
Improving Scheduling Efficiency for High-Speed 
Routers with Optical Switch Fabrics 

 

Bin Wu, Kwan L. Yeung and Xin Wang 
Dept. of Electrical and Electronic Engineering 

The University of Hong Kong, Pokfulam, Hong Kong 
E-mail: {binwu, kyeung, xinwang}@eee.hku.hk 

 
Abstract—Aiming at providing 100% throughput with bounded 
packet delay, we consider traffic scheduling in high-speed routers 
with optical switch fabrics. Because of the switch reconfiguration 
overhead, a speedup in the switch fabric is essential. For a given 
packet delay bound, our objective is to minimize the overall 
speedup S=Sreconfigure×Sschedule so as to lower the implementation 
cost. Leveraging on the existing ADAPTIVE and DOUBLE 
algorithms, we show the speedup can be reduced by improving 
scheduling efficiency. Specifically, following the traffic matrix 
decomposition in ADAPTIVE and DOUBLE, we shift some 
packets from the residue matrix R to the quotient matrix Q, while 
keeping the number of configurations required to cover each 
matrix the same. We reduce the number of time slots required to 
send the diminished residue matrix. In case of DOUBLE, this 
translates into a 12.5% cut in Sschedule (from 2 to 1.75). We call the 
resulting algorithm Scheduling Residue First (SRF). 

Keywords-Performance guaranteed switching; reconfiguration 
overhead; scheduling Residue First (SRF);  speedup. 

I.  INTRODUCTION 
Recent progress on optical switching technologies [1-2] has 

enabled the implementation of high-speed routers with optical 
switch fabrics as shown in Fig. 1. The optical switch fabric 
provides huge switching capacity as demanded by the backbone 
routers in the Internet. Since the input/output modules are 
connected with the central switch fabric by optical fibers, they 
can be distributed into several racks. As a result, power 
consumption can be reduced for each rack. This makes the 
resulting switch architecture more scalable. 

On the other hand, optical switch fabric usually needs a 
non-negligible amount of reconfiguration overhead time to 
change its switch configuration from one to another, as well as 
to synchronize the optical signals arriving at the input ports [3]. 
During this period, no packet can be transmitted across the 
switch fabric. To achieve performance guaranteed switching 
(i.e. 100% throughput with bounded packet delay) [4-6], the 
switch fabric must run faster to compensate for both the 
reconfiguration overhead and the scheduling inefficiency. The 
required speedup S is defined as the ratio of the internal packet 
transmission rate to the external line-rate (S≥1). 

Assume time is slotted and each time slot can accommodate 
one fixed-size packet. Based on the N×N unicast switch in Fig. 
1, several scheduling algorithms are proposed to achieve 
performance guaranteed switching [4-6]. They all adopt the 
same four-stage scheduling procedure as shown in Fig. 2. Stage 
1 is for traffic accumulation. A traffic matrix C(T)={cij} is 
obtained at the input buffers every T time slots. Each entry cij 
denotes the number of packets arrived at input i and destined to 
output j. As a common assumption in [4-6], the entries in each 

line (i.e. row or column) of C(T) sum to at most T. In Stage 2, a 
scheduling algorithm generates a schedule consisting of (at 
most) NS switch configurations in H time slots. Each 
configuration is denoted by a permutation matrix Pn={p(n)

ij} 
(NS≥n≥1), where p(n)

ij=1 means that input port i is connected to 
output port j (In this case, we also say that Pn covers entry (i, 
j)). A weight φn is assigned to each Pn, indicating the number 
of slots that Pn should be kept for packet transmission. The set 
of NS configurations generated must cover C(T), i.e. ∑NS

 n=1φn 

p(n)
ij≥cij for any i, j∈{1, …, N}. Then ∑NS

 n=1φn is the number 
of slots required to transmit all the packets in C(T). Let each 
reconfiguration take an overhead of δ time slots. Accordingly, 
sending C(T) requires δNS+∑NS

 n=1 φ n time slots. This is 
generally larger than the traffic accumulation time T. Without 
speedup, 100% throughput is not possible. Stage 3 is for actual 
packet transmission, where the switch fabric is reconfigured 
according to the NS configurations. At a speedup of S, the slot 
size for a single packet transmission in Stage 3 is shortened by 
S times. Then 100% throughput is ensured by having 

