
Improving Scheduling Efficiency for High-Speed
Routers with Optical Switch Fabrics

Bin Wu, Kwan L. Yeung and Xin Wang
Dept. of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam, Hong Kong
E-mail: {binwu, kyeung, xinwang}@eee.hku.hk

Abstract—Aiming at providing 100% throughput with bounded
packet delay, we consider traffic scheduling in high-speed routers
with optical switch fabrics. Because of the switch reconfiguration
overhead, a speedup in the switch fabric is essential. For a given
packet delay bound, our objective is to minimize the overall
speedup S=Sreconfigure×Sschedule so as to lower the implementation
cost. Leveraging on the existing ADAPTIVE and DOUBLE
algorithms, we show the speedup can be reduced by improving
scheduling efficiency. Specifically, following the traffic matrix
decomposition in ADAPTIVE and DOUBLE, we shift some
packets from the residue matrix R to the quotient matrix Q, while
keeping the number of configurations required to cover each
matrix the same. We reduce the number of time slots required to
send the diminished residue matrix. In case of DOUBLE, this
translates into a 12.5% cut in Sschedule (from 2 to 1.75). We call the
resulting algorithm Scheduling Residue First (SRF).

Keywords-Performance guaranteed switching; reconfiguration
overhead; scheduling Residue First (SRF); speedup.

I. INTRODUCTION
Recent progress on optical switching technologies [1-2] has

enabled the implementation of high-speed routers with optical
switch fabrics as shown in Fig. 1. The optical switch fabric
provides huge switching capacity as demanded by the backbone
routers in the Internet. Since the input/output modules are
connected with the central switch fabric by optical fibers, they
can be distributed into several racks. As a result, power
consumption can be reduced for each rack. This makes the
resulting switch architecture more scalable.

On the other hand, optical switch fabric usually needs a
non-negligible amount of reconfiguration overhead time to
change its switch configuration from one to another, as well as
to synchronize the optical signals arriving at the input ports [3].
During this period, no packet can be transmitted across the
switch fabric. To achieve performance guaranteed switching
(i.e. 100% throughput with bounded packet delay) [4-6], the
switch fabric must run faster to compensate for both the
reconfiguration overhead and the scheduling inefficiency. The
required speedup S is defined as the ratio of the internal packet
transmission rate to the external line-rate (S≥1).

Assume time is slotted and each time slot can accommodate
one fixed-size packet. Based on the N×N unicast switch in Fig.
1, several scheduling algorithms are proposed to achieve
performance guaranteed switching [4-6]. They all adopt the
same four-stage scheduling procedure as shown in Fig. 2. Stage
1 is for traffic accumulation. A traffic matrix C(T)={cij} is
obtained at the input buffers every T time slots. Each entry cij
denotes the number of packets arrived at input i and destined to
output j. As a common assumption in [4-6], the entries in each

line (i.e. row or column) of C(T) sum to at most T. In Stage 2, a
scheduling algorithm generates a schedule consisting of (at
most) NS switch configurations in H time slots. Each
configuration is denoted by a permutation matrix Pn={p(n)

ij}
(NS≥n≥1), where p(n)

ij=1 means that input port i is connected to
output port j (In this case, we also say that Pn covers entry (i,
j)). A weight φn is assigned to each Pn, indicating the number
of slots that Pn should be kept for packet transmission. The set
of NS configurations generated must cover C(T), i.e. ∑NS

 n=1φn

p(n)
ij≥cij for any i, j∈{1, …, N}. Then ∑NS

 n=1φn is the number
of slots required to transmit all the packets in C(T). Let each
reconfiguration take an overhead of δ time slots. Accordingly,
sending C(T) requires δNS+∑NS

 n=1 φ n time slots. This is
generally larger than the traffic accumulation time T. Without
speedup, 100% throughput is not possible. Stage 3 is for actual
packet transmission, where the switch fabric is reconfigured
according to the NS configurations. At a speedup of S, the slot
size for a single packet transmission in Stage 3 is shortened by
S times. Then 100% throughput is ensured by having

T
S

N
SN

n
nS =+ ∑

=1

1 φδ . (1)

The values of NS and ∑NS
 n=1φn in (1) are determined by the

scheduling algorithm. Note that the total reconfiguration

This work is supported by Hong Kong Research Grant Council Earmarked
Grant HKU 7032/01E.

