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Abstract— Strong connectivity has been an important feature explored
in many network applications, such as sensor networks. This research
focuses on a dual power assignment problem, where each sensor node
has two transmission power levels. The objective is to minimize the
number of wireless sensor nodes assigned to transmit messages at the high
transmission power level, while the resulting sensor network is strongly
connected. We propose an efficient 1.75-approximation algorithm for this
challenging problem. We not only show that the approximation ratio of
the proposed algorithm is tight but also demonstrate the capability of
the proposed algorithm in terms of simulation experiments.

Keywords: Dual power assignment, Power level assignment,
Strong connectivity, Wireless sensor network.

1. Introduction

With the advance of technology for wireless sensor nodes, sensor
networks are now widely tested and deployed for different application
domains. One major challenge on the deployment of a wireless sensor
network is on the power consumption minimization issues. Such an
observation triggered a number of studies and implementations in
energy-efficient research topics, such as those for packet routing, node
placement, power-level assignments, etc.

In sensor networks, connectivity is usually required to collect
information sensed by nodes. In many applications, sensor nodes
might even need to operate autonomously and form an ad hoc
network. Sometimes nodes might even need to work together to detect
some complicated events, such as those for user behaviors. Similar
requirements for connectivity are often seen in the research areas for
mesh networks and ad hoc networks. As a result, strong connectivity
is identified in the past decade as an important topic in the literature
for sensor networks, mesh networks, and ad hoc networks, e.g.,
[1, 3, 5, 8, 9, 11, 12]. When the available transmission power levels
for each wireless sensor node are continuous in a range of reals,
many researchers have proposed results for the strong connectivity of
wireless sensor nodes in [1, 3, 5, 8, 9]. In particular, 2-approximation
algorithms based on minimum spanning trees were proposed in [1, 9].
When wireless sensor nodes are deployed in the 2-dimensional or the
3-dimensional space, the power-level assignment problem was proved
being NP-hard [5, 7, 8]. Researchers also considered the power-level
assignment problem for different topological constraints in [2–4, 6].
Minimization of the maximum power consumption of a node to
establish a connected wireless network was explored in [9, 10].

This research is motivated by the reality in which wireless sensor
nodes might only have a set of discrete power levels available
for assignment. In particular, we are interested in a dual power
assignment problem, in which there are two available power levels
for each wireless sensor node. The objective of the dual power
assignment problem is to minimize the number of nodes assigned
to transmit messages at the high transmission power level, while
the resulting network is strongly connected. Sholander, Frank, and
Yankopolus [12] proposed a heuristic algorithm by grouping nodes
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into two categories. The dual power assignment problem was proved
being NP-hard by Rong, Choi, and Choi [11], and a 2-approximation
algorithm was given. In this paper, we propose an efficient ap-
proximation algorithm for the dual power assignment problem. The
approximation ratio is proved being 1.75, and the approximation ratio
is shown to be tight. The proposed algorithm is highly efficient with
O(n2) time complexity, where n is the number of wireless sensor
nodes in a network. The strength of the proposed algorithm algorithm
is demonstrated by a series of experiments, for which significant
improvement is observed, compared to the previous result in [11].

The rest of this paper is organized as follows: In Section 2,
we formally define the system models under considerations and
the dual power assignment problem for network connectivity. An
approximation algorithm is presented in Section 3 with analysis of
its properties. Section 4 reports the experimental results. Section 5 is
the conclusion.

2. System Models and Problem Definition

We study a power-efficient networking problem to construct a
strongly connected network for wireless sensor nodes with two
transmission power levels. We are concerned with a set of n im-
migrated wireless sensor nodes placed in a field, where each node
is specified by its location. In such a network, a packet from a
sensor node may need to be delivered through several hops before
reaching its final destination. Two transmission power levels are
given for the sensor nodes, where the higher/lower one is denoted as
high/low transmission power. Each transmission power level specifies
its transmission range. Let rH and rL with rH > rL denote
the transmission ranges for the high and low transmission powers,
respectively. A node is set to be high (respectively, low), if it is
assigned with the high (respectively, low) transmission power level.