T
S

N
SN

n
nS =+ ∑

=1

1 φδ .                              (1) 

The values of NS and ∑NS
 n=1φn in (1) are determined by the 

scheduling algorithm. Note that the total reconfiguration 
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Fig. 2.  Timing diagram for packet scheduling.
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Fig. 1.  A scalable optical switch fabric for high-speed routers. 
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overhead time δNS cannot be reduced by speedup and thus 
T>δNS. Finally, Stage 4 takes another T time slots to send the 
packets onto the output lines from the output buffers. 

Rearranging (1), we have 

scheduleereconfigur
1

1 SS
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= ∑
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,              (2) 

where Sreconfigure and Sschedule are defined as 
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Sreconfigure is the speedup factor to compensate for the idle time 
caused by reconfigurations, whereas Sschedule is the speedup 
factor to compensate for the scheduling inefficiency. 

In Fig. 2, packet delay is bounded by 2T+H slots and 
T>δNS. With a smaller NS, T and the packet delay bound can be 
reduced. But NS must be no less than N. Otherwise, the NS 
configurations are not sufficient to cover every entry in C(T) [4, 
6]. Besides, an algorithm with a smaller NS generally has poorer 
scheduling efficiency, and requires a larger Sschedule. 

Among the existing scheduling algorithms, MIN [4] and 
QLEF [6] use the minimum number of NS=N configurations for 
scheduling, but the corresponding Sschedule is very large. On the 
other hand, EXACT [4] uses NS=N2-2N+2 configurations to get 
Sschedule=1, but the packet delay is very large due to the large 
value of NS. DOUBLE [4] makes an efficient tradeoff by using 
NS=2N to achieve Sschedule=2. Note that those algorithms can 
only produce schedules with one of the three NS values, N, N2-
2N+2 or 2N. Recently, ADAPTIVE [5] is proposed to allow 
any integer value of NS in (N, N2-2N+2). It is also shown in [5] 
that DOUBLE is a special case of ADAPTIVE at NS=2N. 

 In this paper, we show that the schedules returned by 
ADAPTIVE can be further optimized. A new scheduling 
algorithm SRF (Scheduling Residue First) is proposed to 
improve the scheduling efficiency (i.e. to reduce Sschedule). In 
Section II, we review the two closely related algorithms 
DOUBLE [4] and ADAPTIVE [5], based on which our SRF is 
designed in Section III. Performance analysis and discussions 
are given in Section IV. We conclude the paper in Section V.  

II. DOUBLE AND ADAPTIVE ALGORITHMS 
We divide C(T) by T/(NS-N) to get a quotient matrix 

Q={qij} and a residue matrix R={rij} as follows. If T/(NS-N) is 
not an integer, use  )/( NNT S −  instead [5]. 

RQTC +×
−

=
NN

T

S

)(                         (5) 

Since the entries in each line of C(T) sum to at most T, the 
maximum line sum of Q is NS-N. Therefore, we can apply 
edge-coloring [7] to the bipartite multigraph of Q and get NS-N 
colors/configurations to cover Q [5]. On the other hand, each 
entry in R is smaller than T/(NS-N). So, R can be covered by 
any N non-overlapping configurations (i.e. any two of them do 
not cover the same entry), with each weighted by T/(NS-N). As 

a result, C(T) can be covered by (NS-N)+N=NS configurations, 
each equally weighted by φn=T/(NS-N). From (4), we have 
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Replacing NS by 2N in (6), we get Sschedule=2 for DOUBLE 
[4]. Each of the matrices Q and R in DOUBLE is covered by N 
configurations, with an equal weight φ n=T/N for each 
configuration. Fig. 3 gives an example of DOUBLE execution. 

