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Abstract—In this paper, the average input-parity weight enu-
merator (AIPWE) of regular/irregular repeat-accumulate (RA)
ensembles is derived, by viewing an RA code as a serial concate-
nation of an outer low-density generator matrix (LDGM) code
and an inner accumulator. The exact average weight distribution
(AWD) of the systematic and nonsystematic versions of the RA en-
sembles are then obtained from their AIPWE’s. We further de-
rive the asymptotic growth exponent of the AWD’s, which are then
used to bound the ensemble performance under maximum likeli-
hood (ML) decoding. It is shown that simple nonsystematic reg-
ular RA ensembles outperform systematic regular RA and regu-
lar low-density parity-check (LDPC) ensembles and have distance
spectrum which closely resembles that of the random ensemble.

I. INTRODUCTION

Ten years after the introduction of turbo codes [1] and forty
years after Gallager’s introduction of low-density parity-check
(LDPC) codes [2], it is now well established that turbo-like
codes practically approach the capacity of many channels with
linear decoding complexity. This result is corroborated by a
vast amount of mostly experimental evidence. Several attempts
have been made to prove rigorously that indeed these codes are
capacity achieving. Successful examples in this direction in-
clude the works of [3–5] and [6,7], which showed that irregular
LDPC codes and irregular repeat-accumulate (RA) codes, re-
spectively, achieve the capacity of the binary erasure channel
(BEC) with message-passing decoding. All these works rely
on the powerful density evolution (DE) method [8] to prove
the capacity-achieving property of these families of codes. Un-
fortunately, analysis using DE becomes an infinite dimensional
problem on channels other than the BEC. This is the reason
why very little progress has been made to prove that turbo-
like codes achieve capacity even on memoryless binary-input
output-symmetric (MBIOS) channels (a notable exception is
the work of [9] that introduces capacity-achieving families of
codes, albeit with decoding complexity per information bit in-
creasing exponentially with the gap from capacity).

In this paper, we initiate an effort towards proving that turbo-
like codes achieve capacity on MBIOS channels. As a first step,
we investigate if certain families of codes achieve capacity with
optimal maximum likelihood (ML) decoding. The motivation
for looking at ML decoding is twofold. First, achieving ca-
pacity with ML decoding provides a necessary condition for
achieving capacity with suboptimal message-passing decoding.
Furthermore, it was recently shown [10, 11] that there are effi-
cient methods to approach ML performance by improved itera-
tive decoding algorithms. Thus, there is hope that the problem

This work was supported in part by the National Science Foundation under
Grant CAREER-CCF-0346977.

can be approached without resorting to DE which, as mentioned
earlier, is the main difficulty in extending the results from the
BEC to MBIOS channels. Among the various promising can-
didates of capacity achieving codes on MBIOS channels, we
choose to work with RA codes for two reasons1. First, it was
recently shown [7] that irregular RA codes achieve the capacity
of the BEC with a bounded average number of edges per infor-
mation bit, and thus with bounded decoding complexity under
iterative decoding. Second, these codes have linear encoding
complexity as compared to the quadratic encoding complexity
of the LDPC codes.

The main difficulty of analyzing the ML performance of RA
codes is that they are not serial concatenations of simple con-
stituent codes if the check node degree is greater than 3 as
shown in Fig. 1(a). This is true regardless of whether the RA
code is regular or irregular. In this paper, we solve this prob-
lem by viewing an RA code as a serial concatenated code with
an outer nonsystematic low-density generator matrix (LDGM)
code [13] and an inner accumulator code. Based on this de-
composition, we derive the average input-parity weight enu-
merator (AIPWE) of regular/irregular RA ensembles, which is
then used to derive the average weight distribution (AWD) of
systematic and nonsystematic versions of the ensembles. As-
ymptotic growth exponents of the AWD’s of RA ensembles are
also calculated, which can be immediately used to obtain vari-
ous ML performance bounds as in [14–16]. As a side result, the
asymptotic growth exponents of the AWD of LDGM ensembles
are derived in the process and the role of the inner accumula-
tor in spectral thinning is demonstrated. Our approach shows
that simple nonsystematic RA codes outperform random codes
(which are known to be capacity achieving) when Divsalar’s
bound [15] is used on the binary input AWGN channel.

