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Abstract—For performance guaranteed OPS switches with 
reconfiguration overhead, it has been shown that packet delay 
can be minimized by using N switch configurations (where N is 
the switch size) to schedule the traffic. However, this usually 
involves an exorbitant speedup requirement, which makes it 
impractical under current technology. In this paper, a new 
minimum-delay scheduling algorithm QLEF (Quasi Largest-
Entry-First) is proposed. We prove that QLEF pushes the 
required speedup bound to the lowest known level. As an 
example, when N=950, QLEF only requires a speedup of 
Sschedule=21.33 instead of 42.25 for MIN [5] and 30.27 for αi-
SCALE [8]. This gives a 50% improvement over MIN and 30% 
over αi-SCALE. 

Keywords-Optical packet switch (OPS); reconfiguration 
overhead; performance guaranteed scheduling;  speedup. 

I.  INTRODUCTION 
The explosion of Internet traffic and the rapid progress of 

optical technology have led to the concept of optical Internet, 
combining IP’s flexibility with high efficiency of optical 
transmission. As a result, optical packet switches (OPS) based 
on various optical switching technologies [1-4] are developed 
to meet the ever-increasing demands for larger bandwidth and 
higher switch port counts. 

Despite of many advantages such as scalability, high line 
rate, huge capacity and low power consumption, an OPS 
switch usually needs relatively long time to change its cross- 
connection phase. During this time period (which is called 
reconfiguration overhead), no packet can be transmitted across 
the switch. This reconfiguration overhead can range from 10ns 
to several milliseconds [1-4]. In order to achieve performance 
guaranteed switching (i.e. non-blocking with bounded delay), 
OPS switch fabric needs to transmit packets at an internal rate 
higher than the external line rate. This speedup is to 
compensate for the reconfiguration overhead and the 
scheduling inefficiency [5-8] (also refer to Section II). 

OPS switch architectures similar to that in Fig. 1 are 
considered in [5-8]. Particularly, a scalable multi-rack scenario 
is discussed in [6], where the VOQ/OQ (virtual output queuing/ 
output queuing) modules in Fig.1 can be regarded as separate 
line cards locating at different racks. They are connected to the 
central OPS crossbar switch by optical fibers. An internal 
speedup S is deployed in the switch to achieve performance 
guaranteed switching. Compared with traditional cable 
connections, this setup eliminates the possible electromagnetic 

interference, removes the need of O/E/O conversions at the 
central switch fabric, and provides extra scalability with lower 
power consumption in each rack. 

Assume that each reconfiguration at the central OPS switch 
consumes δ time slots (overhead). We hope to use the 
minimum number of configurations to schedule the traffic in 
order to minimize the packet delay. For performance 
guaranteed switching, N (where N is the switch size) is the 
minimum possible number of configurations required. This is 
because an N×N traffic matrix has N2 entries, and each 
configuration covers at most N of them [5]. Unfortunately, this 
minimum-delay scheduling introduces many empty slots in the 
schedule, which must be overcome by a high speedup [5, 8]. 

Among all the algorithms proposed in [5-8], MIN [5] and 
αi-SCALE [8] can schedule traffic with the minimum number 
of N configurations. These two algorithms follow the same 
approach. That is, they both use a scale function to analyze the 
traffic matrix and calculate only the first N/4 configurations to 
cover the large entries, while using a small constant weight for 
the other 3N/4 configurations [5, 8]. Although αi-SCALE 
generally outperforms MIN, the speedup bound given by αi-
SCALE may still be too high. 

In this paper, we take a totally different approach and a 
novel QLEF (Quasi Largest-Entry-First) algorithm is proposed 
to schedule OPS traffic with only N configurations. It has a 
better design philosophy than MIN and αi-SCALE, and greatly 
pushes the required speedup bound to the lowest known level. 
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Fig. 1.  A scalable high speed optical packet switch. 
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II. SCHEDULING STAGES 
Fig. 2 shows the general OPS scheduling procedure in four 

stages. In Stage 1, incoming packets are periodically 
accumulated in the input buffers over T time slots to construct 
an N×N traffic matrix C(T)={cij}. Each entry cij denotes the 
number of packets received at input i and destined to output j. 
The scheduling algorithm takes H time slots in Stage 2 to 
generate N configurations Pn={p(n)

