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Abstract— Society is becoming increasingly reliant on the
services provided by distributed, performance sensitive software
systems. These systems demand multiple simultaneous quality of
service (QoS) properties. A key enabler in recent successes in
the development of such systems has been middleware, which
comprises reusable building blocks. Typically, a large number
of configuration options are available for each building block
when composing a system end-to-end. The choice of the building
blocks and their configuration options have an impact on the
performance of the services provided by the systems. Currently,
the effect of these choices can be determined only very late in
the lifecycle, which can be detrimental to system development
costs and schedules. In order to enable the right design choices,
a systematic methodology to analyze the performance of these
systems at design time is necessary. Such a methodology may
consist of models to analyze the performance of individual
building blocks comprising the middleware and the composition
of these building blocks. As a first step towards building this
methodology, this paper introduces a model of the Reactor
pattern, which provides important synchronous demultiplexing
and dispatching capabilities to network services and applications.
The model is based on the Stochastic Reward Net (SRN) modeling
paradigm. We illustrate how the model could be used to obtain
the response time of a Virtual Private Network (VPN) service
provided by a Virtual Router (VR).

I. INTRODUCTION

Society is increasingly reliant on the services provided
by distributed, performance-sensitive software systems. These
systems demand multiple simultaneous quality of service
(QoS) properties including predictability, controllability, and
adaptability of operating characteristics for applications with
respect to such features as time, throughput, accuracy, con-
fidence, security and synchronization. A key enabler in re-
cent successes in the development of such systems is QoS-
enabled middleware [1]. Middleware comprises software lay-
ers that provide platform-independent execution semantics and
reusable services that coordinate how application components
are composed and interoperate. The flexibility and config-
urability offered by middleware is manifested in the large
number of reusable software building blocks and configuration
options, which can be used to compose and build large sys-
tems end-to-end. These building blocks embody good design
practices called patterns [2], [3]. The choice of the patterns
and their configuration options is driven by the context of

the application. These choices have a profound impact on the
performance of the provided service.

Current ad hoc techniques based on manually choosing the
right set of building blocks and their configuration options are
error-prone and may adversely impact performance, system
costs and schedules, since most errors are caught very late in
the lifecycle of the system development. It is desirable to have
the ability to analyze the performance of individual building
blocks and the composed system much earlier in the system
lifecycle, thereby significantly lowering system testing costs
as well as improving the correctness of the final developed
system.

To address the challenge of system performance evalua-
tion in the design phase, a systematic performance analysis
methodology is necessary. This methodology would com-
prise developing performance models of the individual build-
ing blocks and their composition. The performance models
are based upon well-known analytical/numerical modeling
paradigms [4], [5], [6] and simulation techniques [7]. As a
first step towards the development of such a methodology,
this paper presents a model of the Reactor pattern [2], [3],
which provides important synchronous demultiplexing and
dispatching capabilities to network services and applications.
The model is based on the Stochastic Reward Net (SRN)
modeling paradigm [4]. We illustrate how the model can be
used to obtain an estimate of the response time of a Virtual
Private Network (VPN) service provided by a Virtual Router
(VR) [8].
Paper organization: The paper is organized as follows:
Section II presents the performance model of the Reactor
pattern. Section III illustrates how the performance model of
the Reactor pattern can be used to obtain the response time of
a VPN service provided by a VR. Section IV offers concluding
remarks and directions for future research.

II. PERFORMANCE MODEL OF THE REACTOR PATTERN

In this section, we first provide an overview of the Reactor
pattern followed by the SRN model of the Reactor pattern. The
section also describes how the response time can be obtained
from the SRN model.



A. Reactor Pattern in Middleware Implementations

Figure 1 depicts a typical event demultiplexing and dis-
patching mechanism documented in the Reactor pattern. The
application registers an event handler with the event demul-
tiplexer and delegates to it the responsibility of listening
for incoming events. On the occurrence of an event, the
demultiplexer dispatches the event by making a callback to
its associated application-supplied event handler. This is the
idea behind the Reactor pattern, which provides synchronous
event demultiplexing and dispatching capabilities.