II. LDGM AND RA CODES

Consider the irregular LDGM and RA codes as shown in
Fig. 1. As can be seen in the figure, both of them have two dif-
ferent set of variable nodes, i.e., the information nodes and the
parity nodes. The systematic version of them uses all the vari-
able nodes as its codeword, while the nonsystematic one uses
only the parity nodes. Therefore, letting k denote the number
of information bits and n denote the number of parity bits, the
rate R of the systematic and nonsystematic codes is k/(n + k)
and k/n, respectively.

Let λi be the fraction of edges between the information and
check nodes that are connected to an information node with i
check node neighbors, and ρi be the fraction of the same edges

1Similar results can be found in [12] for LDPC ensembles with ML decoding.
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Fig. 1. Factor graph for (a) irregular RA and (b) irregular LDGM codes.
Information bits are denoted by filled gray circles, parity bits by open circles,
and check nodes by squares.

that are connected to a check node with i information node
neighbors. Furthermore, define

λ(x) !
∞∑

i=1

λix
i−1, and ρ(x) !

∞∑

i=1

ρix
i−1 (1)

to be the generating functions of λi’s and ρi’s. These two func-
tions are used to specify the ensembles of irregular LDGM and
RA codes assuming random permutation of edges between in-
formation and check nodes within each ensemble. A special
case is the “(c, d) regular” code ensemble defined by λ(x) =
λcxc−1, ρ(x) = ρdxd−1. Note that, in the following, when we
use the term “RA codes”, we are referring to both irregular and
regular RA codes, but not the original RA codes introduced
in [17] which were restricted to have ρ(x) = ρ1.

The above degree distribution pair (λ, ρ) is from the edge
perspective. It can facilitate our following analysis if we also
have an equivalent description from the node perspective. Let
λ̃i(respectively ρ̃i) be the fraction of information (check) nodes
that are connected to i check (information) nodes. Then we
have

λ̃i =
λi/i∑∞

j=1 λj/j
, and ρ̃i =

ρi/i∑∞
j=1 ρj/j

. (2)

III. AVERAGE INPUT-PARITY WEIGHT ENUMERATOR OF
LDGM AND RA CODE ENSEMBLES

The input-output weight enumerator (IOWE) Aw,h of a bi-
nary linear block code C is defined to be the number of code-
words in C with input hamming weight w and output hamming
weight h. Similarly, we can define the input-parity weight enu-
merator (IPWE) Zw,h for LDGM and RA codes to denote the
number of codewords with input weight w and parity weight
h. Note that IPWE and IOWE are the same for nonsystematic
LDGM and RA codes, but different for systematic ones.

In this section, we calculate the average IPWE (AIPWE)
Zw,h of LDGM and RA ensembles, which is then used in the

next section to obtain the average weight distribution (AWD) of
systematic and nonsystematic versions of the respective ensem-
bles.

A. AIPWE of LDGM ensembles
Consider the (λ, ρ) irregular LDGM ensemble. Let W , and

H be the random variables denoting the input and parity weight,
respectively, of a randomly chosen codeword of a code drawn
randomly from the ensemble. Furthermore, let E be the random
variable denoting the total number of edges emanating from the
information nodes that are equal to 1, of the aforementioned
codeword. Moreover, define

t ! k
∞∑

i=1

iλ̃i (3)

to be the total number of edges between information and parity
nodes. We have

Z(LDGM)
w,h =2kP (H = h,W = w)

=2kP (W = w)
t∑

e=0

P (H = h,E = e|W = w)

=
(

k

w

) t∑

e=0

P (E = e|W = w)

P (H = h|E = e,W = w) (4)

The number of ways of having exactly e edges emanating from
w information nodes, out of a total of

(k
w

)
possibilities, is equal

to

coef(
∞∏

i=1

(1 + xiy)kλ̃i , xeyw), (5)

where coef(f(x, y), xayb) denotes the coefficient of xayb in the
polynomial f(x, y). Therefore, we have

P (E = e|W = w) =
coef(

∏∞
i=1(1 + xiy)kλ̃i , xeyw)

(k
w

) . (6)