T T+H 2T+H 3T+H
Packet delay=2T+H

St
ag

e

Fig. 2. Timing diagram for packet scheduling.

Switch reconfiguration δ
Transmission phase

Time 1
2
3
4

Fig. 1. A scalable optical switch fabric for high-speed routers.

N input modules N output modules

1

N
VOQ1

1

N
VOQN

Optical connections (fibers)

OQ1

OQN

Scheduler

optical switch

Speedup

N×N unicast

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

overhead time δNS cannot be reduced by speedup and thus
T>δNS. Finally, Stage 4 takes another T time slots to send the
packets onto the output lines from the output buffers.

Rearranging (1), we have

scheduleereconfigur
1

1 SS
NT

S
SN

n
n

S

×=
−

= ∑
=

φ
δ

, (2)

where Sreconfigure and Sschedule are defined as

SNT
TS
δ−

=ereconfigur (3)

∑
=

=
SN

n
nT

S
1

schedule
1 φ (4)

Sreconfigure is the speedup factor to compensate for the idle time
caused by reconfigurations, whereas Sschedule is the speedup
factor to compensate for the scheduling inefficiency.

In Fig. 2, packet delay is bounded by 2T+H slots and
T>δNS. With a smaller NS, T and the packet delay bound can be
reduced. But NS must be no less than N. Otherwise, the NS
configurations are not sufficient to cover every entry in C(T) [4,
6]. Besides, an algorithm with a smaller NS generally has poorer
scheduling efficiency, and requires a larger Sschedule.

Among the existing scheduling algorithms, MIN [4] and
QLEF [6] use the minimum number of NS=N configurations for
scheduling, but the corresponding Sschedule is very large. On the
other hand, EXACT [4] uses NS=N2-2N+2 configurations to get
Sschedule=1, but the packet delay is very large due to the large
value of NS. DOUBLE [4] makes an efficient tradeoff by using
NS=2N to achieve Sschedule=2. Note that those algorithms can
only produce schedules with one of the three NS values, N, N2-
2N+2 or 2N. Recently, ADAPTIVE [5] is proposed to allow
any integer value of NS in (N, N2-2N+2). It is also shown in [5]
that DOUBLE is a special case of ADAPTIVE at NS=2N.

 In this paper, we show that the schedules returned by
ADAPTIVE can be further optimized. A new scheduling
algorithm SRF (Scheduling Residue First) is proposed to
improve the scheduling efficiency (i.e. to reduce Sschedule). In
Section II, we review the two closely related algorithms
DOUBLE [4] and ADAPTIVE [5], based on which our SRF is
designed in Section III. Performance analysis and discussions
are given in Section IV. We conclude the paper in Section V.

II. DOUBLE AND ADAPTIVE ALGORITHMS
We divide C(T) by T/(NS-N) to get a quotient matrix

Q={qij} and a residue matrix R={rij} as follows. If T/(NS-N) is
not an integer, use  )/(NNT S − instead [5].

RQTC +×
−

=
NN

T

S

)((5)

Since the entries in each line of C(T) sum to at most T, the
maximum line sum of Q is NS-N. Therefore, we can apply
edge-coloring [7] to the bipartite multigraph of Q and get NS-N
colors/configurations to cover Q [5]. On the other hand, each
entry in R is smaller than T/(NS-N). So, R can be covered by
any N non-overlapping configurations (i.e. any two of them do
not cover the same entry), with each weighted by T/(NS-N). As

a result, C(T) can be covered by (NS-N)+N=NS configurations,
each equally weighted by φn=T/(NS-N). From (4), we have

NN
NN

NN
T

TT
S

S
S

S

N

n
n

S

−
+=×

−
×== ∑

=

111
1

schedule φ . (6)

Replacing NS by 2N in (6), we get Sschedule=2 for DOUBLE
[4]. Each of the matrices Q and R in DOUBLE is covered by N
configurations, with an equal weight φ n=T/N for each
configuration. Fig. 3 gives an example of DOUBLE execution.

Unlike DOUBLE, ADAPTIVE substitutes (6) into (2), and
finds a proper NS to minimize the overall speedup S by solving

0=
∂
∂

SN
S . (7)

III. SRF ALGORITHM
Since DOUBLE is a special case of ADAPTIVE at NS=2N,

for simplicity, we first design SRF based on DOUBLE.