ij}, n∈{1, …, N} with 
corresponding weights φn to cover C(T), where “cover” means 
that ∑N

n=1φn p(n)
ij≥cij for any i, j∈{1, …, N}. Pn is an N×N 

permutation matrix with at most a single “1” in each line (row 
or column). p(n)

ij=1 indicates that a packet can be sent from 
input i to output j in one slot; p(n)

ij = 0 otherwise. Pn is called a 
perfect matching if it has exactly N “1” entries. In Stage 3, the 
switch fabric is reconfigured according to the N configurations. 
An internal speedup S is applied to ensure that this stage 
occupies only T slots. After the speedup is applied, the unit slot 
time in the transmission phase of Stage 3 is compressed/ 
shortened, and the switch fabric holds Pn for φn compressed 
slots for packet transmission. Finally in Stage 4 packets are 
sent onto the output lines from output buffers (in T slots). 

From the tagged packet in Fig. 2, we can see that the 
bounded delay of any packet is 2T+H slots. Assume each 
switch reconfiguration takes δ slots and T>δN. Since δN slots 
are used to reconfigure the switch for N times in Stage 3, only 
T-δN slots are left for transmitting C(T). Assume that each of 
the line sums of C(T) is not larger than T. We only consider 
such admissible traffic in this paper. Under this assumption, 
there are at most T packets waiting at each input port for 
transmission. Therefore, a speedup factor denoted by Sreconfigure= 
T/(T-δN) is necessary to compensate solely for the idle time 
caused by reconfigurations. At the same time, the scheduling 
algorithm may produce many empty slots (i.e. underutilize the 
bandwidth provided by the configurations [5-8]). As a result, 
more than T compressed slots are necessary in Stage 3 to 
transmit all the packets. Therefore another speedup factor 
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is required to compensate solely for the inefficient scheduling. 
The overall internal speedup S is then given by 
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Since the values of T, N and δ are predefined, the overall 
internal speedup S is dominated by Sschedule. Thus, our objective 
is to minimize the sum of all the N weights ∑N

n=1φn. 

III. QLEF ALGORITHM 

A. LEF (Largest-Entry-First) Procedure 
Given a traffic matrix C(T), we want to cover it by finding 

a schedule that consists of N configurations Pn, n∈{1, …, N} 
with each weighted by φn. In order to minimize the sum of φn, 
intuitively we hope that large entries in C(T) can be scheduled/ 
covered in the same configuration, so that they can share the 
same large weight. This also potentially lets other yet-to-be-
constructed configurations require smaller weights. In other 
words, we should always schedule the “largest” entry first. 

Be more specific, when an entry in C(T) is selected for 
scheduling, the corresponding entry in Pn is marked by “1” and 
this entry is then set to 0 in C(T). For unicast switches, only 
one entry can be scheduled in each line of each Pn. So, we need 
to “shadow” the corresponding lines of C(T) before selecting 
the next largest entry in the remaining not-yet-shadowed part. 
This operation of “shadowing” avoids selecting another entry 
in the same line for the same configuration. As an example, 
entry c11=10 of C(T) in Fig. 3 is selected. The corresponding 
lines, the first row and the first column, are shadowed before 
c11 is set to 0 and c22=9 is selected. We continue this process 
until no more entries in C(T) can be further scheduled in Pn 
(i.e. the N entries are selected and all the lines of C(T) are 
shadowed). At this stage, we un-shadow the whole C(T) (i.e 
remove all the shadows) and continue to construct the next 
configuration Pn+1 in the same way. We call this procedure of 
constructing configurations as LEF (Largest-Entry-First). 

Fig. 3 illustrates two possible schedules of a 3×3 C(T). The 
first one is obtained using the LEF procedure. Entries “10”, “9” 
and “8” are covered in P1 with a weight of 10. The remaining 
entries are covered by P2 and P3 with (small) weights 2 and 1 
respectively. The sum of the weights is 13. The second 
schedule is generated by some non-LEF procedure. Entries 
“10”, “2” and “1” are covered in P1. As a result, the not-yet-
covered large entries “9” and “8” may become the weights for 
P2 and P3. This gives a very large total weight of 27. 