On the other hand, given that the number of edges from the
information nodes equal to 1 is e, the output weight is h if and
only if exactly h check nodes are connected to an odd number of
such edges, and the remaining n−h check nodes are connected
to an even number of them. Counting the number of ways of
connecting e edges to t check node sockets such that exactly h
check nodes have an odd number of connections we see that the
value is equal to

coef(
∞∏

j=1

[f−(x, j)y + f+(x, j)]nρ̃j , xeyh), (7)

where

f−(x, j) !1
2
[(1 + x)j − (1 − x)j ] (8)

f+(x, j) !1
2
[(1 + x)j + (1 − x)j ] (9)



to simplify notation. Since the total number of ways of con-
necting e edges to t sockets is equal to

(t
e

)
, we have

P (H = h|E = e,W = w)

=
coef(

∏∞
j=1[f−(x, j)y + f+(x, j)]nρ̃j , xeyh)

(t
e

) , (10)

which is not related to the exact input weight w. Combining
(4), (6) and (10), we obtain the AIPWE of the (λ, ρ) irregular
LDGM ensemble

Z(LDGM)
w,h =

∞∑

e=0

1(t
e

)coef(
∞∏

i=1

(1 + xiy)kλ̃i , xeyw)

coef(
∞∏

j=1

[f−(x, j)y + f+(x, j)]nρ̃j , xeyh). (11)

In particular, (11) simplifies to the following AIPWE for the
(c, d) regular LDGM ensemble

Z(LDGM)
w,h =

(k
w

)
(ck
cw

)
(

n

h

)
coef(f−(x, d)hf+(x, d)n−h, xcw).

(12)

B. AIPWE of RA ensembles
Since a (λ, ρ) irregular RA code can be viewed as a concate-

nated code with an outer nonsystematic (λ, ρ) irregular LDGM
code and an inner accumulator code, we have

Z(RA)
w,h =

n∑

s=0

Z(LDGM)
w,s A(acc)

s,h(n
s

) (13)

by randomness of the ensemble construction, where A(acc)
w,h de-

notes the IOWE of the accumulator code, which is given in [17]
to be

A(acc)
w,h =
{( n−h

#w/2$
)( h−1

%w/2&−1

)
if "w/2# ≤ n − h and %w/2& ≤ h,

0 else.
(14)

Hence, from (13), (14) and (11), we obtain the AIPWE of the
(λ, ρ) irregular RA ensemble as

Z(RA)
w,h =

∑

s≥0,#s/2$≤n−h,%s/2&≤h

( n−h
#s/2$

)( h−1
%s/2&−1

)
(n

s

)

∞∑

e=0

1(t
e

)coef(
∞∏

i=1

(1 + xiy)kλ̃i , xeyw)

coef(
∞∏

j=1

[f−(x, j)y + f+(x, j)]nρ̃j , xeys). (15)

Similarly, from (13), (14) and (12), we obtain the AIPWE of
the (c, d) regular RA ensemble as

Z(RA)
w,h =

(k
w

)
(ck
cw

)
∑

s≥0,#s/2$≤n−h,%s/2&≤h

(
n − h

"s/2#

)(
h − 1

%s/2& − 1

)

coef(f−(x, d)sf+(x, d)n−s, xcw). (16)

IV. ASYMPTOTIC AVERAGE WEIGHT DISTRIBUTION OF
LDGM AND RA ENSEMBLES

Consider an LDGM or RA ensemble with AIPWE Zw,h. Let
Xl be the average number of codewords of weight l in a ran-
domly drawn code from the ensemble. Then for the systematic
version of the ensemble, the AWD is given by

X(sys)
l =

min(k,l)∑

w=max(0,l−n)

Zw,l−w. (17)

On the other hand, for the nonsystematic version of the ensem-
ble, it is given by

X(non)
l =

k∑

w=0

Zw,l. (18)

To analyze the asymptotic behavior of AWD of an ensemble,
we use the following two important equations proven in [18]

lim
n→∞

coef(f(x),xαn) )=0

1
n

log coef(f(x), xαn) = inf
x>0

log
f(x)
xα

(19)

lim
n→∞

coef(f(x,y),xαnyβn) )=0

1
n

log coef(f(x, y), xαnyβn)

= inf
x>0,y>0

log
f(x, y)
xαyβ

(20)

where 0 < α, β < 1, f(x) and f(x, y) are polynomials with
nonnegative coefficients, and log is base-2. Also, we use the
well known property of binomial coefficients

lim
n→∞

log
(

n

αn

)
= h(α) (21)

where 0 ≤ α ≤ 1, and h(x) ! −x log x − (1 − x) log(1 − x)
is the binary entropy function.

