

[20] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and
K. Obraczka, “TCP-PR: TCP for persistent packet re-
ordering,” in ICDCS03, pp. 222–231, May 2003.

[21] J. P. Hespanha, “An efficient Matlab algorithm for graph
partitioning,” tech. rep., University of California, Santa
Barbara, Oct. 2004. Available at http://www.ece.
ucsb.edu/˜hespanha/techreps.html.

[22] J. E. Beasley, Advances in Linear and Integer Program-
ming. Oxford University Press, 1996.

[23] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson,
“Measuring isp topologies with rocketfuel,” IEEE/ACM
Transactions on Networking, vol. 12, 2004.