There is a direct link from one wireless sensor node u to another
wireless sensor node v if v could receive and decode any signal
from u. That is, if the distance between u and v is no more than the
transmission range of the transmission power level assigned for u,
v can receive and decode any signals from u. Under an assignment
of transmission power levels for the sensor nodes, one routing path
from a node u to another node v exists if the message delivered from
u can reach v through a series of multi-hop transition. A network
is said to be strongly connected if there exists at least one routing
path from u to v for any two different sensor nodes u and v when
the sensor nodes transmit messages at their assigned transmission
power levels. The objective of the dual power assignment problem
for network connectivity is to minimize the power consumption for
n wireless sensor nodes, which is defined as the total power of the
assigned transmission power levels of these nodes, while the resulting
network is strongly connected. Since assigning more nodes to be
high results in larger power consumption, the objective is equivalent
to the minimization of the number of nodes set to be high. In this
paper, we consider non-trivial cases in which the network is strongly
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connected if all nodes are set to be high (and the network is not
strongly connected if some nodes are set to be low).

We formulate the dual power assignment problem for network
connectivity by a graph-theoretic approach as follows. Specifically,
we are given two directed graphs GH = (V, EH) and GL = (V, EL)
on the same set V of n wireless sensor nodes, where a directed edge
(u, v) from node u to node v in GH (respectively, GL) signifies that
node v can decode the signals from node u when node u is high
(respectively, low). The following properties hold for GH and GL:

• GH is symmetric and strongly connected;
• GL is symmetric but not strongly connected; and
• GL is a proper subgraph of GH .

A power assignment is represented by a subset U of V whose
members are set to be high. Let EH(U) consist of the outgoing
edges of GH from the nodes in U . Let G(U) = (V, EH(U) ∪ EL).
For any set S, let |S| denote the cardinality of S. It is clear that
setting all the nodes in U as high and the others as low results in a
strongly connected network if and only if there exists a path from u
to v in G(U) for any two nodes u and v. Therefore, the objective of
the dual power assignment problem is to derive a power assignment
U ⊆ V with the minimum |U | such that G(U) is strongly connected.
The dual power assignment problem for network connectivity can be
defined as a graph-theoretical problem as follows:

Dual Power Assignment Problem
Input instance: Two directed graphs GH = (V, EH) and GL =
(V, EL) on the same vertex set V , where GL is a proper subgraph
of GH . Both GH and GL are symmetric. GH is strongly connected,
whereas GL is not.
Objective: A subset U of V such that G(U) is strongly connected
and |U | is minimized.

In [11], Rong, et al. has shown that the Dual Power Assignment
problem is NP-hard and proposed a 2-approximation algorithm.

3. A 1.75-Approximation Algorithm

In this section, we present our algorithm with the approximation
ratio 1.75 for the Dual Power Assignment problem. Before we
proceed with further discussion, some terminologies are defined as
follows. For any directed graph G, let B(G) be the set of the
strongly connected components in the directed graph G. Let C(S, u)
denote the strongly connected component of G(S) that contains
node u for a power assignment S. Let Γ(S, u) consist of the
nodes v in V with (u, v) ∈ GH and C(S, u) �= C(S, v). That
is, Γ(S, u) contains the neighbors of u in GH that are not in the
strongly connected component C(S, u). A member of B(G(S)) is a
neighboring component of u in G(S) if it contains at least one node
of Γ(S, u). Let G(S) be the undirected graph on B(G(S)), where
each strongly connected component in B(G(S)) is a vertex in G(S),
and two vertices in G(S) are adjacent if each of them contains a node
in V − S such that the two nodes are adjacent in GH . The strongly
connected component of G(S) represented by a vertex w in G(S) is
denoted by G−1(S, w).

