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Abstract— This paper considers the quantization problem on
the Grassmann manifold with dimension n and p. The unique
contribution is the derivation of a closed-form formula for the vol-
ume of a metric ball in the Grassmann manifold when the radius
is sufficiently small. This volume formula holds for Grassmann
manifolds with arbitrary dimension n and p, while previous results
are only valid for either p = 1 or a fixed p with asymptotically
large n. Based on the volume formula, the Gilbert-Varshamov and
Hamming bounds for sphere packings are obtained. Assuming a
uniformly distributed source and a distortion metric based on
the squared chordal distance, tight lower and upper bounds are
established for the distortion rate tradeoff. Simulation results
match the derived results. As an application of the derived
quantization bounds, the information rate of a Multiple-In put
Multiple-Output (MIMO) system with finite-rate channel-st ate
feedback is accurately quantified for arbitrary finite number of
antennas, while previous results are only valid for either Multiple-
Input Single-Output (MISO) systems or those with asymptotically
large number of transmit antennas but fixed number of receive
antennas.

I. I NTRODUCTION

The Grassmann manifold Gn,p (L) is the set of all p-
dimensional planes (through the origin) of then-dimensional
Euclidean spaceLn, where L is either R or C. It forms
a compact Riemann manifold of real dimensionβp (n− p),
whereβ = 1/2 whenL = R/C respectively. The Grassmann
manifold provides a useful analysis tool for multi-antennacom-
munications (also known as Multiple-Input Multiple-Output
(MIMO) communication systems. For non-coherent MIMO
systems, sphere packings on theGn,p (L) can be viewed as a
generalization of spherical codes [1]–[3]. For MIMO systems
with finite rate channel state feedback, the quantization of
beamforming matrices is related to the quantization on the
Grassmann manifold [4]–[6].

The basic quantization problems addressed in this paper
are the sphere packing bounds and distortion rate tradeoff.A
quantization is a mapping from theGn,p (L) into a subset of
the Gn,p (L), known as the codeC. Define δ , δ (C) as the
minimum distance between any two elements inC. The sphere
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packing bounds relate the size of a code and a given minimum
distanceδ. Assuming a randomly distributed source on the
Gn,p (L) and a distortion metric, the distortion rate tradeoff is
described by either the minimum expected distortion achievable
for a given code size (distortion rate function) or the minimum
code size required to achieve a particular expected distortion
(rate distortion function).

For the sake of applications [4]–[6], the projection Frobenius
metric (i.e.chordal distance) is employed throughout the paper
although the corresponding analysis is also applicable to the
geodesic metric [3]. For any two planesP,Q ∈ Gn,p (L), the
principle angles and the chordal distance betweenP andQ are
defined as follows. Letu1 ∈ P andv1 ∈ Q be the unit vectors
such that
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chordal distance betweenP andQ is defined as
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sin2 θi.

The invariant measure on theGn,p (L) is defined as fol-
lows. Let O (n) /U (n) be the group ofn × n orthogo-
nal/unitary matrices respectively. LetA ∈ O (n) /U (n) and
B ∈ O (n) /U (n) whenL = R/C respectively. An invariant
measureµ on the Gn,p (L) satisfies, for any measurable set
M ⊂ Gn,p (L) and arbitrarily chosenA andB,

µ (AM) = µ (M) = µ (MB) .

The invariant measure defines the uniform distribution on the
Gn,p (L) [7].

With a metric and a measure defined on theGn,p (L), there
are several bounds well known for sphere packings. Letδ be
the minimum distance between any two elements of a codeC
andB (δ) be the metric ball of radiusδ in the Gn,p (L). If K
is any number such thatKµ (B (δ)) < 1, then there exists a
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codeC of sizeK + 1 and minimum distanceδ. This principle
is called as theGilbert-Varshamov lower bound [3], i.e.

|C| > 1

µ (B (δ))
. (1)

On the other hand,|C|µ (B (δ/2)) ≤ 1 for any codeC. The
Hamming upper bound captures this fact as [3]

|C| ≤ 1

µ (B (δ/2))
. (2)

These two bounds relate the code size and a given minimum
distanceδ.

