
Traffic Scheduling in Non-Blocking Optical Packet
Switches with Minimum Delay

Bin Wu and Kwan L. Yeung
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong

E-mail: {binwu, kyeung}@eee.hku.hk

Abstract—For performance guaranteed OPS switches with
reconfiguration overhead, it has been shown that packet delay
can be minimized by using N switch configurations (where N is
the switch size) to schedule the traffic. However, this usually
involves an exorbitant speedup requirement, which makes it
impractical under current technology. In this paper, a new
minimum-delay scheduling algorithm QLEF (Quasi Largest-
Entry-First) is proposed. We prove that QLEF pushes the
required speedup bound to the lowest known level. As an
example, when N=950, QLEF only requires a speedup of
Sschedule=21.33 instead of 42.25 for MIN [5] and 30.27 for αi-
SCALE [8]. This gives a 50% improvement over MIN and 30%
over αi-SCALE.

Keywords-Optical packet switch (OPS); reconfiguration
overhead; performance guaranteed scheduling; speedup.

I. INTRODUCTION
The explosion of Internet traffic and the rapid progress of

optical technology have led to the concept of optical Internet,
combining IP’s flexibility with high efficiency of optical
transmission. As a result, optical packet switches (OPS) based
on various optical switching technologies [1-4] are developed
to meet the ever-increasing demands for larger bandwidth and
higher switch port counts.

Despite of many advantages such as scalability, high line
rate, huge capacity and low power consumption, an OPS
switch usually needs relatively long time to change its cross-
connection phase. During this time period (which is called
reconfiguration overhead), no packet can be transmitted across
the switch. This reconfiguration overhead can range from 10ns
to several milliseconds [1-4]. In order to achieve performance
guaranteed switching (i.e. non-blocking with bounded delay),
OPS switch fabric needs to transmit packets at an internal rate
higher than the external line rate. This speedup is to
compensate for the reconfiguration overhead and the
scheduling inefficiency [5-8] (also refer to Section II).

OPS switch architectures similar to that in Fig. 1 are
considered in [5-8]. Particularly, a scalable multi-rack scenario
is discussed in [6], where the VOQ/OQ (virtual output queuing/
output queuing) modules in Fig.1 can be regarded as separate
line cards locating at different racks. They are connected to the
central OPS crossbar switch by optical fibers. An internal
speedup S is deployed in the switch to achieve performance
guaranteed switching. Compared with traditional cable
connections, this setup eliminates the possible electromagnetic

interference, removes the need of O/E/O conversions at the
central switch fabric, and provides extra scalability with lower
power consumption in each rack.

Assume that each reconfiguration at the central OPS switch
consumes δ time slots (overhead). We hope to use the
minimum number of configurations to schedule the traffic in
order to minimize the packet delay. For performance
guaranteed switching, N (where N is the switch size) is the
minimum possible number of configurations required. This is
because an N×N traffic matrix has N2 entries, and each
configuration covers at most N of them [5]. Unfortunately, this
minimum-delay scheduling introduces many empty slots in the
schedule, which must be overcome by a high speedup [5, 8].

Among all the algorithms proposed in [5-8], MIN [5] and
αi-SCALE [8] can schedule traffic with the minimum number
of N configurations. These two algorithms follow the same
approach. That is, they both use a scale function to analyze the
traffic matrix and calculate only the first N/4 configurations to
cover the large entries, while using a small constant weight for
the other 3N/4 configurations [5, 8]. Although αi-SCALE
generally outperforms MIN, the speedup bound given by αi-
SCALE may still be too high.

In this paper, we take a totally different approach and a
novel QLEF (Quasi Largest-Entry-First) algorithm is proposed
to schedule OPS traffic with only N configurations. It has a
better design philosophy than MIN and αi-SCALE, and greatly
pushes the required speedup bound to the lowest known level.

This work is supported by Hong Kong Research Grant Council
Earmarked Grant HKU 7032/01E.

Scheduler

optical switch

Internal speedup

Fig. 1. A scalable high speed optical packet switch.