Unfortunately, unlike MIN [5] and αi-SCALE [8], the 
above LEF procedure cannot guarantee that N configurations 
are always enough to cover all the N2 entries of a traffic matrix. 
This is because LEF cannot prevent configuration overlap. Fig. 
4 shows such a counterexample. The resulting schedule 
consists of four configurations instead of the minimum three. 
The entries that are covered more than once (i.e. configuration 
overlap) are also illustrated. 
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Fig. 2.  Optical packet switch scheduling stages. 
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Fig. 3.  “Largest-Entry-First” and “shadow” (the first example). 
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B. QLEF Algorithm 
QLEF algorithm is designed to rectify the above 

configuration overlap problem. We use a reference matrix 
R={rij} to record all the remaining not-yet-scheduled entries in 
C(T). rij=1 means that cij is not yet scheduled/covered, and 
rij=0 otherwise. R is initialized to an all-1 matrix. Let the N 
configurations be sequentially constructed from P1 to PN.  
When a configuration is determined, the corresponding entries 
in both C(T) and R are set to 0s. The updated C(T) and R are 
then used to determine the next configuration. 

Without loss of generality, we focus on the construction of 
the (n+1)-th configuration Pn+1. Assume that both C(T) and R 
are updated and un-shadowed. The construction process is 
similar to the original LEF procedure, except that we only 
select the first N-(2n+1) “largest” entries in C(T) (instead of 
N in LEF). We call them selected-entries. The corresponding 
lines of the selected-entries are shadowed in both C(T) and R 
(refer to Fig. 5). At this point, we should have shadowed N-
(2n+1) rows and N-(2n+1) columns in R, and the remaining 
not-yet-shadowed part of R can form a (2n+1)×(2n+1) sub-
matrix defined as U. Construct a bipartite graph [6] UG from 
U, where all the previously covered entries do not appear in 
UG because they have been set to 0s. Then find a (partial) 
perfect matching containing (2n+1) edges by performing 
maximum-size matching (MSM) [9] in UG (this point is 
proved later). This partial perfect matching corresponds to 
(2n+1) not-yet-covered entries in C(T), called MSM-entries. 
Combining the (2n+1) MSM-entries with the other N-(2n+1) 
selected-entries, we get the perfect matching Pn+1. 

In the above procedure, the N-(2n+1) selected-entries can 
always be properly chosen from the not-yet-covered entries 
according to the LEF procedure. This is because there are N-n 
not-yet-covered entries in each line of C(T) and we only need 
to select N-(2n+1) entries from them, where N-(2n+1)<N-n. 

Another key issue is to prove that a partial perfect 
matching containing (2n+1) edges definitely exists in UG. In 
fact, the following Theorem (taken from Theorem 7 of [5]) 
can guarantee this, and some further explanation follows. 

Theorem: For a bipartite graph G=(X ∪ Y, E) with 
|X|=|Y|=k, there always exists a perfect matching in G if its 
minimum degree is greater than k/2. 

Since we have determined n perfect matchings prior to 
Pn+1, there are at most n 0s (denoting covered entries) in each 
line of U. Because U is a (2n+1)×(2n+1) sub-matrix, the 
minimum degree of its bipartite graph UG is at least (2n+1)-
n=n+1>(2n+1)/2. Therefore, a perfect matching containing 
(2n+1) edges exists in UG according to the Theorem. 

The above discussion provides the foundation for QLEF 
algorithm. QLEF also has two other features: 1) since N-

(2n+1)>0 requires n<(N-1)/2, we use the above procedure to 
determine only the first   12/ −N  configurations. This ensures 
that the N-(2n+1) selected-entries can be properly chosen; 2) 
after the first   12/ −N  configurations are determined, we find 
the largest cij in C(T) and use it as the constant weight for each 
of the subsequent configurations (so as to cover the remaining 
small entries). Because the bipartite graph of R always 
remains regular after a configuration is determined, each of 
the subsequent configurations can be obtained by finding 
maximum-size matching in R [5, 8]. 

