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Abstract— We consider an LDPC-coded MIMO system com- the MIMO channel capacity (or the maximum achievable
?Ods_ed of M transmtit aTEd Nhfecei\l/etaft]te_m;as or:_erati_ng in aﬂa}j information rate). Possible solutions to the above problem
ading environment. The channel state information is assumed ; : ; ; ;
to be unavailable both to the transmitter and the receiver. A soft include gse of k.)“nd sourcg signal Separatlon algorlthnﬁ}.;]
iterative receiver structure is developed which consists of thre MIMO d!fferent|al modulation [6] [7], and unitary space¥te
main blocks, a soft MIMO detector and two LDPC component modulation (USTM) [8] [9]. However, none of these schemes
soft decoders. Without forming any specific channel estimate, can approach the non-coherent MIMO capacity limit due to
we propose several soft MIMO detectors at the component their sub-optimal code structure, and in the case of USTM,
level that offer an effective tradeoff between complexity and only asymptotic (or the diversity) optimality is achieved i

performance. At the structural level, the LDPC-coded MIMO hich SNR . d th h suff f tial
receiver is constructed in a unconventional manner where the M9 regimes an € approach sufiers from exponentia

soft MIMO detector and LDPC variable node decoder form one decoding complexity.
super soft-decoding unit, and the LDPC check node decoder In this paper, we focus on the design of practical LDPC-
forms the other component of the iterative decoding scheme. coded MIMO systems employing a soft iterative receiver
By exploiting the proposed receiver structure, tractable extrirsic structure consisting of three component soft decodingksioc
information transfer functions of the component soft decoders ft MIMO d d ft LDPC d d
are obtained, which further lead to a simple and efficient LDPC a SO_ etector and two soft component decoders
code degree profile optimization algorithm with proven global (variable node and check node decoders). At the component
optimality and guaranteed convergence from any initialization. level, we propose several soft MIMO detectors, which can
Finally, numerical and simulation results are provided to confirm  generate soft log likelihood ratio (LLR) of each coded bit
the advantages of the proposed design approach for the coded nqer the condition of unknown CSIR without forming any
tem. . .

system explicit channel estimate. At the structural level, the IOP

I. INTRODUCTION coded MIMO receiver is constructed in an unconventional
#manner where the soft MIMO detector and LDPC variable
node decoder form one super soft-decoding unit and the

attention due to the capability of providing great capacityPPC check node decoder forms the other component of
increases in a wireless fading environment [1]. Howeveg, th1e iterative decoding scheme. Utilizing the receiverditrre,

capacity analysis and MIMO system design is often based Hﬂctable extrinsic information transfer functions (EXGf the

the underlying assumption that the fading channel coefficiecomponent soft decoders are obtained, which further lead to

between each transmit and receive antenna pair is perfe@lyimple and efficient LDPC code degree profile optimization
known at the receiver. This is not a realistic assumption faTlgorlthm. This algorithm is shown to have global optimgalit

most practical communication systems especially in fatinga and guaranteed convergence from any initialization, wisch
in contrast to the sub-optimal manual curve fitting techaiqu

Communication systems using multiple antennas at both
transmitter and the receiver have recently received isecta

channels. 4.in 110

L . roposed in .

For communication systems with unknown channel sta?e P [10]
information (CSI) at both ends, conventional receiversaiigu Il. SYSTEM MODEL

have a two-phase structure, channel estimation using gsepr
training symbols followed by coherent data detection. Due
to the importance of the channel estimator, which directlyd : Xa— '
determines estimation quality and hence the overall systeww Imcﬂcavcrl—>| Mmlawr|—>|SPC°nvcrtcr
performance, various MIMO channel estimation algorithms Iomer ST Encoder
have been studied [2] [3]. However, conventional channel
estimators form estimates based only on the training sysnbol

thereby failing to make use of the channel information con- ~ Fig- 1. Transmitter model of LDPC-coded MIMO systems
tained in the received data symbols. Consequently, the two-

phase model limits the performance and can not approaciwe consider a MIMO system with/ transmit antennas and

This research was supported by CoRe grant No.02-10109 spmhéy [V '€C€ive antennas signaling through a frequency flat fading
Ericsson. channel with i.i.d channel coefficients between the trahsmi




and receive antenna pairs. As illustrated in Fig. 1, a bldck block, is dropped in this section while describing the soft

k binary information bits denoted = {d;,---,d;} is first MIMO detection algorithms. To be specific, we dende=
encoded by an outer LDPC encoder with code rate k/n [sz XdT]T, H, andY = [YI, Yg]T as the transmitted
into a codeworct = {ci,--- ,¢,} of lengthn. The codeword signal, channel matrix, and received signal in each coheren

c is further segmented intd consecutive sub-block€; of block, respectively. Furthermore, sub-matricés, X4, Y,
length K. Each sub-blockC; is then encoded by the innerandY, have the following structures, i.e.