Unlike DOUBLE, ADAPTIVE substitutes (6) into (2), and 
finds a proper NS to minimize the overall speedup S by solving 

0=
∂
∂

SN
S .                                    (7) 

III. SRF ALGORITHM 
Since DOUBLE is a special case of ADAPTIVE at NS=2N, 

for simplicity, we first design SRF based on DOUBLE.  

A. Observation and Motivation 
From (5), we get C(T)=[T/N]×Q+R with DOUBLE. For any 

rij∈R, we have rij<T/N. If rij>T/(2N), we call it an LER (large 
entry in R). Otherwise it is an SER (small entry in R). We have 
the following Lemma 1 (proved in the Appendix). 

Lemma 1: In DOUBLE, if a line (row i or column j) in R 
contains k LERs, then in Q we have 
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Based on Lemma 1, we can move some packets from R to 
Q, while still keeping the maximum line sum of Q not more 
than N. Note that all the weights in DOUBLE are equal and φn 
=T/N. So, if a line in R contains k LERs, we can move half (i.e. 
 2k ) of them to Q by setting them to 0 in R, and at the same 
time increasing the corresponding entries in Q by one. Fig. 4 
gives an example based on the Q and R in Fig. 3. We use Q´ 
and R´ to denote the updated Q and R. Because the maximum 
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Fig. 3.  An example of DOUBLE execution. The all-1 matrix used to 
cover R equals to the sum of the N non-overlapping configurations (P5-P8). 
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line sum of Q´ is at most N, Q´ can still be covered by N 
configurations, each with the same original weight φn=T/N. It 
means that we can schedule/send more packets in the N 
configurations for the quotient matrix (than DOUBLE). 

Note that each line of R contains at most N LERs. If half of 
them are moved to Q (without increasing its maximum line 
sum), then each line of R´ contains at most N/2 LERs. (Assume 
N is even.) Although we still need N non-overlapping 
configurations to cover R´, it is possible to reduce some of their 
weights. Specifically, we may find N/2 configurations, each 
weighted by NTn /=φ , to cover all the remaining LERs in R´. At 
the same time, we may find another N/2 configurations, each 
with a reduced weight of φn=T/(2N), to cover the remaining 
SERs. Then, Sschedule of DOUBLE can be reduced to 

75.1
222

11 2

1
schedule =






 ×+×+××== ∑

=

N
N
TN

N
TN

N
T

TT
S

N

n
nφ         (8) 

The above observation motivates us to explore a more 
efficient scheduling algorithm than DOUBLE. The key issue is 
to find a proper residue matrix R´, such that R´ contains at most 
N/2 LERs in each line, and each line sum of Q´ is not greater 
than N. Generally, this is not easy, as illustrated in Fig. 5a, 
where we assume all the 3s are LERs. The number next to each 
line of R indicates the number of LERs (i.e. quota) that can be 
moved to Q. Its value is equal to half of the number of LERs in 
each line of R, or  2k . Without violating the quota, we may 
move the four circled LERs to Q. If so, the last row of R´ will 
contain 3 LERs (Note that 3>N/2=2). This makes it impossible 
to cover the remaining LERs by N/2 configurations. 

B. Residue Matrix Scheduling 
We now focus on determining a proper residue matrix R´ 

and covering it by N non-overlapping configurations. We 
define a reference matrix F={fij}, where fij=1 if rij is an LER in 
the original R and fij=0 otherwise, as illustrated in Fig. 5b. F is 
partitioned into four (N/2)×(N/2) sub-matrices Z1～Z4 by two 
orthogonal lines as shown in Fig. 5c (where N=8 is assumed). A 
set of N/2 predefined partial configurations (PPCs) are defined 
in Z1 in a cyclic manner according to (9) below. 