A. Observation and Motivation
From (5), we get C(T)=[T/N]×Q+R with DOUBLE. For any

rij∈R, we have rij<T/N. If rij>T/(2N), we call it an LER (large
entry in R). Otherwise it is an SER (small entry in R). We have
the following Lemma 1 (proved in the Appendix).

Lemma 1: In DOUBLE, if a line (row i or column j) in R
contains k LERs, then in Q we have

,rowfor
21

ikNq
N

j
ij 



−≤∑

=

 .columnfor
2

or
1

jkNq
N

i
ij 



−≤∑

=

Based on Lemma 1, we can move some packets from R to
Q, while still keeping the maximum line sum of Q not more
than N. Note that all the weights in DOUBLE are equal and φn
=T/N. So, if a line in R contains k LERs, we can move half (i.e.
 2k) of them to Q by setting them to 0 in R, and at the same
time increasing the corresponding entries in Q by one. Fig. 4
gives an example based on the Q and R in Fig. 3. We use Q´
and R´ to denote the updated Q and R. Because the maximum



















=

4370
4750
7330
00016

(16)C


















=

1010
1110
1000
0004

Q
Step 1: Calculate Q

Step 2: Color Q Step 3: Schedule Q Step 4: Schedule R

T=16, N=4, 4=
N
T , NS=8



















=

1
1

1
1

1P


















=

1
1

1

2P



















=
1

1

3P



















=

1

4P

41 =φ 42 =φ 43 =φ 44 =φ



















=

1
1

1
1

5P


















=

1
1

1
1

6P



















=

1
1

1
1

7P


















=

1
1

1
1

8P

45 =φ 46 =φ 47 =φ 48 =φ



















×+



















×≤



















=

1111
1111
1111
1111

4

1010
1110
1000
0004

4

4370
4750
7330
00016

(16)C



















=

0330
0310
3330
0000

R

Fig. 3. An example of DOUBLE execution. The all-1 matrix used to
cover R equals to the sum of the N non-overlapping configurations (P5-P8).

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

line sum of Q´ is at most N, Q´ can still be covered by N
configurations, each with the same original weight φn=T/N. It
means that we can schedule/send more packets in the N
configurations for the quotient matrix (than DOUBLE).

Note that each line of R contains at most N LERs. If half of
them are moved to Q (without increasing its maximum line
sum), then each line of R´ contains at most N/2 LERs. (Assume
N is even.) Although we still need N non-overlapping
configurations to cover R´, it is possible to reduce some of their
weights. Specifically, we may find N/2 configurations, each
weighted by NTn /=φ , to cover all the remaining LERs in R´. At
the same time, we may find another N/2 configurations, each
with a reduced weight of φn=T/(2N), to cover the remaining
SERs. Then, Sschedule of DOUBLE can be reduced to

75.1
222

11 2

1
schedule =






 ×+×+××== ∑

=

N
N
TN

N
TN

N
T

TT
S

N

n
nφ (8)

The above observation motivates us to explore a more
efficient scheduling algorithm than DOUBLE. The key issue is
to find a proper residue matrix R´, such that R´ contains at most
N/2 LERs in each line, and each line sum of Q´ is not greater
than N. Generally, this is not easy, as illustrated in Fig. 5a,
where we assume all the 3s are LERs. The number next to each
line of R indicates the number of LERs (i.e. quota) that can be
moved to Q. Its value is equal to half of the number of LERs in
each line of R, or  2k . Without violating the quota, we may
move the four circled LERs to Q. If so, the last row of R´ will
contain 3 LERs (Note that 3>N/2=2). This makes it impossible
to cover the remaining LERs by N/2 configurations.

B. Residue Matrix Scheduling
We now focus on determining a proper residue matrix R´

and covering it by N non-overlapping configurations. We
define a reference matrix F={fij}, where fij=1 if rij is an LER in
the original R and fij=0 otherwise, as illustrated in Fig. 5b. F is
partitioned into four (N/2)×(N/2) sub-matrices Z1～Z4 by two
orthogonal lines as shown in Fig. 5c (where N=8 is assumed). A
set of N/2 predefined partial configurations (PPCs) are defined
in Z1 in a cyclic manner according to (9) below.