space-time encoder into a coherent space-soteframeX;. T T

This encoder is composed of an interleaver, modulatoralseriX, = [le, R ,XZTJ , Xg= [XdT,l, e 7X;‘1F,Td] )
to-parallel converter, and a pilot insertion operator.hiviteach T T
sub-frame, the firsp = MT, symbols are training pilots, Y, = [yzp“' ,YZ,TJ ;o Yg= [ydT,l,"' 7y§,Td} )

followed by MT, data symbols withly + T, = T. Hence,
wherex , X4 1, Y.k, andyq ; represent complex row vectors

the transmlttgd S|gnaKi can be stacked and separated mt8f sizel x M. Similarly, the binary sub-codewoid that maps
two sub-matrices, i.e.

to the transmitted signaX can also be decomposed into

X; = /p/M - [XT, XdTﬂ}T’ D e[ T}T’

Ta 1x M- logsy | X
ci, el cB g2 1X1 - (5)

k=1

Cr

where X € CT->M are the fixed pilot symbols sent ovelynereB is binary set{0,1} and each row; represents the
T, time intervals andX,; € CT¢*M are the information corresponding binary information that mapsxg..
bearing data symbols sent oVEj transmission intervals, with ’
the following power constraints, A. Optimal soft MIMO detector

I I First, according to the channel model (3), the conditional
tr(X7 - X.) = MT:, Px,, {tr(Xd}i 'Xd;i)} =MTa.  probability density of the received signal matfx given the

transmitted signal matriX is given by [11]

Therefore,p is the average signal to noise ratio (SNR) at each

. . . —1
receive antenna. Er?\c.h element of the transmltted datalsigna exp | — tr{ {IT + XxH] ,YyH}
X4 comes from a finite complex alphab#tof size|X'|. One
entire MIMO codewordX consists ofl = LT M complex p(Y’X) - - (6)

TN N H
symbols, which are transmitted from/ transmit antennas w7 det {IT+XX }

and acrosd. consecutive coherent sub-frames of len@th/ ¢ is evident from the above transitional probability thaet
symbols each. unknown MIMO channel is actually a memoryless vector

It is assumed that the fading coefficient math remains channel and hence the optimal MIMO detector does not
static within each coherent sub-block and varies indepethde necessarily need to form a specific channel estimate.
from one sub-block to another. Hence, the signal model canin order to obtain the a posteriori probability of each coded
be written as bit, the a priori probability of the input signal matrX is first

Y, =X, H; + wi, 1<i<L, 3) calculated as
T4 Ty Mlog, |X|

whereY; is aT x N received complex signal matriX; isa  p(X) = p(X,) = p(C) = Hp(ck) = H H plcrj) s
T x M transmitted complex signal matri¥l; is an M x N k=1 k=1 =1
complex channel matrix, ana; is a7 x N matrix of additive (7)
noise. Both matriced; and w; are assumed to have zergvhere each element of matriX, is a member of a complex
mean unit variance independent complex Gaussian entriesalphabet¥’ of size|X’|, each corresponding tog, || LDPC-

coded bits. Therefore, the log likelihood ratio of each LDPC
[1l. SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR coded bit is given by

Conventional channel estimators perform estimation only > . <Y]X)~ (X)
based on the training pilots, thereby failing to make uséef t Loos(cr.;) = log xep, P p
channel information contained in the data symbols. Duego th posiTh.g Y _ p(y|X) -p(X) ’
mismatch between the actual and estimated channel, system X€Pk.g
performance of the two-phase receiver structure (charsel e 1 <Ek<Ty, 1<j<M-logyl|X|, (8)

timation followed by coherent data detepnon) suffers Eev.ewhereD,j, (D; ) is the set ofX for which the(k, )1 bit i
degradation especially in low SNR regimes or fast fadm(g]f the LDPC c()]ded sub-blook is “+17 (“—17). Finally By
channels. : '