Summarily, QLEF shown in Fig. 6 guarantees that 
configuration overlap never happens when scheduling C(T). 
So, C(T) can be covered by using only N configurations. The 
time complexity of QLEF is dominated by running the O(N2.5) 
maximum-size matching algorithm [9] for N times, resulting 
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Fig. 5.  Reference matrix R in QLEF algorithm. 

Fig. 6.  QLEF algorithm. 

QLEF ALGORITHM 
Input:  

Any N×N matrix C(T) with maximum line sum not more than T. 
Output:  

N×N configurations P1, …, PN and weights φ1, …, φN. 
 
Step 1: Initialization:  

Set 0→n. Initialize P1, …, PN as all-zero matrices and the N×N 
reference matrix R={rij} as all-1. 
Step 2: Determine the first “half” configurations Pn+1: 

a) Un-shadow C(T) and R. Set 1→w. 
b) Select the largest entry cij in the not-yet-shadowed part of C(T). If 

w=1, set Pn+1’s weight φn+1=cij and w=0. Shadow the corresponding 
lines in both C(T) and R, and set cij and rij to 0. Set 1→p(n+1)

ij where 
p(n+1)

ij is the entry (i, j) of Pn+1. Repeat this step until N-(2n+1) largest 
entries are selected. 

c) Construct a bipartite graph UG from the remaining not-yet- 
shadowed part of R and perform maximum-size matching in UG to get 
(2n+1) edges. Record the corresponding entries to Pn+1 by setting 
1→p(n+1)

ij. Set these entries of C(T) and R to 0s. Then set n+1→n. 
d) Repeat Step 2a)-2c) until n=   12/ −N . 

Step 3: Determine the second “half” configurations: 
a) Un-shadow C(T) and R. Find the largest entry cij in C(T) and set 

cij as the weight for all the subsequent configurations. 
b) Find a maximum-size matching in the bipartite graph of R and set 

the corresponding entries of Pn+1 to 1. Set these entries to 0s in C(T) and 
R, and then set n+1→n. Repeat this step until n=N. 

Fig. 4.  Configuration overlap in the LEF procedure. 
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in the same overall time complexity of O(N3.5) as MIN [5] and 
αi-SCALE [8]. Unlike MIN and αi-SCALE, edge-coloring and 
partitioning are unnecessary in QLEF. 

IV. SPEEDUP BOUND 
Fig. 7 shows the conceptual QLEF scheduling procedure. 

In Fig. 7b, we use a “scheduling trace” to represent the trend of 
cij values covered in the N ordered configurations (from P1 to 
PN). The scheduling trace is usually a wave rather than a 
monotonically decreasing curve, although QLEF always selects 
the largest entry in the not-yet-shadowed part of C(T). Due to 
the shadowing mechanism, a large cij may be shadowed by 
other lager entries in the same line, and is therefore scheduled 
(after some smaller entries) in a later configuration. 

We first consider the first “half” (   12/ −N ) configurations. 
When constructing each of them, if cij is not a selected-entry, 
then there are two possible cases for cij: it is shadowed in the 
current configuration, or it locates in the not-yet-shadowed part 
(refer to Fig. 7a). If cij is shadowed in the current configuration, 
then according to QLEF there must be a larger/equal entry 
(than cij) covered in the same line by the current configuration. 
If cij is not shadowed, then it must be no larger than all the 
selected-entries because QLEF always selects the largest entry 
in the not-yet-shadowed part. In the latter case, we call the 
selected-entries as absolutely larger entries (ALEs) for cij . 

Particularly, we consider the weight φn+1 of Pn+1. Note that
φ n+1 also appears as an entry of the original C(T) and is 
covered in Pn+1. Among the n configurations prior to Pn+1, we 
assume that ∆ configurations do not shadow φn+1, and the other 
n-∆ configurations shadow it, as shown in Fig. 7b. 