.02/,02/,1
2

mod)(
2

≥>≥>+

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
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



 −−= jNiNNjiNp     (9) 

Particularly, entry (i, j) is covered by PPCp. In Fig. 5c, the 
number at each entry in Z1 gives the p value for that entry.1 For 
example, the four circled entries are covered by PPC3. Note that 
the PPCs are mutually non-overlapping, and each PPC covers 
N/2 entries in Z1. For an arbitrary entry fij in Z1, we define its 
line images and diagonal image as shown in Fig. 5d. 
Particularly, fi(N-j-1) and f(N-i-1)j are line images of fij and they are 

                                                        
1  For simplicity, we reuse Fig. 5c as an example to show the entries 

covered by PPCp. Generally, fij in Z1 takes the value of 1 or 0 (instead of p as in 
Fig. 5c) to indicate whether the corresponding rij is an LER or an SER. 

symmetrical to fij with respect to the two matrix partitioning 
lines; f(N-i-1)(N-j-1) is the diagonal image and it is symmetrical to 
fij with respect to the cross-point of the two partitioning lines. 

Without loss of generality, we consider PPCp. For each 
entry fij covered by PPCp, we find its line and diagonal images. 
The 4-tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)} may have 16 possible 
values as shown in Fig. 6. The tuples in Figs. 6a～6l are said to 
be diagonal dominant (DD), and the two circled entries are 
defined as dominant entries. Each of the two dominant entries 
in a DD tuple always contains dominant (or equal) number of 
1s than both of its line images. On the contrary, the non-DD 
tuples in Figs. 6m～6p do not have such a property. Each non-
DD tuple in Figs. 6m～6n is called a column isomorphic tuple 
because the two columns are exactly the same. Similarly, the 
non-DD tuples in Figs. 6o～6p are row isomorphic tuples. 

To cover the residue matrix in N configurations P1～PN, we 
first initialize them to all-0s. Based on reference matrix F, each 
PPCp is sequentially checked to construct two configurations Pp 
and Pp+N/2. Particularly, for each fij covered by PPCp, we find 
the 4-tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)}. Then, the entries in Pp 
and Pp+N/2 are set according to different cases discussed below. 

Case 1: If the 4-tuple is a DD tuple, we set the two 
dominant entries to “1” in Pp, and at the same time set the other 
two non-dominant entries to “1” in Pp+N/2. 

Case 2: If the 4-tuple is a row isomorphic tuple, we check 
whether another row isomorphic tuple most recently occurred 
in the same row pair. If no, we can set either pair of the 
diagonal entries (say, the solid-circled entries in Figs. 6o & 6p) 
to “1” in Pp. The other two entries (dash-circled) are set to “1” 
in Pp+N/2. On the other hand, if such a row isomorphic tuple 
occurred in examining a previous PPCt (where p>t), we set the 
corresponding entries in Pp and Pp+N/2 according to a butterfly 
mechanism, such that the 1s in the two rows of F can be 
covered by Pp and Pt in an alternative manner. Specifically, 
assume the two row isomorphic tuples occur in row pair {i, N-
i-1}. If Pt was set to cover a “1” in row i and a “0” in row N-i-
1 (in F), then Pp is set to cover a “1” in row N-i-1 and a “0” in 
row i. Accordingly, the other two entries are set to “1” in Pp+N/2. 

Case 3: If the 4-tuple is a column isomorphic tuple, the 
same mechanism as in Case 2 is used but for the column pair.  