) . L racting the in riori information from th
In this section, several novel MIMO detectors which mcludSUbt acting the input a prio ormation from the obtaire

i - ior log likelih io, th insic infortan of
the optimal soft MIMO detector as well as two modifie osterior log el ood_ratlo,t e soft extrinsic infor °
. ‘each coded bit is obtained as,
sub-optimal detectors are proposed that offer an effective
tradeoff between detection complexity and performance. F pler =1
adeoff between detection complexity and performance. Fo Lex(cr.;) = Lpos(ci) —log( ( J )) , 9)

the sake of simplicity, subscript denoting thei™ coherent p(%j = ())




Notice that there is no channel estimation stage in the séfaving obtained extrinsic informationLex; s/ (c,m-) and
MIMO detector described above, and therefore the proposég(t_p(ckyj), one can obtain by the following substraction,
detection algorithm does not depend on the unknown channel

stateH but only on its underlying statistical distribution. Lexa #(cr.j) = Lea r (ck,j) — Lextp(ch,s) » (14)

. the extrinsic information of bits,, ; extracted solely from the

B. Sub-optimal soft MIMO detector channel observatiog, ;- and the a priori information oy, .

The optimal soft MIMO detection algorithm proposed in In contrast to the situation of perfect channel state inBprm
Section IlI-A provides the optimal extrinsic LLR values oftion at the receiver (CSIR) whetkey(ci,;) only depends on
each coded bit. However, the summation in both the numeratbe a priori knowledge o€, and observatioy, ;. @ non-zero
and the denominator of equation (8) consist26f ! items, extrinsic information of;. ; can be obtained from the a priori
with K (=T;M log, |X|) increasing linearly with number of knowledge ofc;, and observationy,, (with &’ # k) in an
data slots7, (or coherence timd’). It has an unaffordable unknown MIMO fading environment. An intuitive explanation
exponential complexity for practical communication syste of above difference can be made by viewiag as partially
especially when the coherence tirfie is large. Hence, we fixed pilots based on the input a priori information. Therefo
propose a sub-optimal MIMO detector in this section witbetter channel knowledge is learned (although no explicit
complexity increasing linearly witfly. channel estimation exists), which translates into a better

Instead of performing soft MIMO detection by one operaposterior probability ot;, ;. Hence, a non-zero partial extrinsic
tion, we can extract partial extrinsic information by presiag information solely from the a priori probability af,, and the
only two rows of the data matriX,; at a time, and then channel observatiog, is obtained.
combining different partial extrinsic information to forthe Due to the assumption that the input a priori information
final extrinsic LLR. In order to combine information fromof different bits are independent, all the partial extrinisifor-
coded rowsx, ,, andx, x, we first perform the optimal MIMO mation Lext.q - (cx,;) and Lex.p(ck,;) can be viewed as being
detection algorithm on the following reduced s&é-coherent close to independent. The final output extrinsic informatio
block Lexi(ck,;) is obtained by summing all the independent partial

T + extrinsic information obtained from different coded rows
Xk k) = [Xf,xik ’ ng} » Yk = {YZ,Yik, ydT,k/J . and pilot observations, i.e.
Therefore, th ! LLR val (cky) 1SbO) -

erefore, the partial extrinsic valuBey 1 (cx,;) Of bit N — , ) ]

ck,; obtained from the a priori information oﬁ‘ romk,Jck./, and LeXt(ck’J) Z Leca s (c’w) + LeXt'p(ck’J)

k=
channel observatiolY |, 1) is given by K ;ei
Lext # (cn ) = Z Lexi i (k) — (Ta — 2) - Lextp(ck,;) , (15)

| (Ex[k,k/]eogjp(Y[m ’X[k,m) 'p(wal)) Ak
= log ' ; 2M log, | X| ; ;
Ex[k,,k,]ep,;jp(Y[kyk/] X[k,k’]) (X)) A summation of2 z|*1 terms is required to extract the

partial extrinsic informatiorLey: s (c,;) in equation (11) and
plees = 1) 2Mlogs [ X terms for Lex.p(ck ;) In equation (13). Therefore,
— log | =—2—2, 1<k, K <T;, (11) in order to obtain the output soft extrinsic LLR values, a
(p(ck,j = 0)) total number of((7;; — 1) - 22M1°e> ¥ 4 2M1oe: |1¥1) terms
of probability summation is required for each coded bit, as
Where Dy, (Dy,) is the set ofXp for which bit e opr?osed tonTdMlogzm terms ?n the original optimal soft
+ 17 (“ - 1”) By the same reasoning, partial extrinsi