.02/,02/,1
2

mod)(
2

≥>≥>+











 −−= jNiNNjiNp (9)

Particularly, entry (i, j) is covered by PPCp. In Fig. 5c, the
number at each entry in Z1 gives the p value for that entry.1 For
example, the four circled entries are covered by PPC3. Note that
the PPCs are mutually non-overlapping, and each PPC covers
N/2 entries in Z1. For an arbitrary entry fij in Z1, we define its
line images and diagonal image as shown in Fig. 5d.
Particularly, fi(N-j-1) and f(N-i-1)j are line images of fij and they are

1 For simplicity, we reuse Fig. 5c as an example to show the entries

covered by PPCp. Generally, fij in Z1 takes the value of 1 or 0 (instead of p as in
Fig. 5c) to indicate whether the corresponding rij is an LER or an SER.

symmetrical to fij with respect to the two matrix partitioning
lines; f(N-i-1)(N-j-1) is the diagonal image and it is symmetrical to
fij with respect to the cross-point of the two partitioning lines.

Without loss of generality, we consider PPCp. For each
entry fij covered by PPCp, we find its line and diagonal images.
The 4-tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)} may have 16 possible
values as shown in Fig. 6. The tuples in Figs. 6a～6l are said to
be diagonal dominant (DD), and the two circled entries are
defined as dominant entries. Each of the two dominant entries
in a DD tuple always contains dominant (or equal) number of
1s than both of its line images. On the contrary, the non-DD
tuples in Figs. 6m～6p do not have such a property. Each non-
DD tuple in Figs. 6m～6n is called a column isomorphic tuple
because the two columns are exactly the same. Similarly, the
non-DD tuples in Figs. 6o～6p are row isomorphic tuples.

To cover the residue matrix in N configurations P1～PN, we
first initialize them to all-0s. Based on reference matrix F, each
PPCp is sequentially checked to construct two configurations Pp
and Pp+N/2. Particularly, for each fij covered by PPCp, we find
the 4-tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)}. Then, the entries in Pp
and Pp+N/2 are set according to different cases discussed below.

Case 1: If the 4-tuple is a DD tuple, we set the two
dominant entries to “1” in Pp, and at the same time set the other
two non-dominant entries to “1” in Pp+N/2.

Case 2: If the 4-tuple is a row isomorphic tuple, we check
whether another row isomorphic tuple most recently occurred
in the same row pair. If no, we can set either pair of the
diagonal entries (say, the solid-circled entries in Figs. 6o & 6p)
to “1” in Pp. The other two entries (dash-circled) are set to “1”
in Pp+N/2. On the other hand, if such a row isomorphic tuple
occurred in examining a previous PPCt (where p>t), we set the
corresponding entries in Pp and Pp+N/2 according to a butterfly
mechanism, such that the 1s in the two rows of F can be
covered by Pp and Pt in an alternative manner. Specifically,
assume the two row isomorphic tuples occur in row pair {i, N-
i-1}. If Pt was set to cover a “1” in row i and a “0” in row N-i-
1 (in F), then Pp is set to cover a “1” in row N-i-1 and a “0” in
row i. Accordingly, the other two entries are set to “1” in Pp+N/2.

Case 3: If the 4-tuple is a column isomorphic tuple, the
same mechanism as in Case 2 is used but for the column pair.

Fig. 7. gives an example. For simplicity, we only discuss
the construction of P1 and P2. In examining PPC1, {f00, f33} are
first identified as dominant entries in the 4-tuple {f00, f03, f30,
f33}, and thus entries (0, 0), (3, 3) are set to “1” in P1. Then, we
can see that {f11, f12, f21, f22} is a row isomorphic tuple. Since no
other isomorphic tuples precede it, we simply set the two solid-
circled entries (1, 1), (2, 2) to “1” in P1. In examining PPC2,

Fig. 5. R, F, PPCs and images.



















=

0111
0100
1110
0001

F

(b)

(a)



















0333
0300
3330
0003 1

2
1
2

1 1 1 2

R= Z1

(c) PPCs

Z2

Z3 Z4
































1432
2143
3214
4321

































(d) Images

fi(N-j-1) fij

f(N-i-1)j f(N-i-1)(N-j-1)



















+


















×=

0330
0310
3330
0000

1010
1110
1000
0004

4(16)C



















+


















×≤

0030
0010
0300
0000

1110
1210
2010
0004

4(16)C

Fig. 4. Move the circled LERs from R to Q.