For example, suppose that we are given 10 sensor nodes, where
the corresponding directed graphs GH and GL are illustrated in
Figures 1(a) and (b). Suppose that S is {v1, v7}. We know EH(S) =
{(v1, v7), (v7, v1), (v1, v2), (v7, v8)} and G(S) is (V, EL∪EH(S)).
Let w1, w2, w3, and w4 represent the strongly connected components
of G(S) containing v1, v3, v5, and v9, respectively. B(G(S)) is
{w1, w2, w3, w4}. Γ(S, v2) is {v3, v9}. w2 and w4 are neighboring
components of v2, whereas w3 is not. Moreover, Γ(S, v8) is {v9}, w4

is a neighboring component of v8, whereas w2 and w3 are not. G(S)
is an undirected graph on w1, w2, w3, and w4, shown in Figure 1(c).
Since v2 and v3 are adjacent in GH , there is an undirected edge

(w1, w2). The other edges are because v4 and v5 are adjacent (the
edge (w2, w3)), v6 and v10 are adjacent (the edge (w3, w4)), and v2

and v9 are adjacent (the edge (w1, w4)). Similarly, if S is an empty
set, G(∅) is an undirected graph on w′

1, w′
2, w′

3, w′
4, and w′

5, shown
in Figure 1(d), where w′

1, w′
2, w′

3, w′
4, and w′

5 represent the strongly
connected components of G(∅) containing v1, v3, v5, v9, and v7,
respectively.

With the initialization of S as an empty set, our proposed three-
phase assignment algorithm, referred as Algorithm TPA and summa-
rized in Algorithm 1, inserts nodes into S incrementally in a greedy
manner. Algorithm TPA has the following three phases:

1) First, every strongly connected component of B(G(S)) is
unmarked. As long as there is still a node u in V that has
more than one neighboring component in G(S), the first phase
calls select(u, S′), which is defined as follows, with the setting
of S′ as ∅.

The subroutine select(u, S′) first marks C(S, u) and in-
serts u into S′. Then, for each neighbor v of u in Γ(S, u),
if C(S, v) is unmarked, the subroutine select(u, S′) recur-
sively calls select(v, S′).

After the recursive call returns, we insert all of the nodes in
S′ into S and unmark the strongly connected component of
B(G(S)) which contains u.

2) The second phase repeats the following procedure until G(S)
does not contain any cycle.

Let C̄ be a cycle of at least three vertices in G(S). Suppose
that C̄ = (c0, c1, c2, . . . , c|C̄| = c0). Let vi be a node
within the strongly connected component, represented by
ci (i.e., G−1(S, ci)), such that the strongly connected
component, represented by ci+1 (i.e., G−1(S, ci+1)), is a
neighboring component of vi in G(S). The second phase
then inserts these |C̄| nodes v1, v2, . . . , v|C̄| into S.

3) After the above procedures, the resulting G(S) is a tree. Then,
the third phase repeats the following procedure until there is
no edge exists in G(S).

Let u1 be a vertex in G(S) and u2 be a neighbor of u1

in G(S). For notational brevity, let u3 = u1. For i ≤
2, let vi be a node of V within the strongly connected
component represented by ui (i.e., G−1(S, ui)) such that
the strongly connected component represented by ui+1

(i.e., G−1(S, ui+1)) is a neighboring component of vi in
G(S). The third phase then inserts nodes v1 and v2 into
S.

It is clear that G(S) has only one vertex after executing Algorithm
TPA. Therefore, G(S) is a strongly connected graph. Consider the
input instance described by GH and GL in Figures 1(a) and 1(b) as
an example for illustrating Algorithm TPA. Initially, S = ∅. Since
v2 has 2 neighboring components, Algorithm TPA calls select(v2,
S′) in the first phase, where S′ = ∅ initially. v2, v3, v9, and
v8 are inserted into S′ during the recursive call of select(v2, S′).
Then, v2, v3, v9, and v8 are inserted into S. The first phase then
terminates since no node has more than one neighboring component.
After that, v1, v2, v3, v4, v7, v8, v9, and v10 form a strongly connected
component, and so do v5 and v6. Since no cycle exists for G(S), the
second phase inserts no node into S. In the third phase, v4 and v6 are
inserted into S. Therefore, the number of nodes in S is 6. The optimal
solution for such an input instance is 5 by assigning v1, v3, v5, v8,
and v10 as high.

