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Abstract—A hybrid electronic/optical packet switch consists of 
electronically buffered line-cards interconnected by an optical 
switch fabric. It provides a scalable switch architecture for next 
generation high-speed routers. Due to the non-negligible switch 
reconfiguration overhead, many packet scheduling algorithms 
are invented to ensure performance guaranteed switching (i.e. 
100% throughput with bounded packet delay), at the cost of 
speedup. In particular, minimum delay performance can be 
achieved if an algorithm can always find a schedule of no more 
than N configurations for any input traffic matrix, where N is the 
switch size. Various minimum delay scheduling algorithms (MIN, 
αi-SCALE and QLEF) are proposed. Among them, QLEF 
requires the lowest speedup bound. In this paper, we show that 
the existing speedup bound for QLEF is not tight enough. A new 
bound which is 10% lower than the existing one is derived. 

Keywords-Minimum delay scheduling; performance guaranteed 
switching; reconfiguration overhead; speedup bound. 

I.  INTRODUCTION 
The explosion of Internet traffic has led to ever-increasing 

demands for larger bandwidth and higher port density in the 
next generation routers. At present, most Internet backbone 
routers are based on a single-rack solution using a switched 
backplane. Typically, a standard telecommunication rack is of 
size 19 inches in width and 7 feet in height. It can 
accommodate 14-16 line-cards, with aggregate capacity up to 
160 Gb/s. To further increase the capacity, multi-rack solution 
[1] is adopted, where line-cards in different racks are 
interconnected to/from the central electronic switch fabric by 
fibers. This architecture defines the 4th generation router, which 
can offer an aggregate capacity up to 10 Tb/s [2]. Since 
electronic switch fabric is used, O/E/O conversions are 
necessary at the central switch rack. As data is handled in 
electronic domain, power consumption becomes the key 
constraint [3]. To solve these issues, the 5th generation router is 
proposed as shown in Fig. 1, where a hybrid electronic/optical 
switch architecture is adopted. Compared to the 4th generation, 
the central electronic switch fabric is replaced by an optical 
one. This not only removes the O/E/O conversions from the 
switch rack, but also reduces its power consumption. Following 
this way, the aggregate capacity can be up to 100 Tb/s [3-4]. 

However, the optical switch fabric needs a non-negligible 
amount of time to change its configurations, known as 
reconfiguration overhead. During this period, no packet can be 
transmitted across the switch. Reconfiguration overhead is due 
to three factors [5]. First, the optical fabric needs time to 
change its interconnection pattern, which can range from 10 ns 
to several milliseconds depending on the technology adopted 

[6-9]. Second, time is required to resynchronize the optical 
transceivers and the switch fabric in each reconfiguration. 
Finally, because the arriving time of optical signals varies, the 
clock and its phase have to be aligned, and extra clock margin 
has to be considered in order to avoid data loss. 

To achieve performance guaranteed switching (i.e. 100% 
throughput with bounded packet delay) [10-13], the switch 
fabric must run faster to compensate for both the 
reconfiguration overhead and the scheduling inefficiency. The 
required speedup S is defined as the ratio of the internal packet 
transmission rate to the external line-rate (S≥1). 

Assume time is slotted and each time slot can accommodate 
one fixed-size packet. Several scheduling algorithms are 
proposed to achieve performance guaranteed switching [10-
13]. They all adopt the same four-stage scheduling procedure 
as shown in Fig. 2. Stage 1 is for traffic accumulation. An N×N 
traffic matrix C(T)={cij} is obtained at the input buffers every 
T time slots, where N is the switch size. Each entry cij denotes 
the number of packets arrived at input i and destined to output 
j. As a common assumption [10-13], the entries in each line 
(i.e. row or column) of C(T) sum to at most T. In Stage 2, a 
scheduling algorithm generates a schedule consisting of (at 
most) NS switch configurations in H time slots. Each 
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configuration is denoted by a permutation matrix Pn={p(n)
ij} 