Fig. 1. Event Demultiplexers in Middleware

The Reactor pattern can be implemented in many dif-
ferent ways depending on the event demultiplexing ca-
pabilities provided by the underlying operating system
and the concurrency requirements of the applications.
For example, the demultiplexing capabilities of a Reactor
could be based on the select () or poll () system
calls provided by POSIX-compliant operating systems, or
WaitForMultipleObject () as found in the different
flavors of Win32 operating systems. Moreover, the handling
of the event in the event handler could be managed by the
same thread of control that was listening for events leading to
a single-threaded Reactor implementation. Alternatively, the
event could be delegated to a pool of threads to handle the
events leading to a thread-pool Reactor.

B. Characteristics of the Reactor Pattern

We consider a single-threaded, select-based implementation
of the Reactor pattern with the following characteristics:
• The Reactor receives two types of input events with one

event handler for each type of event registered with the
Reactor.

• Each event type has a separate queue, which holds the
incoming events of that type. The buffer capacity for the
queue of type #1 events is denoted N1 and of type #2
events is denoted N2.

• Event arrivals for both types of events follow a Poisson
process with rates λ1 and λ2, while the service times of
the events are exponentially distributed with rates µ1 and
µ2.

• In a snapshot, an event of type #1 is serviced with a
higher priority over an event of type #2. In other words,

when event handles corresponding to both event types are
enabled in a snapshot, the event handle corresponding to
type #1 is serviced with a priority that is higher than the
event handle of type #2.

C. SRN Model

In this section we present the SRN model of the Reactor
pattern. A Stochastic Reward Net (SRN) substantially extends
the modeling power of Generalized Stochastic Petri Nets
(GSPNs) [4], which are an extension of Petri nets [9]. A SRN
is a modeling technique that is concise in its specification and
closer to a designer’s intuition about what a model should
look like. SRNs have been extensively used for performance,
reliability and performability analysis of a variety of sys-
tems [10], [11], [12], [13], [14], [15]. The work closest to the
proposed research is reported by Ramani et al. [10], where
SRNs are used for the performance analysis of the CORBA
event service. A detailed overview of SRNs can be obtained
from [4].

Figure 2 shows the SRN model for the Reactor pattern
with the characteristics described in Section II-B. Table I
summarizes the enabling/guard functions for the transitions
in the net. The net on the left-hand side models the arrival,
queuing and service of the two types of events. Transitions
A1 and A2 represent the arrival of the events of type #1
and #2, respectively. Places B1 and B2 represent the queue
for the two types of events. Transitions Sn1 and Sn2 are
immediate transitions that are enabled when a snapshot is
taken. Places S1 and S2 represent the enabled handles of the
two types of events, whereas transitions Sr1 and Sr2 represent
the execution of the enabled event handlers of the two types of
events. An inhibitor arc from place B1 to transition A1 with
multiplicity N1 prevents the firing of transition A1 when there
are N1 tokens in place B1. The presence of N1 tokens in
place B1 indicates that the buffer space to hold the incoming
input events of the first type is full, and no additional incoming
events can be accepted. The inhibitor arc from place B2 to
transition A2 achieves the same purpose for type #2 events.
The inhibitor arc from place S1 to transition Sr2 prevents the
firing of transition Sr2 when there is a token in place S1.
This models the prioritized service for an event of type #1
over event of type #2 in a given snapshot.

The net on the right of Figure 2 models the process of taking
successive snapshots and prioritized service of the event handle
corresponding to type #1 events in each snapshot. Transition
Sn1 is enabled when there is a token in place StSnpSht,
at least one token in place B1, and no tokens in place S1.
Similarly, transition Sn2 is enabled when there is a token in
place StSnpSht, at least one token in place B2, and no tokens
in place S2. Transition T SrvSnpSht is enabled when there
is a token in either one of the places S1 and S2, and the firing
of this transition deposits a token in place SnpShtInProg.

