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Abstract— Parallel distributed detection for wireless sensor
networks is studied in this paper. The network consists of a
set of local sensors and a fusion center. Each local sensor
makes a binary (single-bit) or M-ary (multi-bit) decision and
passes it to the fusion center where a final decision is made.
The links between the local sensors and the fusion center are
subject to fading and additive noise resulting in corruption of the
transmitted decisions. We analyze the performance of the decision
fusion based on likelihood ratio tests and derive false alarm
and detection probabilities. Based on the theoretical probability
expressions, we design optimal decision rules for the local sensors
and the fusion center. Finally, we illustrate the performance of
the parallel fusion by numerical examples.

I. INTRODUCTION

Wireless sensor networks is an emerging technology that ex-
periences a pervasive trend in many application areas including
environment monitoring, health, security and surveillance, and
robotic exploration [1]. Networks of sensor systems allow for
many distributed processing and cooperative communication
techniques [2-5]. In this paper, we focus on distributed de-
tection that are specially tailored for wireless sensor networks
[5]. In distributed detection, each sensor sends its observation
to the fusion center where a global decision is made. Because
of the bandwidth and energy limitations, instead of sending
raw data to the fusion center, each sensor performs a local
detection process and sends its decision (possibly consisting
of a few bits) to the fusion center. The fusion center collects
all decisions from all sensors and performs a final decision on
the hypothesis under investigation.

In the literature, distributed detection has been considered
for three major topologies: parallel, serial, and tree configu-
ration [5], [6]. Optimal distributed detection algorithms have
been focused on optimality under the Neyman-Pearson and
Bayesian detection criteria. Under the assumption of condi-
tionally independent observations, the optimal fusion rules are
given by likelihood ratio tests at the individual sensors and
at the fusion center [7]. For conditionally dependent observa-
tions, the optimal fusion rules become intractable: they do not
reduce to likelihood ratio tests [8], [9]. Recently, distributed
detection algorithms have also been investigated under several
communication-constraints [2], [10], [11]. Chamberland and
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Veeravalli [11] show that under certain conditions, for an
N -sensor network with a capacity constraint of N bits per
time unit, having each sensor transmitting one bit is optimum.
Thomopoulos and Zhang investigate the distributed detection
in the case of non-ideal channels [12]. In [13], Duman and
Salehi consider the distributed detection over multi access
channels where the fusion center gathers the decisions from
local sensors via a multi-access channel.

All the aforementioned algorithms assume that the sensor
decision statistics, either quantized or at full precision, can
be transmitted error-free to the fusion center. Even though
this assumption is valid in traditional sensor networks such as
radars and sonar, it is impractical in wireless sensor networks
where wireless links are subject to fading and interference.
Furthermore, due to bandwidth and energy constraints, the
use of powerful error correction codes is not viable. Recently,
Chen et al. introduced channel-based decision fusion for
network of sensors linked with fading channels [14]. Assuming
parallel configuration, the authors incorporate the effect of
fading in the detection process, and derive optimal fusion rules
and some alternative fusion rules based on diversity combining
techniques. The performance of the proposed fusion rules
is evaluated through simulations; however, the optimality of
the decision rules at local sensors and at the fusion center,
and optimal designs (e.g., thresholds) are not considered in
[14]. Recently, Chen and Willet have sown that optimal local
decisions that minimize the error probability at the fusion
center becomes a likelihood-ratio test (LRT) under some
particular constraints on the fusion rule [15].

In this paper, we investigate the performance of the parallel
distributed detection in wireless sensor networks. Assuming
flat fading channels between local sensor nodes and the fusion
center, we propose a parallel distributed detection system
based on the LR-test. We derive the global detection and
false alarm probabilities for this system and then use these
probabilities to design the best threshold sets according to
Neyman-Person criterion. We consider both single-bit and
multi-bit based decision strategies. Finally, using numerical
analysis of the theoretical results, we illustrate the performance
of the proposed distributed detection.

The organization of the paper is as follows: In Section II, we
describe the distributed detection structure being considered.
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Fig. 1. Parallel configuration of a sensor system for distributed detection
over fading channels

We derive the decision fusion rules and the relevant equations
for false alarm and detection probabilities in Section III. The
numerical examples are presented in Section IV and finally,
the conclusions are summarized in Section V.