1

N

1

N N×N unicast

VOQs

VOQs

OQ1

OQN

N input modules N output modules

Optical connections

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 2041 0-7803-9415-1/05/$20.00 © 2005 IEEE

II. SCHEDULING STAGES
Fig. 2 shows the general OPS scheduling procedure in four

stages. In Stage 1, incoming packets are periodically
accumulated in the input buffers over T time slots to construct
an N×N traffic matrix C(T)={cij}. Each entry cij denotes the
number of packets received at input i and destined to output j.
The scheduling algorithm takes H time slots in Stage 2 to
generate N configurations Pn={p(n)

ij}, n∈{1, …, N} with
corresponding weights φn to cover C(T), where “cover” means
that ∑N

n=1φn p(n)
ij≥cij for any i, j∈{1, …, N}. Pn is an N×N

permutation matrix with at most a single “1” in each line (row
or column). p(n)

ij=1 indicates that a packet can be sent from
input i to output j in one slot; p(n)

ij = 0 otherwise. Pn is called a
perfect matching if it has exactly N “1” entries. In Stage 3, the
switch fabric is reconfigured according to the N configurations.
An internal speedup S is applied to ensure that this stage
occupies only T slots. After the speedup is applied, the unit slot
time in the transmission phase of Stage 3 is compressed/
shortened, and the switch fabric holds Pn for φn compressed
slots for packet transmission. Finally in Stage 4 packets are
sent onto the output lines from output buffers (in T slots).

From the tagged packet in Fig. 2, we can see that the
bounded delay of any packet is 2T+H slots. Assume each
switch reconfiguration takes δ slots and T>δN. Since δN slots
are used to reconfigure the switch for N times in Stage 3, only
T-δN slots are left for transmitting C(T). Assume that each of
the line sums of C(T) is not larger than T. We only consider
such admissible traffic in this paper. Under this assumption,
there are at most T packets waiting at each input port for
transmission. Therefore, a speedup factor denoted by Sreconfigure=
T/(T-δN) is necessary to compensate solely for the idle time
caused by reconfigurations. At the same time, the scheduling
algorithm may produce many empty slots (i.e. underutilize the
bandwidth provided by the configurations [5-8]). As a result,
more than T compressed slots are necessary in Stage 3 to
transmit all the packets. Therefore another speedup factor

∑
=

=
N

n
nT

S
1

schedule
1 φ (1)

is required to compensate solely for the inefficient scheduling.
The overall internal speedup S is then given by

∑
=−

=
−

=×=
N

n
nNT

S
NT

TSSS
1

schedulescheduleereconfigur
1 φ
δδ

. (2)

Since the values of T, N and δ are predefined, the overall
internal speedup S is dominated by Sschedule. Thus, our objective
is to minimize the sum of all the N weights ∑N

n=1φn.

III. QLEF ALGORITHM

A. LEF (Largest-Entry-First) Procedure
Given a traffic matrix C(T), we want to cover it by finding

a schedule that consists of N configurations Pn, n∈{1, …, N}
with each weighted by φn. In order to minimize the sum of φn,
intuitively we hope that large entries in C(T) can be scheduled/
covered in the same configuration, so that they can share the
same large weight. This also potentially lets other yet-to-be-
constructed configurations require smaller weights. In other
words, we should always schedule the “largest” entry first.

Be more specific, when an entry in C(T) is selected for
scheduling, the corresponding entry in Pn is marked by “1” and
this entry is then set to 0 in C(T). For unicast switches, only
one entry can be scheduled in each line of each Pn. So, we need
to “shadow” the corresponding lines of C(T) before selecting
the next largest entry in the remaining not-yet-shadowed part.
This operation of “shadowing” avoids selecting another entry
in the same line for the same configuration. As an example,
entry c11=10 of C(T) in Fig. 3 is selected. The corresponding
lines, the first row and the first column, are shadowed before
c11 is set to 0 and c22=9 is selected. We continue this process
until no more entries in C(T) can be further scheduled in Pn
(i.e. the N entries are selected and all the lines of C(T) are
shadowed). At this stage, we un-shadow the whole C(T) (i.e
remove all the shadows) and continue to construct the next
configuration Pn+1 in the same way. We call this procedure of
constructing configurations as LEF (Largest-Entry-First).

Fig. 3 illustrates two possible schedules of a 3×3 C(T). The
first one is obtained using the LEF procedure. Entries “10”, “9”
and “8” are covered in P1 with a weight of 10. The remaining
entries are covered by P2 and P3 with (small) weights 2 and 1
respectively. The sum of the weights is 13. The second
schedule is generated by some non-LEF procedure. Entries
“10”, “2” and “1” are covered in P1. As a result, the not-yet-
covered large entries “9” and “8” may become the weights for
P2 and P3. This gives a very large total weight of 27.