Fig. 7. gives an example. For simplicity, we only discuss 
the construction of P1 and P2. In examining PPC1, {f00, f33} are 
first identified as dominant entries in the 4-tuple {f00, f03, f30, 
f33}, and thus entries (0, 0), (3, 3) are set to “1” in P1. Then, we 
can see that {f11, f12, f21, f22} is a row isomorphic tuple. Since no 
other isomorphic tuples precede it, we simply set the two solid-
circled entries (1, 1), (2, 2) to “1” in P1. In examining PPC2, 

Fig. 5.  R, F, PPCs and images. 
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Fig. 4.  Move the circled LERs from R to Q. 
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{f01, f02, f31, f32} is a row isomorphic tuple but it resides in a 
different row pair as {f11, f12, f21, f22} (which occurred in 
examining PPC1). So, we can use either diagonal to set P2. In 
Fig. 7, {f01, f32} are used and entries (0, 1), (3, 2) are set to “1” 
in P2. After that, the row isomorphic tuple {f10, f13, f20, f23} is 
checked. Because another row isomorphic tuple {f11, f12, f21, f22} 
precedes it in the same row pair, we need to set P2 according to 
the butterfly mechanism. Specifically, the two dashed-circled 
entries (1, 0) and (2, 3) are set to “1” in P2. 

Obviously, the above process generates N non-overlapping 
configurations P1～PN to cover every entry of the residue 
matrix. This is because the PPCs do not overlap each other. On 
the other hand, P1～PN/2 usually cover more than half of the 1s 
for each and all of the lines in F. This is because the dominant 
entries in each DD tuple are always covered in P1～PN/2, 
whereas the number of 1s covered by P1～PN/2 and PN/2+1～PN 
in each line of F are well balanced for the non-DD tuples. The 
only exception is that, for a particular line, the number of 1s 
covered by P1～PN/2 (denoted by x) may be one less than that 
covered by PN/2+1～PN (denoted by y). This is due to the 
butterfly mechanism. Assume row pair {i, N-i-1} is considered 
and there are z row isomorphic tuples in this row pair, and we 
only consider them in counting x and y. If z is even, then x and 
y can be perfectly balanced according to the butterfly 
mechanism, and thus x=y. If z is odd, then |x-y|=1. In any case, 
we always have either x≥y or x+1=y for each and all lines in F. 

Consequently, if some 1s in F are covered by PN/2+1～PN, 
we can move the corresponding LERs from R to Q. This gives 
us R´ and Q´. From Lemma 1, the maximum line sum of Q´ 
will not exceed N. This is also true if x+1=y due to the roof 
function in Lemma 1 (Note that k in Lemma 1 equals to x+y). 
As a result, all the remaining LERs in R´ can be covered by 
P1～PN/2 with a weight φn=T/N, and other entries in R´ can be 
covered by PN/2+1～PN with a reduced weight of φn=T/(2N). 

In short, with the residue matrix scheduling mechanism, 
Sschedule of DOUBLE can be reduced from 2 to 1.75 as in (8). 

C. SRF Algorithm 
Note that DOUBLE is a special case at NS=2N. Generally, 

we can use T/(NS-N) (instead of T/N) to divide C(T) as in (5), 
and define any rij∈R as an LER if rij>T/[2(NS-N)] (instead of 
rij>T/(2N)). With the same mechanism, we can construct R´ and 
Q´ while keeping the maximum line sum of Q´ not more than 
NS-N. Then, we find N non-overlapping configurations to cover 
R´, with a weight T/(NS-N) for half of them and a reduced 
weight T/[2(NS-N)] for the other half. At the same time, Q´ is 
covered by NS-N configurations with a weight T/(NS-N) for 
each. Consequently, Sschedule in (6) can be reduced to 
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In SRF (see Fig. 8), we replace Sschedule in (2) by (10), and 
solve (7) to get the proper NS value, as given in (11). 
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Compared to ADAPTIVE [5] which has a time complexity 
of O(N 1.5logN), SRF needs an extra O(N2) computation for 
residue matrix scheduling. So the time complexity of SRF is 
O(N 1.5 logN+N2), or O(N2). 
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Fig. 7.  Residue matrix scheduling based on F. 
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SRF ALGORITHM 
Input: 

δ and an N×N matrix C(T) with maximum line sum not more than T. 
Output: 

N configurations P1, …, PNS and weights φ1, …, φNS. 
Step 1: Divide C(T): 