(NS≥n≥1), where p(n)
ij=1 means that input port i is connected to 

output port j (In this case, we also say that Pn covers entry (i, 
j)). A weight φn is assigned to each Pn, indicating the number 
of slots that Pn should be kept for packet transmission. The set 
of NS configurations generated must cover C(T), i.e. ∑NS

 n=1φn 

p(n)
ij≥cij for any i, j∈{1, …, N}. Then ∑NS

 n=1φn is the number 
of slots required to transmit all the packets in C(T). Let each 
reconfiguration take an overhead of δ time slots. Accordingly, 
sending C(T) requires δNS+∑NS

 n=1 φ n time slots. This is 
generally larger than the traffic accumulation time T. Without 
speedup, 100% throughput is not possible. Stage 3 is for actual 
packet transmission, where the switch fabric is reconfigured 
according to the NS configurations. At a speedup of S, the slot 
size for a single packet transmission in Stage 3 is shortened by 
S times. Then 100% throughput is ensured by having 

T
S

N
SN

n
nS =+ ∑

=1

1 φδ .                               (1) 

The values of NS and ∑NS
 n=1φn in (1) are determined by the 

scheduling algorithm. Note that the total reconfiguration 
overhead time δNS cannot be reduced by speedup and thus 
T>δNS. Finally, Stage 4 takes another T time slots to send the 
packets onto the output lines from the output buffers. 

Rearranging (1), we have 
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where Sreconfigure and Sschedule are defined as 
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Sreconfigure is the speedup factor to compensate for the idle time 
caused by reconfigurations, whereas Sschedule is the speedup 
factor to compensate for the scheduling inefficiency. 

In Fig. 2, the packet delay is bounded by 2T+H slots where 
T>δNS. With a smaller NS, T and thus the packet delay bound 
can be reduced. But NS must be no less than N. Otherwise, the 
NS configurations are not sufficient to cover every entry in 
C(T) [10-13]. Accordingly, scheduling algorithms that only 
require NS=N configurations are called minimum delay 
scheduling algorithms. When NS=N, from (1) T can be made as 
close to its lower bound δN as possible by minimizing ∑N

n=1φ
n/S. Generally, we hope to minimize S for a given packet delay 
(or equivalently a given T). In minimum delay scheduling, this 
translates to minimizing Sschedule according to (1)～(4). 

Recently, several minimum delay scheduling algorithms 
(MIN [10], αi-SCALE [12] and QLEF [13]) have been 
proposed to minimize Sschedule. Among them, QLEF (Quasi 
Largest-Entry-First) requires the lowest speedup bound. In this 
paper, we derive a new speedup bound for QLEF, which is 
10% lower than the one in [13]. Because the same scheduling 
problem is also involved in other communication networks, 
such as SS/TDMA [14], TWIN [15] and wireless sensor 
networks [16], our result also contributes to those systems. 

The rest of the paper is organized as follows. In Section II, 
we review the QLEF algorithm [13]. The new speedup bound 
is derived in Section III. We conclude the paper in Section IV. 

II. QLEF ALGORITHM 
QLEF algorithm [13] is summarized in Fig. 3. It generates 

N non-overlapping configurations (i.e. the entries covered by 
any two configurations do not overlap) to cover C(T). It has a 
time complexity of O(N3.5), and the correctness proof can be 
found in [13]. When the values of T, N and δ are given, Sschedule 
determines the overall speedup S in minimum delay 
scheduling. Therefore, QLEF aims at minimizing Sschedule. 

The key idea of QLEF is to cover large entries in C(T) first. 
A reference matrix R is initialized to all 1’s, where a “1” 
indicates that the corresponding entry of C(T) is not yet 
covered. Assume that configuration Pn+1 is being constructed. 
To avoid configuration overlaps, QLEF only selects N-(2n+1) 
largest entries from C(T) in its Step 2b, which are called 
selected-entries. The corresponding lines of the selected-entries 
are shadowed in both C(T) and R (see Fig. 4a). Then, QLEF 
applies maximum-size matching (MSM) [17] to the remaining 
not-yet-shadowed part of R to get (2n+1) entries in Step 2c, 
which are called MSM-entries. The N-(2n+1) selected-entries 
combine with the (2n+1) MSM-entries to form Pn+1. 
Accordingly, those entries covered by Pn+1 are set to 0 in both 
C(T) and R. Then both C(T) and R are un-shadowed and QLEF 
repeats the above process to construct the next configuration. 