Now, let us consider the nonsystematic (c, d) regular LDGM
ensemble with rate R = d

c and AWD Xl. Define the asymptotic
growth exponent of the AWD of the ensemble to be

y(α) ! lim
n→∞,Xαn )=0

1
n

log Xαn. (22)

Then, from (18) and (12), we have

y(α) = lim
n→∞,Xαn )=0

1
n

log X(non)
αn

= lim
n→∞,Xαn )=0

1
n

log
k∑

w=0

Z(LDGM)
w,αn

= lim
n→∞,Xαn )=0

1
n

log

k∑

βk=0

( k
βk

)( n
αn

)
coef(f−(x, d)αnf+(x, d)(1−α)n, xβck)

( ck
βck

)

= lim
n→∞,Xαn )=0

1
n

log
[(

n

αn

)
max

0≤β≤1

( d
c n

βd
c n

)
coef(f−(x, d)αnf+(x, d)(1−α)n, xβdn)

( dn
βdn

)



 + o(1)

(23)



where o(1) is a function of n that converges to 0 as n goes to
infinity. By (19) and (21) we obtain the following result.

Theorem 1 The asymptotic growth exponent of the AWD of the
nonsystematic (c, d) regular LDGM ensemble satisfies

y(α) =h(α) + sup
0≤β≤1

R(1 − c)h(β)+

inf
x>0

log
f−(x, d)αf+(x, d)1−α

xβd
(24)

Similarly, from (12), (16), (17), (18), (19) and (21), we can
obtain the following results.

Theorem 2 The asymptotic growth exponent of the AWD of the
nonsystematic (c, d) regular RA ensemble, the systematic (c, d)
regular LDGM ensemble and the systematic (c, d) regular RA
ensemble are given, respectively, by

y(α) = sup
0≤γ≤min(2(1−α),2α)

(1−α)h(
γ

2(1 − α)
)+αh(

γ

2α
)+

sup
0≤β≤1

R(1 − c)h(β) + inf
x>0

log
f−(x, d)γf+(x, d)1−γ

xβd
(25)

y(α) = sup
max(0, α−1+R

R )≤β≤min(1, α
R )

R(1 − c)h(β) + (1 − R)

(
h(

α − βR

1 − R
) + inf

x>0
log

f−(x, d)
α−βR
1−R f+(x, d)1−

α−βR
1−R

xβd

)

(26)

y(α) = sup
max(0, α−1+R

R )≤β≤min(1, α
R )

R(1 − c)h(β)+

sup
0≤γ≤min(2(1−α−βR

1−R ),2( α−βR
1−R ))

(1 − R)

(
(1 − α − βR

1 − R
)h(

γ

2(1 − α−βR
1−R )

)+

α − βR

1 − R
h(

γ

2(α−βR
1−R )

) inf
x>0

log
f−(x, d)γf+(x, d)1−γ

xβd

)
(27)

Analogous results for the irregular LDGM and RA ensem-
bles can also be obtained in a straightforward manner from (11),
(15), (17), (18), (20) and (21), and are omitted in this paper.

V. NUMERICAL RESULTS

Fig. 2 depicts the asymptotic growth exponent of the AWD
of the nonsystematic (10,5) regular LDGM and RA ensembles,
and compares them with those of the (7,14) regular LDPC en-
semble given in [18,19] and the rate-1/2 random ensemble. As
can be seen in the figure, the RA ensemble has a more con-
centrated AWD than the LDGM ensemble. This shows that
the rate-1 accumulator code really helps eliminate low weight
codewords in the nonsystematic LDGM codes. Moreover, this
figure shows that the asymptotic AWD of the nonsystematic
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Fig. 2. The asymptotic AWD of the nonsystematic (10,5) regular LDGM
ensemble, nonsystematic (10,5) regular RA ensemble, (7,14) regular LDPC en-
semble, and the random ensemble. All of them have rate 1/2.
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Fig. 3. The asymptotic AWD of the systematic (12,12) regular LDGM ensem-
ble, systematic (12,12) regular RA ensemble, nonsystematic (10,5) regular RA
ensemble, and the random ensemble. All of them have rate 1/2.