Distortion rate function gives another important property
of quantization. Assume thatQ is a random plane uniformly
distributed on theGn,p (L) and a distortion metric defined by
the squared chordal distanced2c . The average distortion of a
given C is

D (C) , EQ

[

min
P∈C

d2c (P,Q)

]

. (3)

The distortion rate function gives the minimum average distor-
tion for a given codebook sizeK, i.e.

D∗ (K) = inf
C:|C|=K

D (C) . (4)

There are several papers addressing quantization problemsin
the Grassmann manifold. The exact volume formula for aB (δ)
in the Gn,p (C) wherep = 1 is derived in [4]. An asymptotic
volume formula for aB (δ) in the Gn,p (L), where p ≥ 1
is fixed andn approaches infinity, is derived in [3]. Based
on those volume formulas, the corresponding sphere packing
bounds are developed in [3], [5]. Besides the sphere packing
bounds, the rate distortion tradeoff is also treated in [9],where
approximations to the distortion rate function are derivedby the
sphere packing bounds. However, the derived approximations
are based on the volume formulas [3], [4] only valid for some
special choices ofn and p, i.e. eitherp = 1 or fixed p ≥ 1
with asymptotic largen.

This paper derives quantization bounds for the Grassmann
manifold with arbitraryn andp when the code size is large. An
explicit volume formula for a metric ball in theGn,p (L) is de-
rived when the radius is sufficiently small. Based on the derived
volume formula, the sphere packing bounds are obtained. The
distortion rate tradeoff is also characterized by establishment
of tight lower and upper bounds. Simulation results match the
derived bounds. As an application of the derived quantization
bounds, the information rate of a MIMO system with finite rate
channel state feedback is accurately quantified for abitrary finite
number of antennas for the first time, while previous results
are only valid for either Multiple-Input Single-Output (MISO)
systems or those with asymptotically large number of transmit
antennas but fixed number of receive antennas.

II. M ETRIC BALLS IN THE Gn,p (L)

In this section, an explicit volume formula for a metric
ball B (δ) in the Gn,p (L) is derived. The volume formula is
essential for the quantization bounds in Section III.

The volume calculation depends on the relationship between
the measure and the metric defined on theGn,p (L). For the
invariant measureµ and the chordal distancedc, the volume of
a metric ballB (δ) can be calculated by

µ (B (δ)) =

∫

· · ·
∫

√
Pp

i=1
sin2 θi≤δ

π
2

≥θ1≥···≥θp≥0

dµθ, (5)

whereθ1, · · · , θp are the principle angles and the differential
form dµθ is given in [7], [10].

The following theorem expresses the volume formula as an
exponentiation of the radiusδ.

Theorem 1: LetB (δ) be a ball of radiusδ in Gn,p (L). When
δ ≤ 1,

µ (B (δ)) =

{

cn,p,βδ
p(n−p) (1 + o (δ)) if L = R

cn,p,βδ
2p(n−p) if L = C

, (6)

whereβ = 1/2 whenL = R/C respectively andcn,p,β is a
constant determined byn, p andβ. WhenL = C, cn,p,2 can
be explicitly calculated

cn,p,2 =

{

1
(np−p2)!

∏p
i=1

(n−i)!
(p−i)! if 0 < p ≤ n

2
1

(np−p2)!

∏n−p
i=1

(n−i)!
(n−p−i)! if n

2 ≤ p ≤ n
. (7)

WhenL = R, cn,p,1 is given by

cn,p,1 =
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if 0 < p ≤ n
2
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· · ·
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[
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∣

∣

∏n−p
i=1

(

x
1

2
(2p−n+1)−1

i dxi

)]

if n
2 ≤ p ≤ n

,(8)

where

Vn,p,1 =

p
∏

i=1

A2 (p− i+ 1)A (n− p− i + 1)

2A (n− i+ 1)

and

A (p) =
2πp/2

Γ
(

p
2

) .