Calculate NS by (11). Use                 to divide C(T) and separate it 
into Q={qij} and R={rij} as in (5). 
Step 2: Schedule the residue matrix: 

a) Define a reference matrix F={fij} based on R, where fij=1 if rij is 
an LER (                    ) and fij=0 otherwise. Define N/2 PPCs based on 
(9). Initialize P1～PN to all-0 matrices. Set 1→p. 

b) Pick up an entry fij covered by PPCp, find its images to form a 4-
tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)}. If it is a DD tuple, set the two 
dominant entries to “1” in Pp, and the other two non-dominant entries to 
“1” in Pp+N/2. If it is an isomorphic tuple, check whether another 
isomorphic tuple most recently occurred in the same line pair. If no, set 
any pair of the diagonal entries of the tuple to “1” in Pp and the other two 
diagonal entries to “1” in Pp+N/2. Otherwise, if such a preceding 
isomorphic tuple occurred in examining PPCt (p>t), then invoke the 
butterfly mechanism to set the entries in Pp, such that the number of 1s in 
this line pair of F can be covered by Pp and Pt alternatively. If a pair of 
diagonal entries are set to “1” in Pp, then set the other pair of diagonal 
entries to “1” in Pp+N/2. Repeat Step 2b) for each fij covered by PPCp, until 
the two configurations Pp and Pp+N/2 are obtained. 

c) Set p+1→p. Repeat Step 2b) until p=N/2+1.  
d) Set φ1～φN/2 to                   and φN/2+1～φN to                      . If 

some 1s in F are covered by PN/2+1～PN, increase the corresponding 
entries in Q by one. Denote the updated Q by Q´. 
Step 3: Schedule the quotient matrix: 

a) Construct a bipartite multigraph G from Q´. Find a minimal edge-
coloring of G to get at most NS-N colors. Set N+1→n. 

b) For a specific color in the edge-coloring of G, construct a 
configuration Pn from the edges assigned to that color. Set                           
and n+1→n. Repeat step 3b) for each of the colors in G. 
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Fig. 8.  SRF algorithm (for even switch size N). 
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IV. PERFORMANCE ANALYSIS AND DISCUSSION 
Sschedule in (6) for ADAPTIVE and in (10) for SRF are 

compared in Fig. 9 for N=64. We did not directly compare the 
overall speedup S because it involves other parameters such as 
T and δ. From Fig. 9, again we can see that DOUBLE [4] is a 
special case of ADATIVE [5]. DOUBLE generates Sschedule=2 at 
NS=128, but we can get Sschedule=1.75 with SRF. This gives a cut 
of 12.5% on Sschedule. On the other hand, with Sschedule=2, SRF 
only requires NS=112 configurations to schedule C(T). 

A simple example is given in Fig. 10 to compare the three 
algorithms. Although DOUBLE produces the smallest Sschedule 
(but with the largest NS), it has the largest overall speedup of 
S=14, whereas ADAPTIVE has S=8.4 and SRF has S=7. 

Note that SRF does not allow NS=N. But this case can be 
efficiently handled by the minimum delay scheduling algorithm 
QLEF [6]. Also note that predefining PPCs in a cyclic-manner 
using (9) is not necessary. We did so only to facilitate our 
presentation. In fact, any set of N/2 non-overlapping 
permutation sub-matrices in Z1 can be used as PPCs. 

V. CONCLUSION 
We proposed a new algorithm SRF (Scheduling Residue 

First) to improve the scheduling efficiency for high-speed 
routers with optical switch fabrics. SRF significantly reduces 
the speedup factor Sschedule. Compared with DOUBLE, a 12.5% 
cut on Sschedule is achieved. Consequently, SRF outperforms the 
existing DOUBLE and ADAPTIVE algorithms by requiring a 
lower overall speedup for performance guaranteed switching.  

APPENDIX 
Lemma 1: In DOUBLE, if a line (row i or column j) in R 

contains k LERs, then in Q we have 
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