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Abstract— A new metric—average pairwise connectivity—is pro-
posed to measure the fault tolerance of wireless multihop net-
works. Two types of random graphs, Poisson random graph
and geometric random graph, are adopted to model wireless
multihop networks and are used in experimental studies. By
investigating the upper bound and lower bound of the average
pairwise connectivity for different types of random graphs and
the distribution of the difference between the upper bounds and
lower bounds, we conclude that the average pairwise connectivity
of wireless multihop networks can be very well approximated by
its upper bound, a quantity that is easily computed.

I. INTRODUCTION

Wireless multihop networks are formed by groups of nodes
connected by wireless links in which the nodes can communi-
cate with other nodes beyond their direct transmission range
by cooperatively forwarding packets for each other. Examples
of such networks include wireless ad hoc networks and sensor
networks. Since wireless multihop networks can be easily and
inexpensively set up as needed in a decentralized manner, they
have a wide range of applications.

However, before wireless multihop networks can be suc-
cessfully deployed, reliability issues must be resolved. In this
paper we investigate one fundamental property of wireless
multihop networks, namely network fault tolerance. Roughly
speaking, network fault tolerance denotes the ability of a
network to continue to operate correctly even though some
of its components have malfunctioned or failed. Important
sources of failure include link breakage and node removal.
Link breakage may happen very frequently due to the fragile
wireless connections or possible mobility, and nodes may
be removed from the network due to exhaustion of battery
power. Consequently, the study of fault tolerance should be
an indispensable component when designing and evaluating
such networks.

In this paper, we focus on the quantification of fault tol-
erance for networks, specifically, wireless multihop networks.
Traditionally, network fault tolerance has been expressed as the
network’s connectivity. For example, network fault tolerance
has been defined as the maximum number of elements that can
fail without inducing a possible disconnection in the network
[1]. However, such measures have not accounted for the total
number of nodes in the network and the probability of a
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disconnection. To overcome the limitation of such measures,
a probabilistic measure of network fault tolerance based on
the disconnection probability was proposed in [2]. The fault
tolerance of a family of regular graph network topologies have
been evaluated based on this measure, and the results show
that the overall disconnection probability in such networks
can be approximated by the probability of a single node
disconnection.

Recently, the fault tolerance of wireless multihop networks
has drawn much attention from academia, military, and indus-
try due to the wide range of potential applications and the
inherent fragility of such networks. In [3], the minimum node
degree and k-connectivity of wireless multihop networks has
been studied, where a wireless multihop network is modeled as
a geometric random graph [4]. Similar results to [2] have also
been obtained; with a very high probability the connectivity
of wireless multihop network is equal to the minimum node
degree among all nodes in the network.

The use of k-connectivity as a metric for network fault
tolerance focuses on the worst case. It implies that there is
some choice of k + 1 nodes whose removal would disconnect
the network. However, that does not mean that if & + 1
nodes are removed, it is likely that the network will be
disconnected. Furthermore, even if the removal of a group
of nodes disconnects the network, it is possible that only
one node becomes isolated from the rest. This may not
have a significant impact on the usefulness of the network.
Consequently, instead of considering fault tolerance from a
worst case perspective, we consider it from the viewpoint of
average behavior. Specifically, we propose a new measure to
evaluate the fault tolerance of wireless multihop networks:
the average pairwise connectivity which is defined as the
average connectivity degree among all pairs of nodes in the
network. We use acronym APC to represent the average
pairwise connectivity in the rest of paper.

In this paper we model the wireless multihop networks
using random graphs. Two general random graph models have
been studied: Poisson random graphs [5], [6] and geometric
random graphs [7]. Each can be used to model different
scenarios. We investigate the upper bound and lower bound of
the APC for these two types of random graphs. The difference
between the upper bounds and lower bounds is also studied,
and our results show that APC of these types of networks
can be approximated very well using their upper bounds.



Furthermore, the estimation expression for the upper bound
of APC is derived, and is easily computed.

The rest of this paper is organized as follows. Section II
defines the proposed metric to measure the fault tolerance of
wireless multihop networks. Section III describes the different
types of random graphs used to model the wireless multihop
networks. Section IV investigates the fault tolerance of dif-
ferent types of random graphs through experimental studies.
Finally, Section V concludes this paper.