MIMO detector.
|nformat|on of bitcy ;, related to (and contained in) the a

priori information ofc; and channel observatiods. andy, . C. Sub-optimal butterfly soft MIMO detector
can also be obtained by performing optimal detection on the
following sub-coherenblock

Motivated by the fast Fourier transform (FFT) algorithm, we
can further reduce the complexity of the soft MIMO detector
T T o0 (log, T, - 22Mlogz |X] 4 oMlog, [X]) terms of summation
Xiw = {Xf, ng} ’ Y = [YTT’ y({k} , (12 per(codged bit by using a sub—optima? butterfly MIMO detector
structure.
It is first assumed that the number of the data slbfs=
. 2™ is power of 2. If not, we can appropriately zero-pad
ZX[MGDLZ)(Y[’“”XW]) p(X[k])> the transmitted signal matriX. The sub-optimal butterfly
ZX[k]ED;jp(YMX[k]) (X)) detection algorithm obtains the extrinsic informationotingh
’ a multi-level structure similar to the fast Fourier tramsfio
— 1o <p(ckvj - 1)> 1<k<T, . (13) Where the extrinsic information is accumulated from lewel t
) Sk=<1g . o ) i T
P(Ck,j = 0) level. Specifically, if the partial extrinsic LLR value of ded

with the corresponding extrinsic LLR value given by

Lext—p(qu,j) = 10g<



bit cx ; at then™ level is L2 4(ck,;), then the extrinsic LLR D. Discussion

h : . . :
value of the(n + 1)" level is updated as Note that both the sub-optimal structure in Section II-B as
Lo (ep ) = L2 o(cn i) + AL (e ), 0<n<m—1, well as the sub-optimal butterfly MIMO detector in the pre-
xa(h) = Lexalchs) exa(Chs), 0= (16) Vvious subsection are modifications of the optimal soft MIMO
detection algorithm provided in Section IlI-A. The two sub-
optimal MIMO detection algorithms provided in Section BI-

and IlI-C have the following structural differences. Firgte

where the second term\L ¢ (cy ;) of equation (16) rep-

resents the additional partial extrinsic information datea
from the information of coded bitge;., with sub-codeword

row index k' given by sub-optimal MIMO detector in Section 1lI-B forms extrinsic

information through dinear combining structure, where there

o — { k+2mn=t o if k (mod 277 < 2mnt are a total of(T; — 1) partial extrinsic information terms
k—2m-n=t if k(mod 2™ ") >2m "1 " (each corresponding to the partial extrinsic LLR obtaineaf

o ) ) ) ) (A7) other rowsk’); each term is computed by performing optimal
Similar to the extraction algorithm provided in (14)4etection on the sub-coherent block given by (11)-(14). On

ALgiq(cr,;) is given by the following form the other hand, the sub-optimal butterfly MIMO detector in
ALthé(Ck,j) _ Lg)i—l(ckhj) — Lexip(chs) (18) Section III-C performs data detection by employing a multi-

level structure, where the extrinsic information is disited

whereLexip(c, ;) is given by equation (13), and partial extrin-at succeeding levels until all the input a priori informatiand

sic informationLg ! (cx, ;) is obtained by performing optimal the channel observations are combined and exchanged Ietwee

soft MIMO detection on the sub-coherent blosk;, ) and all different rows.

Y. .1 with modified input a priori information, i.e.
[l ] P P IV. RECEIVERDESIGN OF THECODED MIMO SYSTEM

L?xfl(ck,j) A. New receiver structure of the LDPC-coded MIMO system
1 (Ex[k,kq@/&%Y[kvk’] X[k,k’l) Plapp (X[k,k'1)>
= Og
v decoder E Interleaving E decoder

+1
Ex[k7k,]eplsz(Y[k,k’] X[k,k']) papp’ (Xji,) , ,
J PN E Lycwo t

: MIMO Detector : :

_ ' 4 VND [ i CND H

. (Ck-,j 1) H ‘[(.) o : . . e H

— log| ——< ) . (19) ; ! ——| ! | Reraticeloop f()1 :

p(ck“] = 0) Iy per @ E I‘A,\'\ﬂ) ’T‘ ]E‘C“:E !
Furth th dified iori babilipz+! (X E SUPER SOFT DECODER b E = i IDRCCHECK |
: ur ermore, e.mO Ime a pr.IOI’I probal ”%Pp ( [k,k’}). 1 (MIMO Detector & LDPC Variable Node Decoder : : NODE DECODER
in equation (19) is a combination of the a priori probabilityr-------=--=--=--=--smoemoemoeiccioecd o e
of ¢, andcy as well as thex!" level extrinsic information of

¢k, Which can be represented as

................