A straightforward implementation of Algorithm TPA requires
O(|V |(|V |+|EH |)) time complexity. We could apply the disjoint-set
data structures in our implementations so that the time complexity is
O(|V | log |V | + |EH |) = O(n2), where n is the number of sensor
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(a) GH

v1
v2 v3 v4
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v6

v7
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(b) GL

w1

w2

w3

w4

(c) G({v1, v7})

w′
1

w′
5

w′
2

w′
3

w′
4

(d) G(φ)

Figure. 1. An example for notation explanations: (a) GH and (b) GL, where each dot represents a sensor node and an arrow between two nodes vi

and vj indicates that there are two directed edges (vi, vj) and (vj , vi) in the graph. (c) G({v1, v7}), where w1, w2, w3, and w4 represent the strongly
connected components of G({v1, v7}) containing v1, v3, v5, and v9, respectively. (d) G(∅), where w′

1, w′
2, w′

3, w′
4, and w′

5 represent the strongly connected
components of G(∅) containing v1, v3, v5, v9, and v7, respectively.

Algorithm 1 : Three Phase Assignment (TPA)
Input: (GH , GL);
Output: A subset S of V such that G(S) is strongly connected;

1: S ← ∅;
{first phase}

2: unmark every strongly connected component in B(G(S));
3: while there exists a node u ∈ V whose number of neighboring

components in B(G(S)) is more than 1 do
4: call select(u, S′ ← ∅);
5: insert all of the nodes in S′ into S;
6: unmark the strongly connected component C(S, u);
{second phase}

7: while there exists a cycle C̄ = (c0, c1, c2, . . . , c|C̄| = c0) in G(S)

do
8: let vi be a vertex in V , where C(S, vi) is equal to G−1(S, ci) and

∃u ∈ Γ(S, vi) ∩ u ∈ G−1(S, ci+1);
9: insert v1, v2, . . . , v|C̄| into S;
{third phase}

10: while there exists an edge (u1, u2) ∈ G(S) do
11: let vi be a vertex in V , where C(S, vi) is equal to G−1(S, ui)

and ∃w ∈ Γ(S, vi) ∩ w ∈ G−1(S, u(i+1)), for i ≤ 2; (remark:
u3 = u1)

12: insert v1 and v2 into S;
13: return S;

Procedure: select(u, S′)
1: insert u into S′ and mark the strongly connected component C(S, u);
2: for all v ∈ Γ(S, u) do
3: if C(S, v) is unmarked then
4: call select(v, S′);

nodes under considerations.
Now we show that the approximation ratio of Algorithm TPA is

1.75. For notational brevity, let S2 denote the set S after the second
phase of Algorithm TPA. For the rest of the section, let U be a power
assignment of V such that G(U) is strongly connected. We can derive
two different lower bounds of |U |.

Lemma 1: |U | ≥ |B(GL)| ≥ 2.
Proof: For each connected component in B(GL), there must

be at least one node included in U . Otherwise, G(U) is not strongly
connected.

Lemma 2: Let U ′ be a subset of V . If no cycle exists in G(U ′)
and each vertex in V has at most one neighboring component in
G(U ′), then |U | ≥ 2(|B(G(U ′))| − 1).

Proof: We prove this lemma by contradiction with the assump-
tion of |U | < 2(|B(G(U ′))|−1). Let Ḡ(U ′, ∅) be a directed graph on
B(G(U ′)). For notational brevity, vertices are labeled with the same
labels in Ḡ(U ′, ∅) and G(U ′). Note that no edge exists in Ḡ(U ′, ∅).
Ḡ(U ′, U) is constructed as follows: For a node u in U , let v be the
vertex in G(U ′), where G−1(U ′, v) is equal to C(U ′, u). Since each
vertex in V has at most one neighboring component in G(U ′), there
is at most one vertex s in Ḡ(U ′, ∅) which represents the neighboring

component of u in G(U ′). If such a vertex s exists, the directed
edge (v, s) is added into Ḡ(U ′, ∅). Let Ḡ(U ′, U) be the resulted
directed graph by considering all of the nodes in U and eliminating
the duplicated directed edges in the above step.