Unfortunately, unlike MIN [5] and αi-SCALE [8], the
above LEF procedure cannot guarantee that N configurations
are always enough to cover all the N2 entries of a traffic matrix.
This is because LEF cannot prevent configuration overlap. Fig.
4 shows such a counterexample. The resulting schedule
consists of four configurations instead of the minimum three.
The entries that are covered more than once (i.e. configuration
overlap) are also illustrated.

T T+H 2T+H 3T+H
Packet delay=2T+H

St
ag

e

Fig. 2. Optical packet switch scheduling stages.

Switch reconfiguration δ
Transmission phase

Time 1
2
3
4

Fig. 3. “Largest-Entry-First” and “shadow” (the first example).
















+
















+
















≤
















=

1
1

1

1
1

1
2

1
1

1
10

821
191
1110

)(TC
















+
















+
















≤
















=

1
1

1
8

1
1

1
9

1
1

1
10

821
191
1110

)(TC

Shadow

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 2042 0-7803-9415-1/05/$20.00 © 2005 IEEE

B. QLEF Algorithm
QLEF algorithm is designed to rectify the above

configuration overlap problem. We use a reference matrix
R={rij} to record all the remaining not-yet-scheduled entries in
C(T). rij=1 means that cij is not yet scheduled/covered, and
rij=0 otherwise. R is initialized to an all-1 matrix. Let the N
configurations be sequentially constructed from P1 to PN.
When a configuration is determined, the corresponding entries
in both C(T) and R are set to 0s. The updated C(T) and R are
then used to determine the next configuration.

Without loss of generality, we focus on the construction of
the (n+1)-th configuration Pn+1. Assume that both C(T) and R
are updated and un-shadowed. The construction process is
similar to the original LEF procedure, except that we only
select the first N-(2n+1) “largest” entries in C(T) (instead of
N in LEF). We call them selected-entries. The corresponding
lines of the selected-entries are shadowed in both C(T) and R
(refer to Fig. 5). At this point, we should have shadowed N-
(2n+1) rows and N-(2n+1) columns in R, and the remaining
not-yet-shadowed part of R can form a (2n+1)×(2n+1) sub-
matrix defined as U. Construct a bipartite graph [6] UG from
U, where all the previously covered entries do not appear in
UG because they have been set to 0s. Then find a (partial)
perfect matching containing (2n+1) edges by performing
maximum-size matching (MSM) [9] in UG (this point is
proved later). This partial perfect matching corresponds to
(2n+1) not-yet-covered entries in C(T), called MSM-entries.
Combining the (2n+1) MSM-entries with the other N-(2n+1)
selected-entries, we get the perfect matching Pn+1.

In the above procedure, the N-(2n+1) selected-entries can
always be properly chosen from the not-yet-covered entries
according to the LEF procedure. This is because there are N-n
not-yet-covered entries in each line of C(T) and we only need
to select N-(2n+1) entries from them, where N-(2n+1)<N-n.

Another key issue is to prove that a partial perfect
matching containing (2n+1) edges definitely exists in UG. In
fact, the following Theorem (taken from Theorem 7 of [5])
can guarantee this, and some further explanation follows.

Theorem: For a bipartite graph G=(X ∪ Y, E) with
|X|=|Y|=k, there always exists a perfect matching in G if its
minimum degree is greater than k/2.

Since we have determined n perfect matchings prior to
Pn+1, there are at most n 0s (denoting covered entries) in each
line of U. Because U is a (2n+1)×(2n+1) sub-matrix, the
minimum degree of its bipartite graph UG is at least (2n+1)-
n=n+1>(2n+1)/2. Therefore, a perfect matching containing
(2n+1) edges exists in UG according to the Theorem.

The above discussion provides the foundation for QLEF
algorithm. QLEF also has two other features: 1) since N-

(2n+1)>0 requires n<(N-1)/2, we use the above procedure to
determine only the first   12/ −N configurations. This ensures
that the N-(2n+1) selected-entries can be properly chosen; 2)
after the first   12/ −N configurations are determined, we find
the largest cij in C(T) and use it as the constant weight for each
of the subsequent configurations (so as to cover the remaining
small entries). Because the bipartite graph of R always
remains regular after a configuration is determined, each of
the subsequent configurations can be obtained by finding
maximum-size matching in R [5, 8].