For φn+1, what is the minimum total number of ALEs in the 
above scenario? In QLEF, the number of selected-entries 
becomes less and less in each subsequent configuration. So, the 
total number of ALEs for φn+1 can be minimized only if the ∆ 
configurations that do not shadow φn+1 are the last ∆ (out of n) 
configurations prior to Pn+1. As a result, the minimum total 
number of ALEs is (N-2n+1)+(N-2n+3)+(N-2n+5)+…+[(N-
2n)+(2∆-1)]=(N-2n)∆+∆2. These ALEs distribute over the N-
1 lines (either rows or columns) of the original C(T). They do 
not go into the same line as φn+1, because any one of them is 
larger than (or equal to) φn+1 but does not shadow it.  

So, the line of the original C(T) that contains the maximum 
number of ALEs must contain at least L ALEs, where 
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Furthermore, the smallest ALE in this line must be smaller than 
or equal to the L-th largest entry of this line. Yet, this smallest 
ALE is not smaller than φn+1. Because each line of C(T) sums 
up to at most T, from Lemma 1 in the Appendix, we have 
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On the other hand, because φn+1 is shadowed by the other 
n-∆ configurations, from Lemma 2 in the Appendix, we have 
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Combining (4) and (5), for 0≤n<   12/ −N  we get 
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Note that (6) & (7) hold for any 0≤∆≤n. 
From the above discussion, it is clear that any weight φn+1 

of the first   12/ −N  configurations Pn+1 (0≤n<   12/ −N ) can 
be bounded by (6) & (7). For the remaining “half” 
configurations, QLEF uses a small constant as the weight. 
According to QLEF, this constant is not larger than any weight 
of the first   12/ −N  configurations (since the weights are 
monotonically decreasing as shown in the dashed line in Fig. 
7b). Consequently, it can be bounded by the weight of the last 
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configuration in the first   12/ −N  configurations. That is 
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From (1), (7) and (8), Sschedule can be bounded by 
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Fig. 8 plots the Sschedule bounds for QLEF, MIN [5] and αi-
SCALE [8]. As pointed out in [8], the bound Sschedule= 
4(4+log2N) originally given in [5] is not accurate for MIN, and 
MIN’s accurate bound is represented by the saw-toothed curve. 
From Fig. 8, it is clear that QLEF achieves the lowest speedup 
bound. For example, when N=950, QLEF only requires Sschedule 
=21.33 instead of 42.25 for MIN and 30.27 for αi-SCALE. This 
gives a 50% improvement over MIN and 30% over αi-SCALE. 

V. CONCLUSION 
In this paper, a novel minimum-delay scheduling algorithm 

QLEF (Quasi Largest-Entry-First) was proposed to minimize 
the required speedup bound for a performance guaranteed OPS 
switch. We proved that QLEF pushes the speedup bound to the 
lowest known level. On the other hand, QLEF also provides a 
new method to decompose an N×N matrix into only N non-
overlapping permutation matrices. This technique may also be 
used in other communication research such as SS/TDMA and 
WDM networks. 

APPENDIX 
Lemma 1: If the set of N entries E={e1, e2, …, eN} sum to at 

most T and ek is the k-th largest entry in E, then ek≤T/k. 
Proof: Assume that the N entries in E are sorted in a 

monotonically decreasing order as e1≥e2≥…≥eN. Because 

∑N
i=1ei ≤T and E is assumed to be monotonically decreasing, ek 

can reach its maximum possible value only when ek+1= 
ek+2=…= eN=0 and e1= e2=…= ek. We then have 
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e
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== 11

11 . 

Lemma 2: In QLEF scheduling, if any not-yet-covered 
entry cij of C(T) is shadowed by k configurations, we have 

1
2

+





≤
k

Tcij . 

Proof: In QLEF, any not-yet-covered entry cij can only be 
shadowed by another larger (or equal) selected-entry in the 
same line. Because cij is shadowed by k configurations, those 
configurations collectively cover at least k larger (or equal) 
selected-entries in the same line as cij. 

Among these k larger/equal selected-entries, some may 
locate in row i while others locate in column j (because a line 
may refer to either a row or a column). Without loss of 
generality, we assume that k´ out of the k selected-entries locate 
in row i and the other k-k´ locate in column j. As a result, cij is 
(at most) the (k´+1)-th largest entry in row i and the (k-k´+1)-
th largest entry in column j. Because both row i and column j 
sum to at most T, according to Lemma 1 we have 

1+′
≤

k
Tcij  and 
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≤
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