To ensure N-(2n+1)>0, only the first   12/ −N  configurations 
are constructed according to the above mechanism (in Step 2). 
Then in Step 3, the remaining   12/ +− NN  configurations are 
determined by maximum-size matching [17]. 

III. SPEEDUP BOUND 
In QLEF, the N configurations are sequentially constructed 

from P1 to PN. We now focus on the first half of them P1, …, 
Pn, Pn+1, …, P / 2N  

-1. Assume that an entry cij∈C(T) is covered 

Fig. 3.  QLEF algorithm. 

QLEF ALGORITHM 
Input:  

An N×N matrix C(T) with maximum line sum not more than T. 
Output:  

N configurations P1, …, PN and weights φ1, …, φN. 
Step 1: Initialization:  

Set 0→n. Initialize P1, …, PN to all-zero matrices and the N×N 
reference matrix R={rij} to all 1’s. 
Step 2: Determine the first “half” configurations Pn+1: 

a) Un-shadow C(T) and R. Set 1→w. 
b) Select the largest entry cij in the not-yet-shadowed part of C(T). 

If w=1, set Pn+1’s weight φn+1=cij and w=0. Shadow the corresponding 
lines in both C(T) and R, and set cij and rij to 0. Set 1→p(n+1)

ij where 
p(n+1)

ij is the entry (i, j) of Pn+1. Repeat this step until N-(2n+1) largest 
entries are selected. 

c) Construct a bipartite graph UG from the remaining not-yet- 
shadowed part of R and perform maximum-size matching in UG to get 
(2n+1) edges. Record the corresponding entries to Pn+1 by setting 
1→p(n+1)

ij. Set these entries of C(T) and R to 0’s. Then set n+1→n. 
d) Repeat Step 2a)-2c) until n=   12/ −N . 

Step 3: Determine the second “half” configurations: 
a) Un-shadow C(T) and R. Find the largest entry cij in C(T) and set 

cij as the weight for all the subsequent configurations. 
b) Find a maximum-size matching in the bipartite graph of R and 

set the corresponding entries of Pn+1 to 1. Set these entries to 0 in C(T) 
and R, and then set n+1→n. Repeat this step until n=N.
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by Pn+1. If cij is shadowed (see Fig. 4a) in the construction of Pk 
(n≥k≥1), then Pk is called an s-configuration of cij. Otherwise, 
Pk is called a g-configuration of cij. 

Fig. 4b shows the conceptual QLEF scheduling procedure. 
We use a “scheduling trace” to represent the trend of cij values 
covered. It is usually a wave rather than a monotonically 
decreasing curve, although QLEF always selects the largest 
entry in the not-yet-shadowed part. Due to the shadowing 
operation, a large entry may be shadowed by an s-configuration 
and thus can only be covered later by another configuration.  

For a particular configuration Pn+1, its weight φn+1 also 
appears as an entry in C(T) and is the first selected-entry in 
Pn+1. Therefore, in the following discussion, we treat φn+1 as 
an entry in C(T) rather than a weight. Among the n 
configurations constructed before Pn+1 (i.e. P1 ～ Pn), we 
assume that ∆ of them are g-configurations of φn+1 and the 
other n-∆ configurations are its s-configurations, as in Fig. 4b. 

A. General Idea 
Define the entries larger than or equal to entry φn+1 in the 

original C(T) as larger-entries (or LEs). To bound the value of 
φn+1, we count the minimum total number of LEs (denoted by 
M) that are covered by P1～Pn. These M LEs reside in N lines 
(rows or columns) of C(T), and the line that contains the 
maximum number of LEs must contain at least the average 
number of  NM /  LEs. As a result, the smallest LE in this line 
must be smaller than or equal to the  NM / -th largest entry of 
this line. Yet it is not smaller than φn+1. Because the maximum 
line sum of C(T) is T, according to Lemma 1 in [13], we have 







≤+

N
M
T

n 1φ .                                   (5) 

On the other hand, because φ n+1 is shadowed by n-∆ s-
configurations, from Lemma 2 in [13], we have 





 +∆−

=
+



 ∆−

≤+

1
2

1
2

1 n
T

n
T

nφ .                   (6) 

Combining (5) and (6), we can bound φn+1 as follows: 
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Formula (7) indicates that no matter what is the value of ∆ 
(0≤∆≤n), the bound always holds because we have taken the 
worst case into consideration (i.e. the max function for ∆). 