. '
Variable node H Edge ! Check node

[—

- — IgpE
Soft-In Soft- Out‘> EDET @

Ly per

Fig. 2. Receiver structure of LDPC-coded MIMO systems

M log, | X|

N1 _ n Conventionally a coded MIMO receiver is obtained by
Papp (Xike) = li[l p(cr.s)p(ew s) Poxlcr j) » (20) connecting the inner soft MIMO detector and the outer LDPC
= decoder to form one large iterative decoding loop. The dvera
wherepgxt(ck@j) is given by MIMO receiver actually consists of two iterative decoding
exp (ck/ ‘~L”td(0k/ )) loops. '_rhe soft extrinsic in_forma.tion, _which describe; the

ngt( Ck’,j) et 7 _ (21) uncertainty of each coded bits, is iteratively exchangeth@
1+ exp (Lgxt-d(ck’,j)) outer loop between the MIMO detector and LDPC decoder

as well as in the inner loop between variable node and check
Therefore ALY (cx ;) can be viewed as the partial extrinsicode decoders inside the LDPC decoder.
information obtained solely from the a priori informatiofi o In this paper, we structure the MIMO receiver differently
ci, channel observatiogr;,, and its extrinsic information at by combining the soft MIMO detector and LDPC variable
the n'" level. node decoder together as a super soft decoder, a form also

Starting from the initial conditionLd, 4(cx ;) = 0, the suggested in [10]. As illustrated in Fig. 2, the decodingploo

extrinsic informationZZ, 4(cx ;) of each coded bit is accu-is formed by exchanging extrinsic information between the
mulated at each level by absorbing additional partial egici super decoder and the LDPC check node decoder iteratively.
information through the sub-coherent block combining présompared with the conventional iterative MIMO receiver
cess. The final soft extrinsic LLR value of each coded b{hamed as bit-interleaved coded modulation with iterative
is formed by combining the extrinsic LLR information at thedecoding (BICM-ID) algorithm), the new receiver structure
m™" (lowest) level with the extrinsic information obtainedrino has two advantages. First, the new receiver structure Hgs on
pilot observations, which is given by one iterative decoding loop and hence has lower decoding

complexity compared to the conventional BICM-ID receiver
Lex(cr,;) = Laxta(cr.j) + Lextp(cr.i) 1<k <Ty.(22) structure. Second, the proposed structure has the adeaotag



enabling the EXIT function of the soft component decodetdDPC code degree profile optimization algorithm in the fol-
to have tractable forms. By fully exploiting the closed forntowing, which is composed of two simple linear optimization
EXIT functions, a simple iterative approach for the LDPGteps.

code degree profile optimization with guaranteed convergen,
and global optimality is proposed in Section IV-B, which i
superior to the sub-optimal manual curve fitting technidi® [
[10].

Variable node degree profile optimization:
¥or a fixed check node degree profif@k} from the k'h
iteration, the optimal variable node degree profil™!} is

given by D,
B. LDPC code optimization {A) = arg I{rlf‘?Z Aifdu,i (29)
Following the methodology given in [10] [12], the EXIT under the constraints st
functions of the super MIMO soft decoder (combination of £y (fc(an)) > a,
the LDPC variable node decoder and soft MIMO detector) -
can be obtained as Dy
D, dAi=1, 0<A<1, 1<n<N, (30)
Iewno = fs(Iawnp) = Z&‘ : J((dv,i —1)-J ' (Iavnp) i=1
=1

where{a,|a, € [0,1]} is a set of specified constraint points,

+J! <F|p(J(dv,rJ_1(IA,VND))>) . (23) and N is the total number.of corTst-ram.ts on the curve.
e Check node degree profile optimization:
where ); is the fraction of the variable nodes having edgEor a fixed variable node degree prof{lel '} from the(k1+
degreed, ;, and D, is the number of different variable nodel)”" iteration, the optimal check node degree profilg '}

degrees. The functiod(-) is given by is given by D,
k41 .
1 1 0 A = arg min i/dei 31
J(0?) = —(—2/ U—Alncosh(y) e . ) & {pi} EP / (1)
In2\o% J_ V27 under the constraints -
(0% y—1)? -
xexp (=5 53— dy |, (24) fel fs(an)) > an,
A
D,
and the mappingV|p(-) represents the input-output relations Zpi =1, 0<p; <1, 1<n<N, (32
of the MIMO detector betweetig pet and Ia per at SNR p, P
.. wherea,, and N are defined as before.
Ieper= F’p(lA,DET>- (25) o
e Initializations:
The check nodes of the LDPC code have a transfer characi@r-general, we can start with any feasible degree profiles.
istic given by the following [12] Based on our experience from numerical simulations, we find

that it is always a good choice to start with a regular check

Iecno = fe(Iacnp) node degree!