Since G(U) is strongly connected, Ḡ(U ′, U) is strongly connected.
However, at most one directed edge will be added into Ḡ(U ′, U)
for each element in U during the process in constructing Ḡ(U ′, U).
Because no cycle exists in G(U ′), and GH is strongly connected,
G(U ′) is a tree. Besides, if a directed edge (u, v) is in Ḡ(U ′, U), then
there exists a corresponding undirected edge (u, v) in G(U ′). There
are (|B(G(U ′))|−1) edges in G(U ′). Ḡ(U ′, U) is strongly connected
only if there are at least 2(|B(G(U ′))|−1) directed edges are added
during the construction of Ḡ(U ′, U). Thus, |U | < 2(|B(G(U ′))|−1)
implies that Ḡ(U ′, U) is not strongly connected. Therefore, G(U) is
not connected. A contradiction is reached.

S2 is a subset of V which satisfies the properties of U ′ stated in
Lemma 2. Combining with Lemma 1, we have

|U | ≥ max{|B(GL)|, 2(|B(G(S2))| − 1)}. (1)

In the following, we prove an upper bound on the cardinality of the
power assignment S derived from Algorithm TPA.

Lemma 3: |S| ≤ 1.5|B(GL)| + 0.5|B(G(S2))| − 2.
Proof: For Step 4 in each iteration of the while loop in

Algorithm 1, i.e., the recursive call of select(u, ∅), let k be the
number of strongly connect components marked for the recursive call.
That is, k nodes in V are inserted into S′ after the recursive call.
These k marked strongly connected components become a connected
component in G(S) after inserting these k nodes into S. Therefore,
these k−1 strongly connected components are merged into one new
strongly connected component. The number of nodes inserted into
S for each of the k − 1 contracted strongly connected components
is amortized to be k

k−1
. Similarly, when a cycle C̄ is considered in

the second phase, |C̄| connected components become a connected
component after inserting |C̄| nodes into S. The number of nodes
inserted into S for each of the |C̄|− 1 contracted connected compo-
nents in this iteration is amortized to be |C̄|

|C̄|−1
. Let k1, k2, . . . , km

denote the number of nodes inserted into S for Step 4 in each
iteration of the while loop in the first phase of Algorithm 1. Let
C̄1, C̄2, . . . , C̄q denote the cycles considered in the second phase.
There are |B(GL)| − |B(G(S2))| strongly connected components
contracted after the second phase of Algorithm TPA. Therefore, we
have

|S2| =
Pm

i=1
ki

ki−1
(ki − 1) +

Pq
i=1

|C̄i|
|C̄i|−1

(|C̄i| − 1)

≤ 1.5(
Pm

i=1(ki − 1) +
Pq

i=1(|C̄i| − 1))
= 1.5(|B(GL)| − |B(G(S2))|),

because ki ≥ 3 and |C̄i| ≥ 3 for every i ( ki
ki−1

≤ 1.5 and |C̄i|
|C̄i|−1

≤
1.5 ). Since there are only (|B(G(S2))|−1) edges before we proceed
to the third phase, the third phase inserts exactly 2(|B(G(S2))| − 1)
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nodes into S. Therefore, we have

|S| ≤ 1.5(|B(GL)| − |B(G(S2))|) + 2(|B(G(S2))| − 1)

= 1.5|B(GL)| + 0.5|B(G(S2))| − 2.

Theorem 1: Algorithm TPA is a polynomial-time 1.75-
approximation algorithm for the Dual Power Assignment problem.

Proof: We prove this theorem by showing that

|S|
|U | ≤

1.5|B(GL)| + 0.5|B(G(S2))| − 2

max{|B(GL)|, 2(|B(G(S2))| − 1)} < 1.75.

If |B(GL)| ≥ 2(|B(G(S2))| − 1), then

|S|
|U | ≤

1.5|B(GL)| + 0.25|B(GL)| − 1.5

|B(GL)| < 1.75.

If |B(GL)| < 2(|B(G(S2))| − 1), then

|S|
|U | ≤

3(|B(G(S2))| − 1) + 0.5|B(G(S2))| − 2

2(|B(G(S2))| − 1)
< 1.75.