II. SYSTEM MODEL

In Figure 1, we depict the block diagram of a parallel
network of N sensors for distributed detection of a binary
hypothesis. The sensor node Sj observes yj and makes a
local binary decision denoted by uj ∈ {0, 1}. Using a binary
modulation scheme, the local decisions are sent to the fusion
center, S0. Assuming frequency flat fading and additive noise,
the signal received from Sj is given by

rj =
√

ρgjsj + nj (1)

where gj is the complex-valued channel gain between Sj and
S0, and nj is the additive noise for that link. Both gj and nj ∼
CN (0, 1), and they are independent and identically distributed
for j = 1, · · · , N . The average energy of the transmitted signal
sj ∈ {s0, s1} is normalized to unity so that ρ is the expected
signal-to-noise ratio (SNR) for each sensor node. We assume
that channel state information (CSI), i.e., g = [g1, · · · , gN ], is
known only at the fusion center.

The decision at the fusion center is based on the received
signals, r = [r1, r2, · · · , rN ]. We assume that both the obser-
vations uj and the received signals rj are statistically inde-
pendent for j = 1, · · · , N conditioned on the hypothesis. The
false alarm and detection probabilities at Sj , j = 0, · · · , N,
are defined as PF,j = Pr(uj = 1|H0), PD,j = Pr(uj =
1|H1). Our goal is to derive fusion rules based on the Neyman-
Pearson lemma, that is, for a prescribed bound on the global
false alarm rate, PF,0, we wish to find the decision rules both
at the local sensors and at the fusion center that maximize the
global detection rate, PD,0.

III. DISTRIBUTED DETECTION FOR FADING CHANNELS

A. Detection with Single-bit Local Decisions

According to Neyman-Pearson lemma, the optimal decision
rules at S0 reduces to the likelihood ratio test

Γ(r) =
L(r|H1,g)
L(r|H0,g)

=
N∏

j=1

p(rj |H1, gj)
p(rj |H0, gj)

H1

≷
H0

t0 (2)

where p(rj |H1, gj) = PD,jpn(r(1)
j )+(1−PD,j)pn(r(0)

j ), and

p(rj |H0, gj) = PF,jpn(r(1)
j )+(1−PF,j)pn(r(0)

j ), with r
(k)
j =

rj − √
ρgjs

k. Let Υ(rj) = p(rj |H1, gj)/p(rj |H0, gj). With
binary phase shift keying (BPSK) modulation, we can simplify
Υ(rj) to

Υ(rj) =
PD,jξj + 1 − PD,j

PF,jξj + 1 − PF,j
(3)

where ξj = exp
(
4
√

ρ�{rjg
∗
j }
)
. Substituting (3) into (2), and

taking the logarithm of both sides, we obtain the LR-test at
the fusion center as

N∑
j=1

Υ∗(rj)
H1

≷
H0

t∗0 (4)

where Υ∗(rj) = log(Υ(rj)), and t∗0 = log(t0), and t0 is a
threshold to be determined. Although it is straightforward to
implement the fusion rule described by (4), note that it requires
(i) the exact knowledge of the channel gain gj and (ii) the
false alarm & detection probabilities at the local sensors. We
assume quasistatic fading where the channel remains constant
for a long period. In that case, the CSI can be estimated at the
fusion center using a training sequence.

False Alarm and Detection Probabilities

In order to assess the performance of the decision fusion rule
in (4), and to develop optimal thresholds, we need to derive the
false alarm and detection probabilities. At the fusion center,
the false alarm probability is given by

PF,0 = Pr


 N∑

j=1

Υ∗(rj) > t∗0|H0


 . (5)

Noting that we have 2N different possible decision vectors
u = [u1, · · · , uN ], and using the total probability theorem,
we have

PF,0 =
2N−1∑
k=0

Pr(u = uk|H0)Pr


 N∑

j=1

Υ∗(rj) > t∗0|u = uk,H0




(6)
where Pr(u = uk|H0) =

∏N
i=1,u=uk

Pui

F,i(1−PF,i)1−ui , uk =
bin(k,N), and bin(k,N) is the binary vector representation
of k using N bits, e.g., [0, 0, 1, 1] = bin(3, 4). Substituting
(3) into (6), using rj = (2uj − 1)