The presence of a token in the place SnpShtInProg
indicates that the event handles that were enabled in the current
snapshot are being serviced. After these event handles com-
plete execution, the current snapshot is complete and it is time
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Fig. 2. SRN model for the Reactor pattern

to take another snapshot. This is accomplished by enabling
the transition T EndSnpSht. Transition T EndSnpSht is
enabled when there are no tokens in both places S1 and S2.
Firing of the transition T EndSnpSht deposits a token in
place StSnpSht, indicating that the service of the enabled
handles in the present snapshot is complete, which marks the
initiation of the next snapshot.

We now describe how the process of taking a single snap-
shot is modeled by the SRN model presented in Figure 2.
We consider a scenario where there is one token in each one
of the places B1 and B2, and there is a token in the place
StSnpSht. Also, there are no tokens in places S1 and S2. In
this scenario, transitions Sn1 and Sn2 are enabled. Both of
these transitions are assigned the same priority, and any one of
these transitions can fire first. Also, since these transitions are
immediate, their firing occurs instantaneously. Without loss of
generality, it can be assumed that transition Sn1 fires before
Sn2, which deposits a token in place S1.

When a token is deposited in place S1, transition
T SrvSnpSht is enabled. In addition, transition Sn2 is al-
ready enabled. If transition T SrvSnpSht were to fire before
transition Sn2, it would disable transition Sn2, and prevent
the handle corresponding to the second event type from
being enabled. In order to prevent transition T SrvSnpSht
from firing before transition Sn2, transition T SrvSnpSht
is assigned a lower priority than transition Sn2. Because
transitions Sn1 and Sn2 have the same priority, this also
implies that the transition T SrvSnpSht has a lower priority
than transition Sn1. This ensures that in a given snapshot,
event handles corresponding to each event type are enabled
when there is at least one event in the queue.

After both event handles are enabled, transition
T SrvSnpSht fires and deposits a token in place
SnpShtInProg. The presence of a token in the place
SnpShtInProg indicates that the event handles that were
enabled in the current snapshot are being serviced. The
event handle corresponding to type #1 event is serviced first,
which causes transition Sr1 to fire and the removal of the
token from place S1. Subsequently, transition Sr2 fires and
the event handle corresponding to the event of type #2 is

serviced. This causes the removal of the token from place
S2. After both events are serviced and there are no tokens
in places S1 and S2, transition T EndSnpSht fires, which
marks the end of the present snapshot and the beginning of
the next one.

We obtain the response times of the events denoted R1

and R2 using the tagged customer approach [16]. In the
tagged customer approach, an arriving event is tagged and
its trajectory through the system is followed from entry to
exit. The response time of the tagged event is then determined
conditional to the state in which the system lies when the
event arrives. The unconditional response time can be obtained
as the weighted sum of the conditional response times, with
the weights given by the steady state probabilities of being
in each one of the states. Typically, the response time of an
event consists of two pieces; namely, the time taken to service
the event hereafter referred to as the “service time,” and the
time that the event must wait in the system before its service
commences, hereafter referred to as “waiting time.” In our
case, the average service time of an incoming type #1 and
type #2 event is given by 1/µ1 and 1/µ2, irrespective of the
state in which the system lies when the event arrives. The
waiting time, however, will depend on the system state. Next,
we discuss how the conditional waiting time of each event
type is determined.

The conditional waiting time for a tagged event of type #1
will depend on the state of the system, where the state is given
by the number of tokens or markings of places S1, S2, B1 and
B2. Of these four places, the markings of the places S1 and
S2 determine the progress of the current snapshot, whereas,
the markings of places B1 and B2 determine the state of the
queue. The mean time taken to complete the current snapshot
is given by the sum of two terms, the first term is the product
of the number of tokens in place S1 and 1/µ1, and the second
term is the product of the number of tokens in place S2 and
1/µ2. Even if there are no additional events in the queues, the
current snapshot must be completed before the service of an
incoming event of type #1 can begin. Hence, the time taken
to complete the current snapshot contributes to the waiting
time of the incoming or tagged type #1 event. In order to



TABLE I
ENABLING/GUARD FUNCTIONS

Transition Guard function
Sn1 ((#StSnpShot == 1)&&(#B1 >= 1)&&(#S1 == 0))?1 : 0
Sn2 ((#StSnpShot == 1)&&(#B2 >= 1)&&(#S2 == 0))?1 : 0

T SrvSnpSht ((#S1 == 1)||(#S2 == 1))?1 : 0
T EndSnpSht ((#S1 == 0)&&(#S2 == 0))?1 : 0

obtain the entire waiting time of a tagged type #1 event, the
contribution of the queued events of type #1 and type #2 needs
to be determined.