After the approximation ratio of our algorithm is shown, we show
the tightness of the approximation bound by presenting a set of input
instances. Consider the input instance shown in Figure 2, where each
dot represents a sensor node. For any two nodes u and v inside
a circle in Figure 2, there is a directed edge (u, v) from u to v
in both GH and GL; that is, the distance between u and v is no
longer than rL. In Figure 2(a), an arrow between two nodes u and
v indicates that there are two directed edges (u, v) and (v, u) in
GH ; that is, the distance between u and v is longer than rL and
no longer than rH . As shown in Figure 2, the pattern of A1, A2,
A3, and A4 repeats k times. Totally, there are 4k + 2 circles. The
optimal power assignment assigns only 4k + 2 nodes to be high as
shown in Figure 2(c), where the larger solid nodes are set to be high.
Algorithm TPA returns a solution with 7k + 3 nodes assigned to be
high as shown in Figure 2(d), where the hollow nodes are included
in the first phase and the larger solid nodes are included in the third
phase, whereas no nodes are inserted in the second phase. Therefore,
the approximation ratio of Algorithm TPA is tight for sufficiently
large k.

4. Experimental Results

A. Experimental Setups and Performance Metric

Algorithm TPA is simulated extensively with comparison to the
algorithm proposed in [11] (denoted as Algorithm SP), which is a
2-approximation algorithm for the Dual Power Assignment problem.
We consider sensor nodes in the R

2 space. Three types of distribu-
tions on sensor nodes are considered, in which the parameter setup
is similar to that in [11]. For the first type of distributions of sensor
nodes, both of the x-ordinate and y-ordinate of a sensor node are
uniform random variables between 0 and 1000. For the second type of
distributions, nodes are deployed according to a Poisson distribution
by setting the mean value as 500. In addition, for the first and
second types of distributions, simulations are conducted for different
network sizes (n = 30, 50, 100). For the third type of distributions,
we consider a specific application scenario, in which 300 sensor
nodes are deployed homogeneously. Specifically, a 1000 × 1000
R

2 plane is divided into rectangular regions with equal size. Each
region is associated with two nodes. If (x1, y1) and (x2, y2) are
the ordinates of the left-bottom and the right-top points of a region,
two nodes are deployed in this region in which the x-ordinates
(respectively, y-ordinates) are uniform random variables between x1

and x2 (respectively, y1 and y2). After that, the other 100 sensor

nodes are deployed by setting both x-ordinate and y-ordinate as
uniform random variables between 0 and 1000.

Given a deployment of sensor nodes, we have to determine the
transmission ranges rH and rL. In our experiments, rH is set as
the shortest transmission rage associated for each node such that
assigning all of the sensor nodes to high makes the wireless sensor
network strongly connected. In our experiments, we simulate the two
algorithms by varying the ratio of rL to rH from 5% to 80%.

We compare the performance of the two algorithms with an
estimated lower bound, derived from Equation (1). The ratio of
relative high power nodes of an algorithm for an input instance is
defined as the ratio of the number of nodes assigned to be high in
the power assignment derived from the algorithm to the estimated
lower bound of the input instance. The average and maximum ratios
of relative high power nodes are measured and conducted from 500
independent experiments for each parameter configuration.

B. Simulation Results

Figures 3 (a)-(d) show the performance result when nodes are
deployed by uniform distributions, and the ratio of rL to rH varies
from 0.05 to 0.8 stepped by 0.05. The average ratios of relative high
power nodes when n = 50 and n = 100 are reported in Figures
3 (a) and (b), respectively. The maximum ratios of relative high
power nodes when n = 50 and n = 100 are reported in Figures
3 (c) and (d), respectively. Similar results were observed when
n = 30. As shown in Figures 3(a)-(d), for the metric of the ratios of
relative high power nodes, Algorithm TPA outperforms Algorithm SP