II. AVERAGE PAIRWISE CONNECTIVITY

In this section, we first clarify the notations for graphs, then
define average pairwise connectivity.

An undirected graph G = G(V, E) comprises |V| nodes
and |E| edges, and for any u,v € V, if (u,v) € E, then
(v,u) € E. For u € V, let d(u) denote the degree of w, the
number of neighbors of node u. We say two nodes u and
v are connected if there exists at least one path between u
and v; otherwise these two nodes are said to be disconnected.
A set of paths from u to v are said to be node-disjoint if
these paths do not share any common nodes except w and
v. For any pair of nodes u,v € V, let C(u,v) denote the
maximum number of node-disjoint paths from node u to node
v. Since G is undirected, C'(u,v) = C(v,u). In this paper,
C(u,v) is referred to as the pairwise connectivity between u
and v. If C'(u,v) = k, there exist no such set of k¥ — 1 nodes
whose removal would make uw and v disconnected. We say
that the node pair (u,v) is k-pairwise-connected if and only
if C(u,v) > k. The graph G is said to be connected if any pair
of nodes in G is connected. Moreover, the graph G is said to
be k-connected if for any pair of nodes u,v € V, C(u,v) > k
[4].

To measure the fault tolerance of networks, in this paper
we propose to use the metric: average pairwise connectivity.
Given an undirected graph G(V, E), the APC of G, denoted
by C(G), is defined as follows:

(G) = m S Cwe.
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III. NETWORK MODELS

The theory of random graphs uses probabilistic methods to
solve problems in graph theory. The Poisson random graph,
which is independently proposed by Solomonoff and Rapoport
[8], and Erdos and Renyi [5], [6], is one of the simplest
and most useful models in random graphs. In [9], Chlamtac
and Faragé suggest modeling ad hoc networks as Poisson
random graphs. However, Poisson random graphs do not take
into account correlations between different links. To fix this
problem, the geometric random graph is proposed to model ad
hoc networks. In this paper, we will study the APC metric in
both the Poisson random graph model and geometric random
graph model.

A. Poisson random graph

The Poisson random graph is perhaps the simplest and most
useful model for a wireless network, which has been well

studied by mathematicians, and many results, both approxi-
mate and exact, have been proved [10], [11]. Since the Poisson
random graph model has many elegant properties, it has been
widely used in network modeling performance analysis.

A Poisson random graph G(N,p) is a graph with N nodes
in which for each pair of nodes, with probability p there is an
edge between them. By holding the mean degree A = p(N—1)
constant, the probability of a node having degree k can be

calculated as
N -1\ 4 N—1—-k

1— ~ 2

pk—(k)p( p) = (2

with the last approximate equality becoming exact in the limit
of large IV and fixed k, from which the name “Poisson random
graph” comes.
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B. Geometric random graph

As another simple network model, the geometric random
graph has also been used to model various kinds of networks.
For example, it has been widely used to model the topology
distribution of wireless ad hoc networks [3]. A geometric
random graph G(N,r) is a graph in which N nodes are
independently deployed inside a large area of size A according
to the 2D uniform distribution, and for any pair of nodes there
exists an edge between these two nodes if and only if the
distance between them is no more than r (e.g., in wireless
multihop networks, r is nodes’ maximum transmission range).
By holding \ = W to be constant, the probability of a
node having degree k can be calculated as

_ 2 k 2 N—-1—k M\ k
Pr = N-1 L 1_ﬂ :u7 (3)
k A A k!

with the last approximate equality becoming exact in the limit
of large A and N and fixed k. That is, the distribution of
degree also follows the Poisson distribution with the mean
degree being .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we will focus on the experimental studies of
the APC in two different network models. In the experiments,
for any given pair of nodes (u,v), we compute an upper bound
Clupper(u,v) and lower bound Cigyper(u,v).