The proof of Theorem 1 is not included due to the length
limit.

Theorem 1 provides an explicit volume approximation for
real Grassmann manifolds and an exact volume formula for
complex Grassmann manifolds whenδ ≤ 1. Simulations show
that this approximation remains good for relatively largeδ (Fig.
1).

Theorem 1 is consistent with the previous results in [4] and
[3], which pertain to special choices ofn andp and are stated
as follows.

Example 1: Consider the volume formula for aB (δ) in the
Gn,p (C) wherep = 1. It has been shown in [4] that

µ (B (δ)) = δ2(n−1).
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Fig. 1. The volume of a metric ball in the Grassmann manifold

Theorem 1 is consistent with it whereβ = 2 andcn,1,2 = 1.
Example 2: Whenp is fixed andn → +∞, the asymptotic

volume formula for aB (δ) is given by Barg [3] as

µ (B (δ)) =

(

δ√
p

)βnp+o(n)

. (9)

On the other hand, Theorem 1 contains an asymptotic formula
for L = C, δ ≤ 1, fixed p and asymptotically largen in the
form

µ (B (δ)) =

(

δ√
p

)2p(n−p)+o(n)

.

This follows from (7) and Stirling’s approximation. Therefore,
Theorem 1 is consistent with Barg’s formula (9).

Importantly though, Theorem 1 is distinct from the previous
results of [4] and [3] in that it holds for arbitraryn and p,
1 ≤ p ≤ n.

Fig. 1 compares the exact volume of a metric ball (5) and
the volume evaluated by (6). For the volume approximation
cn,p,βδ

βp(n−p), the constantcn,p,β is calculated either by (7) if
L = C or by Monte Carlo numerical integral of (8) ifL = R.
Simulations show that the volume approximation is close to the
exact volume when the radius of the metric ball is not large.

We also compare our approximation with Barg’s approximation
(

δ/
√
p
)βnp

for n = 10 and p = 2 case. Simulations show
that the exact volume and Barg’s approximation may not be in
the same order while the approximation in this paper is more
accurate.

III. QUANTIZATION BOUNDS

Based on the volume formula given in Theorem 1, the sphere
packing bounds are derived and the rate distortion tradeoffis
characterized in this section.

The Gilbert-Varshamov and Hamming bounds on the
Gn,p (L) are given in the following corollary.

Corollary 1: Whenδ is sufficiently small, there exists a code
in Gn,p (L) with sizeK and the minimum distanceδ such that

c−1
n,p,βδ

−βp(n−p) . K.

For any code with the minimum distanceδ,

K . c−1
n,p,β

(

δ

2

)−βp(n−p)

.

Here and throughtout, the symbol . indicates that the inequal-
ity holds up to (1 + o (1)) error.

Proof: The corollary follows by substituting the volume
formula (6) into (1) and (2).

The distortion rate function is characterized by establishing
tight lower and upper bounds.

Theorem 2: Let t = βp (n− p) be the number of the real
dimensions of the Grassmann manifoldGn,p (L). WhenK is
sufficiently large, the distortion rate function is boundedby

t

t+ 2
(cn,p,βK)

− 2

t . D∗ (K) .
2Γ

(

2
t

)

t
(cn,p,βK)

− 2

t . (10)

Due to the length limit, we only sketch the proof here.
The lower bound is proved by an optimization argument.
The key is to construct an ideal quantizer, which may not
exist, to minimize the distortion. Suppose that there exists K
metric balls of the same radiusδ0 covering the wholeGn,p (L)
completely without any overlap. Then the quantizer which maps
each of those balls into its center gives the minimum distortion
among all quantizers. Of course such a covering may not exist,
provding a lower bound of the distortion rate function.