in either worst cases or average cases. Besides, the maximum ratio of
relative high power nodes of Algorithm TPA is no more than 1.75,
which is as the same as the analysis in Section 3. The maximum
ratio of relative high power nodes of Algorithm TPA is at most 1.7,
whereas that of Algorithm SP is at most 1.9. When the ratio of rL to
rH is close to 1, both of the ratios of relative high power nodes of the
two algorithms tend to approach their theoretical bounds, i.e., 1.75
for Algorithm TPA and 2 for Algorithm SP. In the worst cases, as
the ratio of rL to rH increases, the number of nodes in a connected
component of GL becomes larger. Thus, the number of candidates of
nodes to be set being high also increases. In both algorithms, once a
node is set as high, one node of its neighboring components should
be high. Therefore, assigning nodes in an incorrect sequence may
be a poor choice compared to the estimated lower bound. As for
average cases, there is a peak in Figures 3(a) and (b), i.e., when the
ratio of rL to rH is 0.65. This is because that when the ratio of rL

to rH is low, to make the network strongly connected, most nodes
have to be assigned to be high either for power assignments derived
from the two algorithms or for the corresponding estimated lower
bound. Besides, when the ratio of rL to rH is large enough, in most
cases, assigning most nodes to transmit message at the low power
level could make the network strongly connected either in power
assignments derived from the two algorithms or in the corresponding
estimated lower bound.

Similarly, Figures 3(e)-(h) report the simulation results when nodes
are deployed by Poisson distributions. The average ratios of relative
high power nodes when n = 50 and n = 100 are reported in
Figures 3 (e) and (f), respectively. The maximum ratios of relative
high power nodes when n = 50 and n = 100 are reported in Figures
3 (g) and (h), respectively. The results in Figures 3(e)-(h) are similar
to those in Figures 3(a)-(d). However, the peaks in Figure 3(g)-(h)
shift to left, where the ratio of rL to rH is about 0.5 or 0.55. This
comes from the characteristics of Poisson distributions since most
nodes are not very far away.

Figure 4 shows the results for the third type of deployment
distributions by varying rL/rH from 0.05 to 0.8 stepped by 0.05.
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Figure. 2. An input instance for a tight example: (a) GH , (b) GL, (c) an optimal assignment by assigning the larger solid nodes as high, and (d) an
assignment derived from Algorithm TPA, where the hollow nodes are included in the first phase and the larger solid nodes are included in the third phase.
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(a) n = 50
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(b) n = 100
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(c) n = 50
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(d) n = 100
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(e) n = 50
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(f) n = 100
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(g) n = 50
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(h) n = 100

Figure. 3. (a)-(b): average ratios of relative high power nodes for n = 50, 100 when nodes are deployed by a uniform distribution, respectively. (c)-(d):
maximum ratios of relative high power nodes for n = 50, 100 when nodes are deployed by a uniform distribution, respectively. (e)-(f): average ratios of
relative high power nodes for n = 50, 100 when nodes are deployed by a Poisson distribution, respectively. (g)-(h): maximum ratios of relative high power
nodes for n = 50, 100 when nodes are deployed by a Poisson distribution, respectively.
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(a) Average ratio
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(b) Maximum ratio

Figure. 4. (a) average ratios of relative high power nodes and (b) maximum
ratios of relative high power nodes for n = 300 when the plane is divided
into 100 regions and each region has at least 2 nodes.

The average and maximum ratios of relative high power nodes are
reported in Figures 4 (a) and (b), respectively. The results in Figures 4
are similar to those in Figures 3.

5. Conclusion

In this paper, we explore a power-efficient networking problem
to maintain the property of strong connectivity for wireless sensor
networks so that the power consumption is minimized. We consider
a dual power assignment problem for a set of wireless sensor nodes,
where each node has two transmission power levels. The objective
is to minimize the number of nodes assigned to transmit messages
in the high power level, while the resulting network is strongly
connected. Given the NP-hardness of the problem, we present an
efficient approximation algorithm with the approximation ratio 1.75.
We not only show the tightness of the ratio but also demonstrate
the capability of the proposed algorithm in terms of simulation
experiments, for which very encouraging results are shown. We must
point out that even though the proposed algorithm is presented for
power-level assignment of sensor networks, it could also be applied
to the power-level assignment for other kinds of networks.
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