For a given graph G(V,E) and u,v € V, the number
of node-disjoint paths between u and v cannot exceed the
minimum degree of u and v, so the upper bound C',pper(u, v)
is defined as follows:

Cupper(u,v) = min{d(u), d(v)}. 4)

To find the lower bound Cjyyer(u,v), the following method
is used. We initialize Cjoyer(u, v) to be 0, and initialize graph
Gy to be G, then repeat the following steps: at each step we
try to find the shortest path between u and v, if there is no
such path, the procedure terminates; otherwise, remove all the
intermediate nodes belonging to this path as well as all the
edges directly connected with those nodes from Gg, .. (u),
and increase the value of Cjoyer(u,v) by 1.
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Fig. 1. Experimental results for Poisson random graph: 1000 nodes

Correspondingly, we define Cpper(G) and Cioyper(G) as

follows:
Cupper(G) _1 Z Z Cupper u U) (5)
uEV vAueV
ClOwe?“(G) = ]\7(7 Z Z Clower U U) (6)
u€V vAueV

which correspond to the average upper bound and the average
lower bound of the pairwise connectivity for all pairs of nodes
in graph G. Obviously, Cypper(G) and Cloyer(G) are upper
and lower bounds for the APC C(G).

Besides studying the upper bound and lower bound of
APC for nodes pairs, we have also studied the distribution
of the difference between the upper and lower bounds. Let
daiff(u,v) denote the difference between Cypper(u,v) and

Clower (U, U):
ddiff(uav) Clower(u>v)- (7)

Let dg;ss denote the random variable for the difference
between the upper and lower bounds of any pair of nodes in
the network. Then P(dg; s = k) can be estimated as follows:

e DIIDD
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= Cupper(u; v) —

P(dairs = k) = 1[daisr(u,v) = k], (8)

A. Poisson Random Graph

We first study the APC in Poisson random graph. The
experiments are set up as follows: the total number of nodes
is N, and for any pair of nodes, with probability p there
is an edge to directly connect them. It is easy to see that
the average node degree is (N — 1)p. There are two sets
experiment N = 1000 and N = 500, and in each set, different
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Fig. 2. Experimental results for Poisson random graph: 500 nodes

values of p are tested. The set of experimental results for
1000 nodes are displayed in Fig. 1 and the set of results for
500 nodes are displayed in Fig. 2. Each set of experimental
results consists of two subfigures. The first one shows the
relationship between the average node degree and the APC for
different average node degrees, where both the upper bound
Cupper(G) and the lower bound Cjoyer(G) of the APC are
shown. The second one shows the distribution of the difference
between the upper and lower bound of the APC under certain
average node degree, where three values of average node
degree are considered: 10, 20, and 30. For each configuration,
the results are averaged over 1000 independently generated
Poisson random graphs.

First, from these sets of experimental results we can see that
the APC increases with the increase of average node degree,
which is easy to understand. Second, it is surprising to see
that the upper and lower bounds of the APC almost overlap
in all configurations, except when the average node degree is
very low (e.g., average node degree is 2), which means that
the APC of Poisson random graphs can be almost completely
characterized by the corresponding upper bound. In another
words, in Poisson random graphs, when the total number of
nodes is large, the only bottleneck to finding node-disjoint
paths between a pair of nodes is the degrees of the two nodes.
Third, by comparing the results in Fig. 1 and Fig. 2 we can
also see that the APC does not change with the change in the
number of nodes in the network.

Now we consider how to get the average upper bound
directly using probability theory. In Poisson random graphs,
we simply assume that the degree distributions for different
nodes are independent, though it is not strictly true. When NV



is large and (N — 1)p = A, given any pair of nodes u and v,
it is easy to show that the probability of Cypper(u,v) equal
to k can be calculated as follows:

P(Cupper(u,v) = k)
= P(d(u) =k)P(d(v) > k) + P(d(u) > k)P(d(v) = k)

e M\F 0 e AN L e AN
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When N is large, the upper bound of the APC C\pper(G)
is the mean of a large number of random variables with the
same distribution given by Equation (9). Under the simplifying
assumption that they are independent, according to the Strong
Law of Large Numbers, Cypper(G) is approximately equal to
E[Cupper(u,v)], where E[Clpper(u,v)] can be calculated as
following:

E[Cupper(u,v)]
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(10)

Since there is no closed form for Equation (10), we
try to study the relationship between E[Clpper(u,v)] and
E[d(u)], E[d(v)] by truncating the equation at k = 2000.
Fig. 3 illustrates the computed results based on Equation (10),
where we let X = d(u),Y = d(v), then Cypper(u,v) =
min(X,Y). The first subfigure shows the ratio between
E[Cupper(u,v)] and the average node degree; it shows that the
ratio increases fast when average degree is small, the levels
off and approaches 1 asymptotically. The second subfigure
shows E[Cypper(u,v)] for different average node degree; it
shows that though the ratio is not constant, E[Cypper(u, v)]
is approximately a linear function of the average node degree.
This is consistent with the experimental findings shown in the
the top subfigures of Figs. 1 and 2.