The upper bound is derived by characterizing the average
distortion of the ensemble of random codes. Define a random
code with sizeK as Crand = {P1, P2, · · · , PK} wherePi’s
are independently drawn from the uniform distribution on the
Gn,p (L). For any givenQ ∈ Gn,p (L), defineXi , d2c (Pi, Q)
and WK , min (X1, · · · , XK) = min

Pi∈Crand

d2c (Pi, Q). Since

the codewordsPi’s 1 ≤ i ≤ K are independently drawn
from the uniform distribution on theGn,p (L), Xi’s 1 ≤ i ≤
K are independent and identically distributed (i.i.d.) random
variables with the cumulative distribution function (CDF)given
by Theorem 1. According toXi’s CDF, the CDF ofWK can
be calculated by extreme order statistics. We prove that forany

givenQ ∈ Gn,p (L), K
t
2 ·EWK

[WK ] converges to
2Γ( 2

t )
t c

− 2

t

n,p,β

asK approaches infinity. Thus,K
t
2 · EQ [EWK

[WK ]] = K
t
2 ·
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ECrand
[D (Crand)] converges to the same constant, providing an

upper bound ofD∗ (K).
It is worthy to point out that since the upper bound is

corresponding to the ensemble of random codes, it is often used
as an approximation to the distortion rate function in practice.

Fig. 2 compares the simulated distortion rate function withits
lower bound and upper bound in (10). To simulate the distortion
rate function, we use the max-min criterion [5] to design codes
and use the minimum distortion of the designed codes as the
distortion rate function. Simulations show that the boundsin
(10) hold for largeK. WhenK is relatively small, the formula
(10) can serve as good approximations to the distortion rate
function as well. In addition, we compare our bounds with
the approximation (the “x” markers) derived in [9]. While the
approximation in [9] works for the case thatn = 10 andp = 2
but doesn’t work whenn ≤ 8 and p = 2, the bounds in (10)
hold for arbitraryn andp.

IV. A PPLICATION TO MIMO SYSTEMS WITH FINITE RATE

CHANNEL STATE FEEDBACK

As an application of the derived quantization bounds on
the Grassmann manifold, this section discusses the information
theoretical benefit of finite rate channel state feedback for
MIMO systems using power on/off strategy. We will show that
the benefit of the channel state feedback can be accurately char-
acterized by the distortion of a quantization on the Grassmann
manifold.

The effect of finite rate feedback on MIMO systems using
power on/off strategy has been widely studied. MIMO systems
with only one on-beam are discussed in [4], [5], where the
performance analysis is derived by geometric arguments in the
Gn,1 (C). For MIMO systems with multiple on-beams, many
works, e.g. [9], [11], [12], employ Barg’s formula (9) for
performance analysis, which is only valid for MIMO systems
with asymptotically large number of antennas but fixed number
of receive antennas. Valid for arbitrary MIMO systems, the loss
in information rate is quantified for high SNR region in [13],
which is hard to be generalized to other SNR regions. For all
SNR regimes, a formula to calculate the information rate is

TL RL 1W
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Fig. 3. System model

proposed in [14] by letting the numbers of transmit and receive
antennas and feedback rate approach infinity simultaneously.
But this formula overestimates the performance in general.

The system model of a wireless communication system with
LT transmit antennas,LR receive antennas and finite rate
channel state feedback is given in Fig. 3. The information bit
stream is encoded into the Gaussian signal vectorX ∈ Cs×1

and then multiplied by the beamforming matrixP ∈ CLT×s

to generate the transmitted signalT = PX, wheres is the
dimension of the signalX satisfying 1 ≤ s ≤ LT and the
beamforming matrixP satisfiesP†

P = Is. In power on/off
strategy,E

[

XX
†
]

= PonIs wherePon is a positive constant to
denote the on-power. Assume that the channelH is Rayleigh
flat fading, i.e., the entries ofH are independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaussian
variables with zero mean and unit variance (CN (0, 1)) andH
is i.i.d. for each channel use. LetY ∈ CLR×1 be the received
signal andW ∈ C

LR×1 be the Gaussian noise, then

Y = HPX+W,

where E
[

WW
†
]