Let n1 be the number of events of type #1 in the queue,
and n2 be the number of events of type #2 in the queue,
when the tagged event of type #1 arrives. This implies that
after n1 snapshots the tagged event will be serviced. The
following three possibilities arise between the relative values
of n1 and n2. If n1 ≤ n2, then only n1 of the type #2 events
need to be serviced before the service of the tagged type #1
event can commence, and hence the waiting time is given by
n1(1/µ1 + 1/µ2). If n1 = n2, then n1 events of type #1 and
type #2 need to be serviced before the service of the incoming
type #1 event can commence, and hence the waiting time is
given by n1(1/µ1 + 1/µ2). If n1 > n2, then in the optimistic
case, n1 events of type #1 and n2 events of type #2 need to be
serviced before the service of the tagged event can commence.
The optimistic case assumes that no additional events of type
#2 arrive in the first n1 snapshots. In the pessimistic case,
however, n1 − n2 events of type #2 will arrive while the first
n2 events are being serviced. Thus, in the optimistic case, the
waiting time will be n1/µ1 + n2/µ2, and in the pessimistic
case, the waiting time will be n1(1/µ1 + 1/µ2). We consider
the pessimistic case since that provides an upper bound on
the response time. The pessimistic contribution of the queued
events to the waiting time is given by the product of the
number of tokens in place B1 and the sum of the reciprocals
of µ1 and µ2. Thus, the overall response time of the tagged
event will be given by the sum of two terms, the first term is
1/µ1 times the sum of the tokens in places S1, B1 and 1, and
the second term is given by the product of 1/µ2 and the sum
of the number of tokens in place S2 and B1. The contribution
of the queued events to the waiting time of the tagged event
of type #2 can also be determined using similar reasoning,
with an additional consideration given to the prioritized service
provided to event of type #1 over an event of type #2 in each
snapshot. The reward rates to obtain the response time of the
events of type #1 and type #2 are summarized in Table II.

In the model of the reactor pattern described above, the
arrival, service and failure distributions are assumed to be
exponential. For certain types of applications, this assumption
may not hold. For example, for safety-critical applications,
events may occur at regular intervals, in which case the
arrival process is deterministic. In addition to the deterministic
distribution, the arrival, service and failure processes may also
follow any other non-exponential or general distribution. There
are two ways to consider non-exponential distributions in the

SRN model. In the first method, a non-exponential distribution
can be approximated using a phase-type approximation [4],
and the resulting SRN model can then be solved using
SPNP [17]. In the second method, the model can be simulated
using discrete-event simulation incorporated in SPNP.

III. CASE STUDY: VPN SERVICE USING VIRTUAL ROUTER

In this section we describe how the SRN model of the
Reactor pattern presented in Section II-C can be used to
estimate the response time of a Virtual Private Network (VPN)
service provided by a Virtual Router (VR).

Figure 3 illustrates the architecture of a provider-
provisioned virtual private network (PPVPN) [18] using a VR.
A VR is a software/hardware component that is part of a
physical router called the provider edge (PE) router. A VR
contains the mechanisms to provide highly scalable, differenti-
ated levels of services in VPN architectures. Multiple VRs can
reside on a PE device. VRs can be arranged in a hierarchical
fashion within a single PE as shown in Figure 3. Moreover,
an entity acting as a service provider for an end customer
might itself be a customer of a larger service provider. VRs
may also use different backbones to improve reliability or to
provide differentiated levels of service to customers.