(10,5) regular RA ensemble well approximates that of the ran-
dom ensemble with the same rate.

The effect of the accumulator code is also evident for the
systematic (12, 12) regular RA ensemble as shown in Fig. 3.
However, we see in the figure that the asymptotic AWD of the
systematic RA ensemble is not as good as that of the nonsys-
tematic one with the same average number of edges per infor-
mation bits. This seems to signify the superiority of nonsystem-
atic RA ensembles over systematic ones and is consistent with
the results of [7] for the BEC.

To gain an immediate idea of how the asymptotic growth ex-
ponents of the AWD’s are related to ML performance of codes
and how regular RA ensembles perform on AWGN channel
with ML decoding, we invoke Divsalar’s bound [15] on the
minimum bit signal to noise ratio (SNR) ( Eb

N0
)∗ required for



reliable communication as follows

(
Eb

N0
)∗ ≤ 1

R
max

0≤α≤1

{
(1 − 2−2y(α))(1 − α)

2α

}
. (28)

The results for rate-1/2 nonsystematic regular RA, systematic
regular RA and regular LDPC ensembles are summarized in ta-
ble I. Note that the comparison is based on the same average
number of edges per information bit, denoted by e in the ta-
ble, and the threshold corresponding to capacity is 0.184dB in
this case. As can be seen in the table, all nonsystematic reg-
ular RA ensembles with a check node degree greater than 3
yield the same performance bound, which is better than that of
their corresponding systematic regular RA and regular LDPC
ensembles. Furthermore, the evaluated bound on (Eb/N0)∗ of
nonsystematic regular RA ensembles is even better than that of
the random ensemble. This is not a contradiction, but a direct
consequence of the fact that Divsalar’s bound in (28) is sim-
ple but not tight for rate-1/2 codes. On the contrary, this re-
sult seems to suggest that nonsystematic regular RA codes with
small check node degree can come very close to the capacity or
even achieve the capacity on the AWGN channel. However, for
a rigorous proof of such a statement we will need to resort to a
tighter ML performance bound.

TABLE I
COMPARISON OF ( Eb

N0
)∗ AS GIVEN IN (28) FOR SEVERAL ENSEMBLES

WITH RATE 1/2.

Ensemble e ( Eb
N0

)∗(dB)
nonsystematic (4,2) regular RA 8 0.3076

Systematic (6,6) regular RA 8 0.4443
(4,8) regular LDPC 8 0.4264

nonsystematic (6,3) regular RA 10 0.3076
Systematic (8,8) regular RA 10 0.3434

(5,10) regular LDPC 10 0.3412
nonsystematic (8,4) regular RA 12 0.3076
Systematic (10,10) regular RA 12 0.3175

(6,12) regular LDPC 12 0.3180
nonsystematic (10,5) regular RA 14 0.3076
Systematic (12,12) regular RA 14 0.3110

(7,14) regular LDPC 14 0.3112
random 0.3081

VI. CONCLUSION

The problem of deriving the AIPWE for RA codes is solved
in this paper by viewing a regular/irregular RA code as a ser-
ial concatenated code with an outer LDGM code and an inner
accumulator code. The resulting AIPWE is then used to derive
AWD for systematic and nonsystematic versions of RA codes,
whose asymptotic growth exponent is also calculated. By nu-
merically plotting the asymptotic growth exponent of the en-
sembles, we acquire the following three observations. First,
the accumulator code plays an important role in eliminating
low weight codewords for RA ensembles. Second, the nonsys-
tematic regular RA ensembles have more concentrated AWD’s
than their corresponding systematic ones with the same aver-
age number of edges per information bit. Third, the nonsys-

tematic regular RA ensembles with moderate check node de-
grees have asymptotic growth exponent of AWD’s extremely
close to that of the random ensemble for all growth exponent
values greater than zero. In the last part of the paper, bit SNR
thresholds on the AWGN channel based on Divsalar’s bound
are obtained to show that nonsystematic regular RA ensem-
bles with small check node degrees have a better guaranteed
ML performance than the corresponding systematic regular RA
and regular LDPC ensembles with the same average number of
edges per information bit and even better than the random en-
semble. These promising results make nonsystematic RA en-
sembles strong candidates of capacity achieving codes on noisy
channels.
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