If we stack the LDPC code degree prof{l&;, p; } into a su-
per vectorn = [Ay,--- , A, ,p1,---,pp, ] . We can see that
the objectiveRqyer given in equation (27) is a concave function
wherep; is th_e fraction of the chfack nodes having edge degréth respect ton and that all the constraints given in (28)
de,i, and D. is the number of different check node degreesgre |inear. Hence, the above degree optimization problesn ha
Following the successful decoding (convergence) criterinly one unique optimal solution. Due to the non-decreasing
provided in [12], the degree profile optimization problenm caproperty of the proposed iterative maximization algorithit
be reduced to the following maximization problem by taking; guaranteed to converge to the global maximum solugion

D.
~ I—Zpi'e]((dc,i_l)'J_l(l_IA,CND)) ; (26)
i=1

the LDPC code raté? as the objective from any initialization point. Therefore, in contrast tethub-
pr pi/dei optimal manual curving fitting technique proposed in [18¢ t
max Royter = max <1 - % ) , (27) above iterative LDPC optimization algorithm provides much
(i} Qoopi} 221 Ai/du,i better performance and can serve as an efficient tool forccode
under linear constraints given by MIMO system design.
Tevno(Zavno) > Iacno(Ze.enp) = Iacno(Zavap ), V. NUMERICAL AND SIMULATION RESULTS

D, De The probability of bit error of & x 2 MIMO system over
Z Ai =1, Zpi =1, 0<Xi,pi<1. (28) unknown fading channel with coherence tiffie= 6, training

i=1 =1 numberT, = 2, and BPSK modulation is demonstrated in
Utilizing the closed form EXIT functions of the componenfig. 3. The outer LDPC code is a reguléd, 6) code with
soft decoders given by (23) and (26), we propose an efficiesdde rateR = 1/2, and codeword length x 10%. As can be



2by2 Regular (3,6) LDPC-coded MIMO System, T=6, T‘=2
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Fig. 3. Probability of bit error of & x 2 regular(3, 6) LDPC-coded MIMO
system over a unknown fading channel with coherence time= 6 and

training numberT’; = 2 using several different soft MIMO detectors.

2by2 Optimized rate (1/2) LDPC-coded MIMO System, T=6, T‘=2
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Fig. 4.

training numberT’; = 2 using several different soft MIMO detectors.

observed from the above plot, ovér5dB performance gain [7]
can be achieved by using optimal soft MIMO detectors rather
than the simple MMSE-based detector. The two sub-optim
MIMO detectors provide significant performance gain, and a

the same time maintain affordable decoding complexity.

Using the optimization algorithm provided in Section I1V-B, [

Probability of bit error of & x 2 optimized LDPC-coded MIMO
system over a unknown fading channel with coherence time= 6 and

LDPC code degree profile is shown in Fig. 4. Compared with
Fig. 3, we can achieve abotitsdB performance gain by using
the optimized LDPC degree profile as opposed to the simple
regular(3,6) LDPC code.

VI. CONCLUSION

In this paper, we developed a practical LDPC-coded MIMO
system over a flat fading wireless environment with no chbnne
state information neither at the transmitter nor at theivece
We first proposed several soft MIMO detectors, including
one optimal soft MIMO detectors and two simplified sub-
optimal detectors, that offer an effective tradeoff betwee
complexity and performance. A coded MIMO receiver is con-
structed in an unconventional manner, where the soft MIMO
detector and LDPC variable node decoder form one super
soft-decoding unit, and the LDPC check node decoder forms
the other component of the iterative decoding scheme. By
exploiting the proposed receiver structure, tractableiresit
information transfer functions of the component soft dexed
are obtained. Based on the closed form EXIT functions, a
simple and efficient LDPC code degree profile optimization
algorithm is proposed. The proposed optimization algorith
shown to have global optimality and guaranteed convergence
from any initialization, which is superior to the sub-op&im
manual curve fitting technique in previous work. Numerical
and simulation results of the unknown LDPC-coded MIMO
system using the optimized degree profile further confirm the
advantage of using the proposed design approach for the code
MIMO system.
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