Summarily, QLEF shown in Fig. 6 guarantees that
configuration overlap never happens when scheduling C(T).
So, C(T) can be covered by using only N configurations. The
time complexity of QLEF is dominated by running the O(N2.5)
maximum-size matching algorithm [9] for N times, resulting

































•
•

•

NNN

N

rr

r
rrr

1

21

11211

Shadowed lines for the
N-(2n+1) selected-entries

The not-yet-shadowed part
is a (2n+1)×(2n+1) sub-
matrix U, which contains
at most n 0s in each of its
lines.

A perfect matching is guaranteed to exist in this sub-matrix U.
It can be obtained by performing maximum-size matching.

Entries corresponding to large
cij are covered once selected.

Shadow

Fig. 5. Reference matrix R in QLEF algorithm.

Fig. 6. QLEF algorithm.

QLEF ALGORITHM
Input:

Any N×N matrix C(T) with maximum line sum not more than T.
Output:

N×N configurations P1, …, PN and weights φ1, …, φN.

Step 1: Initialization:

Set 0→n. Initialize P1, …, PN as all-zero matrices and the N×N
reference matrix R={rij} as all-1.
Step 2: Determine the first “half” configurations Pn+1:

a) Un-shadow C(T) and R. Set 1→w.
b) Select the largest entry cij in the not-yet-shadowed part of C(T). If

w=1, set Pn+1’s weight φn+1=cij and w=0. Shadow the corresponding
lines in both C(T) and R, and set cij and rij to 0. Set 1→p(n+1)

ij where
p(n+1)

ij is the entry (i, j) of Pn+1. Repeat this step until N-(2n+1) largest
entries are selected.

c) Construct a bipartite graph UG from the remaining not-yet-
shadowed part of R and perform maximum-size matching in UG to get
(2n+1) edges. Record the corresponding entries to Pn+1 by setting
1→p(n+1)

ij. Set these entries of C(T) and R to 0s. Then set n+1→n.
d) Repeat Step 2a)-2c) until n=   12/ −N .

Step 3: Determine the second “half” configurations:
a) Un-shadow C(T) and R. Find the largest entry cij in C(T) and set

cij as the weight for all the subsequent configurations.
b) Find a maximum-size matching in the bipartite graph of R and set

the corresponding entries of Pn+1 to 1. Set these entries to 0s in C(T) and
R, and then set n+1→n. Repeat this step until n=N.

Fig. 4. Configuration overlap in the LEF procedure.

Configuration overlap
















+
















+
















+
















≤
















=

001
010
100

5
010
100
001

6
100
001
010

9
100
010
001

10
265
478
3910

)(TC

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 2043 0-7803-9415-1/05/$20.00 © 2005 IEEE

in the same overall time complexity of O(N3.5) as MIN [5] and
αi-SCALE [8]. Unlike MIN and αi-SCALE, edge-coloring and
partitioning are unnecessary in QLEF.

IV. SPEEDUP BOUND
Fig. 7 shows the conceptual QLEF scheduling procedure.

In Fig. 7b, we use a “scheduling trace” to represent the trend of
cij values covered in the N ordered configurations (from P1 to
PN). The scheduling trace is usually a wave rather than a
monotonically decreasing curve, although QLEF always selects
the largest entry in the not-yet-shadowed part of C(T). Due to
the shadowing mechanism, a large cij may be shadowed by
other lager entries in the same line, and is therefore scheduled
(after some smaller entries) in a later configuration.

We first consider the first “half” (  12/ −N) configurations.
When constructing each of them, if cij is not a selected-entry,
then there are two possible cases for cij: it is shadowed in the
current configuration, or it locates in the not-yet-shadowed part
(refer to Fig. 7a). If cij is shadowed in the current configuration,
then according to QLEF there must be a larger/equal entry
(than cij) covered in the same line by the current configuration.
If cij is not shadowed, then it must be no larger than all the
selected-entries because QLEF always selects the largest entry
in the not-yet-shadowed part. In the latter case, we call the
selected-entries as absolutely larger entries (ALEs) for cij .