For the remaining   12/ +− NN  configurations constructed in 
Step 3 in Fig. 3, QLEF uses a small constant as the weights. 
According to QLEF, this constant is not larger than any weight 
of the first   12/ −N  configurations (since the weights are 
monotonically decreasing as shown by the dashed line in Fig. 
4b). Therefore, it can be bounded by the weight of the last one 
among the first   12/ −N  configurations. That is 

1
22

1
1

−









≥+≥

+ ≤ NNnN
n φφ .                       (8) 

After the N weights φn+1 are bounded by (7) and (8), we 
can calculate Sschedule bound in (4). Note that the key is to count 
the minimum total number of LEs (i.e. M in (7)). 

B. Speedup Bound Formulation 
For entry φn+1, we consider its ∆ g-configurations and the 

other n-∆ s-configurations (see Fig. 4b). In QLEF, all the 
selected-entries in the g-configurations are LEs. On the other 
hand, each s-configuration must cover one LE in the same line 
as φn+1. However, in addition to this LE, the s-configuration 
may also cover other LEs in different lines. Assume that a set 
of consecutive s-configurations {Px} shadow φn+1, and Py is 
the first g-configuration after {Px}. From Lemma 1 in the 
Appendix, the number of LEs covered by each Px∈{Px} is at 
least half of the number of the selected-entries in Py. 

In Fig. 4b, the ∆ g-configurations and the n-∆ s-
configurations may queue in any order. From Lemma 2 in the 
Appendix, in order to minimize M, the n-∆ s-configurations 
should consecutively locate at either the very beginning or the 
very end of the configuration sequence P1～Pn. 

Case 1: The n-∆ s-configurations consecutively locate at 
the very end of the n configurations. In this case, all the 
selected-entries covered by the ∆ g-configurations are LEs, but 
the number of LEs covered by the n-∆ s-configurations is 
trivial and is ignored when counting M. So, M=(N-1)+(N-
3)+…+(N-2∆+1)=(N-∆)∆. Note that none of the g-
configurations shadows φn+1. So, these LEs reside in N-1 lines 
of C(T) instead of N lines. Replacing N in (7) by N-1, we have 
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Mathematically, this is equivalent to (10) below. 
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Fig. 4.  Conceptual QLEF scheduling procedure. 
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Case 2: The n-∆ s-configurations consecutively locate at 
the beginning of the configuration sequence P1～Pn. In this 
case, each s-configuration covers at least (N-1)/2-(n-∆) LEs 
according to Lemma 1 in the Appendix. Taking the LEs 
covered by the ∆ g-configurations into account, we get M=Nn-
n2-(N+1)(n-∆)/2 by simple calculation. From (7) we have 
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Again, this is equivalent to 
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Combining (10), (12) and (8), we get the bound for φn+1 as 
shown in formula (13). We can replace φn in (4) by the bound 
in (13) to calculate the Sschedule bound. 

C. Results 
Fig. 5 shows the new speedup bound we derived for QLEF. 

As an example, the new Sschedule bound gives a gain of 11.29% 
over the existing bound in [13] for N=200. Fig. 5b shows the 
Sschedule bound evolution for the minimum delay scheduling 
problem. Particularly, the bound Sschedule=4(4+log2N) is given in 
[10] for MIN, which is refined in [12] to produce the saw-
toothed curve. A tighter bound is then provided by αi-SCALE 
[12]. This is then followed by QLEF in [13]. In this paper we 
further push the QLEF speedup bound to be 10% lower. 

IV. CONCLUSION 
Hybrid electronic/optical packet switch provides a scalable 

switch architecture for huge-capacity backbone Internet routers. 
Because of the reconfiguration overhead of the optical switch 
fabric, packet delay is minimized by using N configurations 
(where N is the switch size) to schedule the traffic. However, 
this requires a very large speedup to achieve performance 
guaranteed switching. QLEF (Quasi Largest-Entry-First) is the 
most efficient minimum delay scheduling algorithm that gives 
the lowest speedup bound for a given packet delay. In this 
paper, we derived a new speedup bound for QLEF, which is 
10% lower than the existing bound. 