= ILR
. We also assume that there is a

beamforming codebookB =
{

Pi ∈ CLT×s : P
†
iPi = Is

}

declared to both the transmitter and the receiver before the
transmission. At the beginning of each channel use, the channel
stateH is perfectly estimated at the receiver. A message, which
is a function of the channel state, is sent back to the transmitter
through a feedback channel. The feedback is error-free and rate
limited. According to the channel state feedback, the transmitter
chooses an appropriate beamforming matrixPi ∈ B. Let the
feedback rate beRfbbits/channel use. Then the size of the
beamforming codebook|B| ≤ 2Rfb . The feedback function is
a mapping from the set of channel state into the beamforming
matrix index set,ϕ : {H} → {i : 1 ≤ i ≤ |B|}. This section
will quantify the corresponding information rate

I = max
B:|B|≤2Rfb

max
ϕ

E
[

log
∣

∣

∣
ILR

+ PonHPϕ(H)P
†
ϕ(H)H

∣

∣

∣

]

,

wherePon = ρ/s andρ is the average received SNR.
Before discussing the finite rate feedback case, we consider

the case that the transmitter has full knowledge of the channel
stateH. In this setting, the optimal beamforming matrix is
given by Popt = Vs where Vs ∈ CLT×s is the matrix
composed by the right singular vectors ofH corresponding to
the largests singular values [6]. The corresponding information
rate is

Iopt = EH

[

s
∑

i=1

ln (1 + Ponλi)

]

, (11)
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whereλi is theith largest eigenvalue ofHH
†. In [6], we derive

an asymptotic formula to approximate a quantity of the form
EH [

∑s
i=1 ln (1 + cλi)] wherec > 0 is a constant. Apply the

asymptotic formula in [6].Iopt can be well approximated.
The effect of finite rate feedback can be characterized by the

quantization bounds in the Grassmann manifold. For finite rate
feedback, we define a suboptimal feedback function

i = ϕ (H) , arg min
1≤i≤|B|

d2c (P (Pi) ,P (Vs)) , (12)

where P (Pi) and P (Vs) are the planes in theGLT ,s (C)
generated byPi andVs respectively. In [6], we show that this
feedback function is asymptotically optimal asRfb → +∞ and
near optimal whenRfb < +∞. With this feedback function and
assuming that the feedback rateRfb is large, it has been shown
in [6] that

I ≈ EH

[

s
∑

i=1

ln (1 + ηsupPonλi)

]

, (13)

where

ηsup , 1− 1

s
inf

B:|B|≤2Rfb

EVs

[

min
1≤i≤|B|

d2c (P (Pi) ,P (Vs))

]

= 1− 1

s
D∗

(

2Rfb

)

. (14)

Thus, the difference between perfect beamforming case (11)
and finite rate feedback case (13) is quantified byηsup, which
depends on the distortion rate function on theGLT ,s (C). Substi-
tute quantization bounds (10) into (14) and apply the asymptotic
formula in [6] for EH [

∑s
i=1 ln (1 + cλi)]. Approximations to

the information rateI are derived as functions of the feedback
rateRfb.

Simulations verify the above approximations. Letm =
min (LT , LR). Fig. 4 compares the simulated information rate
(circles) and approximations as functions ofRfb/m

2. The infor-
mation rate approximated by the lower bound (solid lines) and
the upper bound (dotted lines) in (10) are presented. As a com-
parison, we also include another performance approximation
(dash-dot lines) proposed in [14], which is based on asymptotic

analysis and Gaussian approximation. The simulation results
show that the performances approximated by the bounds (10)
match the actual performance almost perfectly and are much
more accurate than the one in [14].

V. CONCLUSION

This paper considers the quantization problem on the Grass-
mann manifold. Based on the explicit volume formula for
a metric ball in theGn,p (L), the corresponding Gilbert-
Varshamov and Hamming bounds are obtained. Assuming
the uniform source distribution and the distortion defined by
the squared chordal distance, the distortion rate functionis
characterized by establishing tight lower and upper bounds. As
an application of these results, the information rate of a MIMO
system with finite rate channel state feedback is accurately
quantified for abitrary finite number of antennas for the first
time.
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