√
ρgj + nj , and observing

that Pr (· |u = uk,H0) in (6) is independent of the underlying
hypothesis H0, we can express (6) as

PF,0 =
2N−1∑
k=0

Pr(u = uk|H0)Pr


 N∑

j=1

Υ∗
uj

(n′
j) > t∗0|u = uk




(7)
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where Υ∗
uj

(n′
j) = log PD,je

(2uj−1)4ρ|gj |2+4
√

ρn′
j +1−PD,j

PF,je
(2uj−1)4ρ|gj |2+4

√
ρn′

j +1−PF,j

, with

n′
j ∼ C(0, |gj |2/2). Let Γ∗

uk
=
∑N

j=1 Υ∗
uj

(n′
j), and denote

the cumulative distribution of Γ∗
uk

by FΓ∗
uk

(·). Then we can
rewrite (7) as

PF,0 = 1 −
2N−1∑
k=0

Pr(u = uk|H0)FΓ∗
uk

(t∗0). (8)

Using probability theory, we can show that the density and
cumulative distribution of Υ∗

uj
(n′

j) are given by (9) and (10),
respectively, shown at the top of next page. Hence, using
(9), (10), and the fact that Υ∗

uj
(n′

j) are independent for j =
1, · · · , N , we obtain FΥ∗

uj
(.) given in (11) at the next page,

where Ak =
∑k

j=1 log 1−PD,j

1−PF,j
and Bk =

∑k
j=1 log PD,j

PF,j
.

Using (11) and (8), with the knowledge of the detection and
false alarm probabilities at the local sensors, we can finally
evaluate the global false alarm probability, PF,0. In a similar
fashion, the detection probability can be computed as

PD,0 = 1 −
2N−1∑
k=0

Pr(u = uk|H1)FΓ∗
uk

(t∗0). (12)

where Pr(u = uk|H1) =
∏N

i=1,u=uk
Pui

D,i(1 − PD,i)1−ui .
Although the fusion center uses a likelihood ratio test,

determining the actual parameters for the best detection is a
formidable task. This is because, according to NP-lemma, one
needs to make an exhaustive search over all PF,i and PD,i to
determine t∗0 so that for some PF,0 ≤ α, PD,0 is maximized.
Since analytical solution is not tractable, the optimal solution
can be found for only small values of N .

Design Issues

So far, we have not specified the detection rule at the local
sensors. In the absence of errors in the transmissions from
local sensors to the fusion center, it can be shown that the
optimal tests at the local sensors are also LR-tests. If the links
are subject to fading and noise, while the optimal fusion rule
according to NP-lemma reduces to a likelihood-ratio test at
the fusion center, the optimal tests at the local sensors are not
easy to derive. However, one still needs some detection rule,
and so, without claiming any optimality, we propose the use
of LR-test also at the local sensors. The numerical examples
in Section IV will justify that the detection in this fashion
performs remarkably well.

The LR-test at the local sensors is given by

Λ∗(yj) = log
p(yj |H1)
p(yj |H0)

H1

≷
H0

t∗j (13)

Assume that the distribution of the observations yj is known,
and let Fi(·) denote the cumulative distribution of Λ∗(yj)
under the hypothesis Hi, i = 0, 1. Then, we can express
the false alarm and detection probabilities at Sj as PF,j =
1 − F0(t∗j ) and PD,j = 1 − F1(t∗j ), respectively. Hence, the
design of the detection rules reduces to the determination of
the thresholds t∗j that maximize the PD,0 for some fixed PF,0.

As usual in distributed detection problems, an analytical
solution is not feasible; therefore, we resort to numerical
search procedures to determine the decision fusion rules. A
simplistic approach is to set the thresholds at all sensor nodes
the same, however, in that case, one can not guarantee the
maximization of the global detection probability.

B. Detection with Multi-bit Local Decisions

Thus far, we allowed transmission of only one bit per
sensor to the fusion center. Under fading and noisy channel
assumptions, making multiple-bit decisions and sending more
than one bit to the fusion center, although sacrificing from
bandwidth and power, might improve the detection probability.
In the sequel, we study a more general problem to find optimal
number of the decision bits (i.e., number of quantization
levels) at each sensor. Our goal is to determine the best
(possibly) multiple-bit decision rules that provide the optimal
power/performance tradeoff.