Particularly, we consider the weight φn+1 of Pn+1. Note that
φ n+1 also appears as an entry of the original C(T) and is
covered in Pn+1. Among the n configurations prior to Pn+1, we
assume that ∆ configurations do not shadow φn+1, and the other
n-∆ configurations shadow it, as shown in Fig. 7b.

For φn+1, what is the minimum total number of ALEs in the
above scenario? In QLEF, the number of selected-entries
becomes less and less in each subsequent configuration. So, the
total number of ALEs for φn+1 can be minimized only if the ∆
configurations that do not shadow φn+1 are the last ∆ (out of n)
configurations prior to Pn+1. As a result, the minimum total
number of ALEs is (N-2n+1)+(N-2n+3)+(N-2n+5)+…+[(N-
2n)+(2∆-1)]=(N-2n)∆+∆2. These ALEs distribute over the N-
1 lines (either rows or columns) of the original C(T). They do
not go into the same line as φn+1, because any one of them is
larger than (or equal to) φn+1 but does not shadow it.

So, the line of the original C(T) that contains the maximum
number of ALEs must contain at least L ALEs, where









−

∆+∆−=
1

)2(2

N
nNL . (3)

Furthermore, the smallest ALE in this line must be smaller than
or equal to the L-th largest entry of this line. Yet, this smallest
ALE is not smaller than φn+1. Because each line of C(T) sums
up to at most T, from Lemma 1 in the Appendix, we have









−

∆+∆−
=≤+

1
)2(21

N
nN
T

L
T

nφ . (4)

On the other hand, because φn+1 is shadowed by the other
n-∆ configurations, from Lemma 2 in the Appendix, we have





 +∆−

=
+



 ∆−

≤+

1
2

1
2

1 n
T

n
T

nφ . (5)

Combining (4) and (5), for 0≤n<   12/ −N we get





















































−

∆+∆−




 +∆−

≤
≤∆≤≤∆≤+

1
)2(

,
1

2

minmax
2001

N
nN
T

n
T

nnnφ . (6)













 −−−+−+−−
=∆

+





 +∆−

≤
4

)143()2)(1(8)143(
1 2

1
2

nNnNnN
n n

Tor φ . (7)

Note that (6) & (7) hold for any 0≤∆≤n.
From the above discussion, it is clear that any weight φn+1

of the first   12/ −N configurations Pn+1 (0≤n<   12/ −N) can
be bounded by (6) & (7). For the remaining “half”
configurations, QLEF uses a small constant as the weight.
According to QLEF, this constant is not larger than any weight
of the first   12/ −N configurations (since the weights are
monotonically decreasing as shown in the dashed line in Fig.
7b). Consequently, it can be bounded by the weight of the last

Scheduling
sequence 
































Selected-entries

Shadowed entries

Not-yet-shadowed entries n-∆ configurations whereφn+1 is shadowed ∆ configurations whereφn+1 is not shadowed

cij

Pn+1

φn+1 Scheduling trace

Fig. 7. Conceptual QLEF scheduling procedure.
(a) (b)

Each chip represents a configuration

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 2044 0-7803-9415-1/05/$20.00 © 2005 IEEE

configuration in the first   12/ −N configurations. That is

1
2

1
1

2
1

1
−



=+

+




≥+≥

+ ≤ Nn
nNnN

n φφ . (8)

From (1), (7) and (8), Sschedule can be bounded by

 
+





 +∆−

≤=












 −−−+−+−−
=∆

−

=+=
∑∑

4
)143()2)(1(8)143(

12/

111
schedule 2

1
2

11
nNnNnN

N

n

N

n
n nT

S φ

1
2

1and
4

)143()2)(1(8)143(2

1
2

1
2

−






=+














 −−−+−+−−
=∆





 +∆−

+





Nn
nNnNnNn

N

. (9)

Fig. 8 plots the Sschedule bounds for QLEF, MIN [5] and αi-
SCALE [8]. As pointed out in [8], the bound Sschedule=
4(4+log2N) originally given in [5] is not accurate for MIN, and
MIN’s accurate bound is represented by the saw-toothed curve.
From Fig. 8, it is clear that QLEF achieves the lowest speedup
bound. For example, when N=950, QLEF only requires Sschedule
=21.33 instead of 42.25 for MIN and 30.27 for αi-SCALE. This
gives a 50% improvement over MIN and 30% over αi-SCALE.