E[Cupper(u,v)] is an unbiased estimator for Cypper(G),
ie., E[Cypper(G)] = E[Cyupper(u,v)]. Thus the mean square
error is minimized. The normalized RMSE is shown in Fig.
4 and the RMSE is computed based on 10000 independently
generated Poisson random graph. As illustrated, the normal-
ized RMSE is small and decreased when the average node
degree is increased, which means E[Cypper(u,v)] is a good
estimator especially when the average node degree is large.

B. Geometric Random Graph

Now we consider the APC in geometric random graphs.
In the experiments, the geometric random graphs are gen-
erated as follows: nodes are independently deployed inside
a rectangular area of 2000m x 2000m according to the 2D
uniform distribution, and two nodes have a link that directly
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connects them if and only if the distance between them is no
more than 100m. By changing the total number of nodes, we
can generate geometric random graphs with different average
node degree. Given the total number of nodes N, the average
node degree can be approximated as Nw/400. Similarly, for
each set of experiments, two subfigures are generated, and for
any specific configuration, the results are averaged over 1000
independently generated geometric random graphs.

Fig. 5 illustrates the results when all node pairs in the
network are considered to compute the APC. From this set
of results, first we can see that the APC increases with the
increase of average node degree, similar to the case of Poisson
random graphs. Second, unlike in the case of Poisson random
graphs, the upper bound and lower bound of the APC do
not overlap. The distribution of the difference between the
upper and lower bounds also shows that in many situations the
difference can be very large. For example, in all three cases
(i.e., average degree equal to 10, 20, or 30), with about the
probability of 20% the difference is larger than 4. One possible
reason is that when we perform the experiments, we have not
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Fig. 5. Experimental results for geometric random graph: all node pairs

considered the boundary effects, while for those nodes near
the boundary, they will have much less chance to match their
upper bounds due to the asymmetry of the network from the
point of view of those nodes.

To investigate the possible boundary effects in geometric
random graphs, we have conducted another set of experiments.
In this set of experiments, only nodes inside the inner part
of the whole area are considered when calculating the APC.
Specifically, given a geometric random graph in a rectangular
area of 2000m x 2000m, only node pairs with both of the nodes
inside the inner area of 1200m x 1200m are considered, that
is, all considered nodes will be at least 400m away from the
boundary. The experimental results are illustrated in Fig. 6.
From the new set of experiment results, first we can see that
with the increase of average node degree, the lower bound of
the APC becomes closer to the upper bound. Meanwhile from
the distribution of the difference between the upper and lower
bounds we can also see that the differences between the upper
and lower bounds become much smaller. Second, for inner
node pairs the value of upper bound for the APC is similar to
the case in Poisson random graphs, which makes sense since
from the viewpoint of the inner nodes, the geometric random
graph is almost same as the Poisson random graph. These
results show that when the network is large and the average
degree is relatively large, by removing the boundary effects,
the upper bound can also approximate very well the APC.
Furthermore, the upper bound for the inner nodes pairs can be
computed roughly using Equation (10).

V. CONCLUSION

In this paper we have studied the fault tolerance of wireless
multihop networks, which are modelled using Poisson random
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Fig. 6. Experimental results for geometric random graph: nodes pairs inside
the inner area of 1200m x 1200m.

graphs and geometric random graphs. To focus on expected
performance rather than worst case behavior, we have pro-
posed to use a new metric to measure fault tolerance: the
average pairwise connectivity.

Experimental studies for the APC are performed in Poisson
random graphs and geometric random graphs. The studies have
shown that the upper bound of the APC can approximate
the APC very well in Poisson random graphs, as well as
in geometric random graph when the boundary effects are
excluded. We also showed how to estimate the upper bound
using probability theory.
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