Customer edge (CE) devices wishing to join a VPN connect
to a VR on the PE device. A VR can multiplex several distinct
CEs belonging to the same VPN session. A VR may use
tunneling mechanisms to use multiple routing protocols and
link layer protocols, such as IPSec, GRE, and IP-in-IP, to
connect with the CEs. A totally different set of protocols
and tunneling mechanisms could be used for inter-VR or VR-
backbone communication. These tunneling mechanisms can
also be the basis for differentiated levels of service as well as
to provide improved reliability. A VR also comprises firewall
capabilities.

We consider a scenario where a VR is used to provide
VPN services to two organizations, with each organization
having a customer edge (CE) router connected to the VR.
The employees of each organization issue VPN set up and
tear down services to the VR via CEs. Also, the VR offers
differentiated levels of service, with organization #1 receiving
prioritized service over organization #2. It is important that
these requests be serviced in a reasonable amount of time.
Additionally, it is also critical to obtain an estimate of what
the response time might be at the time the VPN service is
provisioned.

In order to implement the VPN service, a Reactor pattern
with the characteristics described in Section II-B can be used
to (de)multiplex the events. The SRN model of the Reactor



TABLE II
REWARD ASSIGNMENTS FOR RESPONSE TIME

Event type Reward rate
#1 return(#B1 < N1?1/µ1 ∗ (#S1 + #B1 + 1) + 1/µ2 ∗ (#S2 + #B1) : 0)
#2 return(#B2 < N2?1/µ2 ∗ (#S2 + #B2 + 1) + 1/µ1 ∗ (#S1 + #B2 + 1) : 0)
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Fig. 3. VPN Architecture using Virtual Routers

pattern can be used to obtain an estimate of the response time
of the requests. Towards this end, we designate the requests
originating from organization #1 as events of type #1 and
requests originating from organization #2 as events of type
#2. We set the buffer capacities for both types of events to
five, and the service rates of both types of events to 2.0/sec.
The arrival rate of both types of events were set to 0.4/sec.
The expected response times for type #1 and type #2 events
obtained by solving the SRN model using SPNP [17] are 0.83
seconds and 1.33 seconds, respectively. It can be observed
that the response time for set up and tear down requests for
organization #2 is higher than the response time for requests
from organization #1 due to the prioritized service provided
to organization #1 in each snapshot.

In this case study, estimates of the expected response times
were obtained for fixed settings of the parameters. At design
time, however, it is rarely the case that the exact values of
the parameters are known. As a result, in the design phase it
becomes necessary to analyze the sensitivity of the estimates
to the values of the parameters. Sensitivity analysis can also
be used to establish bounds on the performance estimates
and for the provisioning of resources. We now demonstrate
how the SRN model could be used for sensitivity analysis
with relative ease. For the sake of illustration, we analyze the
sensitivity of the response time estimates to the arrival rates of
the events. Towards this end, we vary the arrival rates of the
events from 0.4/sec to 2.0/sec one at a time, and obtain the
expected response time estimates for each value of the arrival
rate. Figures 4 and 5 show the expected response times as a
function of event arrival rates.
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The plot in Figure 4 shows the expected response time as
a function of λ1, and the plot in Figure 5 shows the expected
response time as a function of λ2. Figure 4 indicates that
as λ1 increases, the expected response times for both types
of events increase. At approximately λ1 = 1.0, the expected
response times for both types of events is close. However, as
λ1 increases beyond 1.0/sec the expected response time of type
#1 events is higher than the expected response time of type
#2 events. Thus, in effect, requests from organization #2 are
receiving better service than requests from organization #1. On
the other hand, Figure 5 indicates that the expected response
time of both types of events increases as λ2 increases, for the
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entire range of λ2. In this case requests from organization
#1 continue to receive better service than requests from
organization #2, although the absolute value of the expected
response time increases as λ2 increases.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented a performance model of the
Reactor pattern which offers the important synchronous de-
multiplexing and dispatching capabilities in middleware. The
model was based on the Stochastic Reward Net (SRN) mod-
eling paradigm. We illustrated how the performance model
could be used to obtain an estimate of the response time of a
VPN service provided by a Virtual Router (VR). Our future
research consists of empirically validating the response time
estimates obtained from the performance model. Developing
and validating the performance models of other middleware
building blocks and the composition of these building blocks
is also a topic of future research.
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