The above technique can readily be generalized to multi-bit
case. Assume, for example, the kth sensor node generates a
bk-bit decision and employs 2bk -ary modulation to transmit its
decision to the fusion center. Let τ

(k)
1 < τ

(k)
2 . . . < τ

(k)

2bk−1
be

thresholds at node k, and let the observation samples, yk, k =
1, . . . , N are confined to the interval [τmin, τmax]. The signal
s
(k)
l is transmitted whenever yk ∈ (τ (k)

l−1, τ
(k)
l ], l = 1, . . . , 2bk .

Note that τ
(k)
0 = τmin and τ

(k)

2bk
= τmax. For signals that take

any value in the real line, we have τmin = −∞ and τmax = ∞.
The likelihood ratio test can be expressed as

Λ(r) =
N∑

k=1

log

∑2bk

l=1 P
(1)
k,l pn(rk −√

ρgks
(k)
l )∑2bk

l=1 P
(0)
k,l pn(rk −√

ρgks
(k)
l )

(14)

where P
(m)
k,l = Pr(yk ∈ (τ (k)

l−1, τ
(k)
l ]|Hm). The false alarm and

detection rates follow as

PF,0 = Pr(Γ(r) > t∗0|H0) (15)

PD,0 = Pr(Γ(r) > t∗0|H1). (16)

Finally, we can write the optimization problem for the best
multiple bit decision rules as

max PD,0

s.t. PF,0 ≤ α and
N∑

k=1

bk = Ntotal (17)

τmin ≤ τ
(k)
l ≤ τmax, k = 1, . . . , N, l = 1, . . . , 2bk .

The optimization in (18) is not a convex problem over the set
of thresholds and the number of decision bits. Therefore, it is
very difficult to solve the problem using standard optimization
tools. Instead, one can employ exhaustive search methods
to determine the optimal number of bits and the thresholds,
which is a formidable task. A suboptimal method is to restrict
the search over only the set of bk values satisfying the total
bid budget constraint and using locally most optimal decision
thresholds at each node for that bk value.
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fΥ∗
uj

(y) =
(PD,j − PF,j)ey

(PD,j − PF,jey)((1 − PF,j)ey − (1 − PD,j))
×

1√
16πρ|gj |2

exp

(
−
(

log
(1 − PF,j)ey − (1 − PD,j)

PD,j − PF,jey
− (2uj − 1)4ρ|gj |2

)2

/16ρ|gj |2
) (9)

FΥ∗
uj

(a) =




0 a < log 1−PD,j

1−PF,j

Q(( (1−PF,j)e
a−(1−PD,j)

PD,j−PF,jea − 4ρ|gj |2)/2|gj |
√

2ρ) log 1−PD,j

1−PF,j
< a < log PD,j

PF,j

1 a > log PD,j

PF,j

(10)

FΓ∗
uk

(t∗0) =
∫ BN−1

AN−1

· · ·
∫ B1

A1

fΥ∗
u1

(y1)
N−1∏
j=2

fΥ∗
u1

(yj − yj−1)FΥ∗
uN

(t∗0 − yN−1)dy1 · · · dyN−1 (11)

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the parallel
decision fusion using numerical simulations. We consider the
detection of a DC signal in additive white Gaussian noise
(AWGN), i.e., y = m + n, where m = k if Hk is correct
for k = 0, 1, and n ∼ C(0, 1). The local sensors employ LR-
tests to perform detection and use BPSK modulated signals
±1 to transmit their decisions. By using the expressions (e.g.,
(8), (11), and (12)) developed in Section III-A, we obtain
the optimal thresholds by exhaustive search. We used the
numerical integration routine QUADL in MATLAB c©.

We first illustrate the performance of the parallel detection
based on single-bit decisions. Figures 2.a and 2.b depict
the receiver operating characteristics (ROC) for ρ = 1 and
ρ = 3, respectively. Identical thresholds are assumed at local
sensors. We compute the average probabilities of the false
alarm and detection assuming Rayleigh fading channels. We
observe that as number of sensor nodes increases, the detection
performance improves significantly. However, for all cases in
these figures, we observe that the performance degradation
due to the noise channel is significant with respect to the
performance of the centralized detection which assumes the
availability of noise-free observations at the fusion center.