V. CONCLUSION
In this paper, a novel minimum-delay scheduling algorithm

QLEF (Quasi Largest-Entry-First) was proposed to minimize
the required speedup bound for a performance guaranteed OPS
switch. We proved that QLEF pushes the speedup bound to the
lowest known level. On the other hand, QLEF also provides a
new method to decompose an N×N matrix into only N non-
overlapping permutation matrices. This technique may also be
used in other communication research such as SS/TDMA and
WDM networks.

APPENDIX
Lemma 1: If the set of N entries E={e1, e2, …, eN} sum to at

most T and ek is the k-th largest entry in E, then ek≤T/k.
Proof: Assume that the N entries in E are sorted in a

monotonically decreasing order as e1≥e2≥…≥eN. Because

∑N
i=1ei ≤T and E is assumed to be monotonically decreasing, ek

can reach its maximum possible value only when ek+1=
ek+2=…= eN=0 and e1= e2=…= ek. We then have

k
Te

k
e

k
e

N

i
i

k

i
ik ≤== ∑∑

== 11

11 .

Lemma 2: In QLEF scheduling, if any not-yet-covered
entry cij of C(T) is shadowed by k configurations, we have

1
2

+





≤
k

Tcij .

Proof: In QLEF, any not-yet-covered entry cij can only be
shadowed by another larger (or equal) selected-entry in the
same line. Because cij is shadowed by k configurations, those
configurations collectively cover at least k larger (or equal)
selected-entries in the same line as cij.

Among these k larger/equal selected-entries, some may
locate in row i while others locate in column j (because a line
may refer to either a row or a column). Without loss of
generality, we assume that k´ out of the k selected-entries locate
in row i and the other k-k´ locate in column j. As a result, cij is
(at most) the (k´+1)-th largest entry in row i and the (k-k´+1)-
th largest entry in column j. Because both row i and column j
sum to at most T, according to Lemma 1 we have

1+′
≤

k
Tcij and

1+′−
≤

kk
Tcij ,

1
2

1
,

1
min

+





≤








+′−+′
≤

k
T

kk
T

k
Tcor ij .

REFERENCES
[1] J.E Fouquet et. al, “A compact, scalable cross-connect switch using total

internal reflection due to thermally-generated bubbles”, IEEE LEOS
Annual Meeting, pp. 169-170, Dec. 1998.

[2] L. Y. Lin, “Micromachined free-space matrix switches with submilli-
second switching time for large-scale optical crossconnect”, OFC’98
Tech. Digest, pp. 147-148, Feb. 1998.

[3] O. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia “GaAs-
based microelectromechanical waveguide switch”, Proc. 2000
IEEE/LEOS Intl. Conf. on Optical MEMS, pp. 41-42, Aug. 2000.

[4] A. J. Agranat, “Electroholographic wavelength selective crossconnect”,
1999 Digest of the LEOS Summer Topical Meetings, pp. 61-62, Jul.
1999.

[5] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead”, IEEE/ACM Trans. Networking, vol. 11, no. 5,
pp. 835-847, Oct. 2003.

[6] Xin Li and Hamdi, M., “On scheduling optical packet switches with
reconfiguration delay”, IEEE Journal on Selected Areas in
Communications, vol. 21, issue 7, pp. 1156-1164, Sept. 2003.

[7] Bin Wu and Kwan L. Yeung, “Minimizing internal speedup for
performance guaranteed optical packet switches”, IEEE GLOBECOM
'04, vol. 3, pp. 1742-1746, Dec. 2004.

[8] Bin Wu and Kwan L. Yeung, “Scheduling optical packet switches with
minimum number of configurations”, IEEE ICC '05, vol. 3, pp. 1830-
1835, May 2005.

[9] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matching in bipartite graphs”, Soc. Ind. Appl. Math. J. Comput., vol. 2,
pp. 225-231, 1973.

S s
ch

ed
ul

e

N

Sschedule=4(4+log2N)

Fig. 8. Speedup bounds of MIN, αi-SCALE and QLEF.

αi-SCALE

MIN’s accurate bound

QLEF

Sschedule= 4(4+log2N)

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 2045 0-7803-9415-1/05/$20.00 © 2005 IEEE