APPENDIX 
Lemma 1: Assume that {Px} is a set of consecutive s-

configurations of φn+1, and Py is the first g-configuration of 
1+nφ  after {Px}. Then, any Px∈{Px} must cover at least h LEs, 

where h is half of the number of the selected-entries in Py. 
Proof: Since Py is a g-configuration of φn+1, any selected- 

entry α covered by Py is an LE. Because Px is constructed 
before Py and α is not covered in Px, either 1) all the selected-
entries covered by Px are not smaller than α, or 2) α is 
shadowed in Px construction. 

In case 1), all the selected-entries in Px are LEs. Since Px is 
constructed earlier than Py, it contains more selected-entries 
than Py. So, the number of LEs covered by Px is larger than h. 
In case 2), any α covered by Py must have been shadowed in Px 
construction. Since a selected-entry in Px can shadow at most 
two smaller/equal selected-entries in Py (in row and column, 
respectively), Px must cover at least h LEs. Obviously, this is 
true for the first g-configuration Py after {Px}. 

Lemma 2: To minimize M, all the s-configurations of φn+1 
should be consecutively located at either the very beginning or 
the very end of the configuration sequence P1～Pn. 

Proof: In Fig. 6, let y-axis denote the number of selected-
entries covered in each configuration, and x-axis denote the 
scheduling sequence. Without loss of generality, assume there 
are three sets of consecutive s-configurations of φn+1, denoted 
by A1, A2 and A3 (others are g-configurations). Particularly, A1 
and A2 contain x1 and x2 s-configurations respectively, and A3 
locates at the very end of the configuration sequence P1～Pn. 
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(a) Compare QLEF bound in this paper to that in [13]. 

(b) Speedup bound evolution. 
Fig. 5.  Speedup bounds for the minimum delay scheduling problem.
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The first s-configuration in A1 covers y1 selected-entries, and 
the first g-configuration after A1 covers (y1-2x1) selected-
entries. Similarly, the first s-configuration in A2 covers y2 
selected-entries, and the first g-configuration after A2 covers 
(y2-2x2) selected-entries. From Lemma 1, each s-configuration 
in A1, A2 covers at least (y1-2x1)/2, (y2-2x2)/2 LEs. We do not 
count any LEs in A3 because there is no g-configuration after it. 
Although each s-configuration in A3 covers one LE in the same 
line as φn+1, it is trivial and is ignored when counting M. 

We first consider A1 and A2. Since all selected-entries 
covered by g-configurations are LEs, minimizing M is 
equivalent to maximizing the number of selected-entries in the 
shadowed areas in A1 and A2. That is 
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Let λ be the number of g-configurations between A1 and A2. 
We have y2=y1-2(x1+λ). So, the above formula is equivalent to 
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2
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To maximize the above formula for any given x1 and x2, it is 
necessary that y1 takes the maximum possible value and λ=0. 
This entails that A1 and A2 should be located consecutively at 
the very beginning of the configuration sequence P1～Pn. It is 
easy to see that this point can be generalized to the case where 
more sets of consecutive s-configurations are involved. 

However, we still need to consider A3 in Fig. 6. In fact, the 
n configurations before Pn+1 may also locate as shown in Fig. 
7, where the ∆ g-configurations are in the middle and the n-∆ 
s-configurations are at the both ends (the β s-configurations 
locate consecutively at the beginning of P1～Pn as argued 
above). In Fig. 7, minimizing M is equivalent to maximizing 
the number of selected-entries in the not-shadowed areas, i.e. 
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Because the above formula is a quadratic function of β, it can 
be maximized only if β=0 or β=n-∆. From Fig. 7, obviously all 
the n-∆ s-configurations should be consecutively located at 
either the very beginning (β=n-∆) or the very end (β=0) of the 

configuration sequence P1 ～ Pn. The specific location is 
determined by the values of N, n and ∆. 
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Fig. 6.  s-configurations also cover a considerable number of LEs. 
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