Next, we illustrate the optimal threshold design for the
parallel decision fusion. We assume that the local sensors em-
ploy LR tests to perform detection. By using the expressions
(e.g., (8)– (12)) developed in Section III-A, we obtain the
optimal threshold values ti, i = 1, · · · , N by an exhaustive
search. In Figure 2.c, we illustrate the ROC curves for parallel
distributed detection with N = 2 local sensors. The false
alarm and detection probabilities are averaged over the channel
distribution, e.g., PF,0 = Eg{PF,0|g}. We consider 4 detection
schemes: (i) ideal local detectors, i.e., PD,j = 1, PF,j = 0, (ii)
LR tests at all sensors with different local thresholds, (iii) LR
tests with the same local thresholds, and (iv) LR tests with all
thresholds set to 0, i.e., t∗j = 0. For the cases (ii) and (iii), we
perform an exhaustive search to determine the best threshold
sets. We observe that the performance with the first scheme

is superior to the LR test based detection schemes. This is
expected since in the first scheme, the errors associated with
the distributed detection are introduced during the transmission
of the local decisions. When the local detectors employ LR
tests, the best detection probability is obtained when we do not
put any constraint on the thresholds (Case (ii)) and perform
the search over all possible threshold sets. This search is
computationally very complex. If we limit the search such
that each local sensor use the same threshold (Case (iii)),
the computation burden is much less, but we observe some
performance degradation. The performance is worst for the
heuristic detection where threshold is set to 0 at each local
sensor node (Case (iv)).

We finally illustrate an example for multi-bit decision
schemes. In Figure 2.d, for a network of two sensor nodes,
we compare the detection performance between three different
schemes where a total of NT = 2, 3 or 4 bits are allowed.
Since the search for optimal thresholds is not practical, we
use a fixed threshold scheme. Specifically, for the DC-level
problem at hand, we set τl = m/2 + lδ, l = −(2bk−1 −
1), . . . , 0, 1, (2bk−1 − 1), where δ = m/2bk and bk denotes
the number of bits for the decision at node k. We preferred
to use this threshold scheme since this one provided the best
detection performance among various other threshold schemes
we simulated. Figure 2.d depicts the ROC curves for the case
where the links between the local nodes and the fusion center
have similar fading levels. For NT = 2, the only possible
scheme is to make single-bit decisions at both sensor nodes.
For NT = 3, we may have two cases: (b1, b2) = (1, 2) or
(2, 1), and for NT = 4, we have (b1, b2) = (1, 3), (2, 2), or
(3, 1). From the figure, we observe that detection performance
with single-bit decisions is superior to other schemes. For
this case where the links have similar quality, it is seen that
different bit assignment schemes provide similar quality for a
given total bit budget. On the other hand, simulations indicate
that if one of the link is severely fading, the best PD,0 for
a fixed NT is attained when more bits are assigned for the
sensor node whose fading gain is smaller [16].
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Fig. 2. ROC-curves for DC-level detection problem using parallel networks. Simulation parameters: DC-level m = 1, N = 2 or 8 sensors, (a) (Upper left)
ρ = 0 dB and (b) (Upper right) ρ = 4.77 dB, Rayleigh fading channel. (c) (Lower left) Optimal threshold design for N = 2, ρ = 0 dB (d) (Lower right)
performance with multi-bit local decisions, N = 2, ρ = 4.77 dB.

V. CONCLUSION

We investigated the performance of parallel distributed
detection in WSN under the assumption of fading channels.
We studied the likelihood ratio based fusion rule that in-
corporates fading in the distributed detection problem, de-
rived the global false alarm and detection probabilities and
used them in determining the thresholds at the local sensors
and the fusion center using the Neyman-Pearson criterion.
We also investigated the performance for multi-bit decision
strategies. Finally, through numerical analysis and simulations,
we designed several parallel fusion rules and evaluated their
performance. Simulations indicate that parallel detection in
wireless sensor networks performs well and in many cases,
making single-bit local decisions provides superior detection
rates than making multi-bit decisions.
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