Q R Q´ R´

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

{f01, f02, f31, f32} is a row isomorphic tuple but it resides in a
different row pair as {f11, f12, f21, f22} (which occurred in
examining PPC1). So, we can use either diagonal to set P2. In
Fig. 7, {f01, f32} are used and entries (0, 1), (3, 2) are set to “1”
in P2. After that, the row isomorphic tuple {f10, f13, f20, f23} is
checked. Because another row isomorphic tuple {f11, f12, f21, f22}
precedes it in the same row pair, we need to set P2 according to
the butterfly mechanism. Specifically, the two dashed-circled
entries (1, 0) and (2, 3) are set to “1” in P2.

Obviously, the above process generates N non-overlapping
configurations P1～PN to cover every entry of the residue
matrix. This is because the PPCs do not overlap each other. On
the other hand, P1～PN/2 usually cover more than half of the 1s
for each and all of the lines in F. This is because the dominant
entries in each DD tuple are always covered in P1～PN/2,
whereas the number of 1s covered by P1～PN/2 and PN/2+1～PN
in each line of F are well balanced for the non-DD tuples. The
only exception is that, for a particular line, the number of 1s
covered by P1～PN/2 (denoted by x) may be one less than that
covered by PN/2+1～PN (denoted by y). This is due to the
butterfly mechanism. Assume row pair {i, N-i-1} is considered
and there are z row isomorphic tuples in this row pair, and we
only consider them in counting x and y. If z is even, then x and
y can be perfectly balanced according to the butterfly
mechanism, and thus x=y. If z is odd, then |x-y|=1. In any case,
we always have either x≥y or x+1=y for each and all lines in F.

Consequently, if some 1s in F are covered by PN/2+1～PN,
we can move the corresponding LERs from R to Q. This gives
us R´ and Q´. From Lemma 1, the maximum line sum of Q´
will not exceed N. This is also true if x+1=y due to the roof
function in Lemma 1 (Note that k in Lemma 1 equals to x+y).
As a result, all the remaining LERs in R´ can be covered by
P1～PN/2 with a weight φn=T/N, and other entries in R´ can be
covered by PN/2+1～PN with a reduced weight of φn=T/(2N).

In short, with the residue matrix scheduling mechanism,
Sschedule of DOUBLE can be reduced from 2 to 1.75 as in (8).

C. SRF Algorithm
Note that DOUBLE is a special case at NS=2N. Generally,

we can use T/(NS-N) (instead of T/N) to divide C(T) as in (5),
and define any rij∈R as an LER if rij>T/[2(NS-N)] (instead of
rij>T/(2N)). With the same mechanism, we can construct R´ and
Q´ while keeping the maximum line sum of Q´ not more than
NS-N. Then, we find N non-overlapping configurations to cover
R´, with a weight T/(NS-N) for half of them and a reduced
weight T/[2(NS-N)] for the other half. At the same time, Q´ is
covered by NS-N configurations with a weight T/(NS-N) for
each. Consequently, Sschedule in (6) can be reduced to

)(4
311

1
schedule NN

N
T

S
S

N

n
n

S

−
+== ∑

=

φ . (10)

In SRF (see Fig. 8), we replace Sschedule in (2) by (10), and
solve (7) to get the proper NS value, as given in (11).

 















>>++=

+≥>+−=











−+=

NNNifNN

NNNNifNN

NNTNN

real
SS

real
S

real
SS

real
S

11

122

312
4
1

2

2

δ
. (11)

Compared to ADAPTIVE [5] which has a time complexity
of O(N 1.5logN), SRF needs an extra O(N2) computation for
residue matrix scheduling. So the time complexity of SRF is
O(N 1.5 logN+N2), or O(N2).



















==

1010
1010
1010
1011

}{ ijfF



















=

1
1

1
1

1P



















=

1
1

1
1

3P



















=

1
1

1
1

2P


















=

1
1

1
1

4P

Fig. 7. Residue matrix scheduling based on F.
PPC1 analysis PPC2 analysis

SRF ALGORITHM
Input:

δ and an N×N matrix C(T) with maximum line sum not more than T.
Output:

N configurations P1, …, PNS and weights φ1, …, φNS.
Step 1: Divide C(T):

Calculate NS by (11). Use to divide C(T) and separate it
into Q={qij} and R={rij} as in (5).
Step 2: Schedule the residue matrix:

a) Define a reference matrix F={fij} based on R, where fij=1 if rij is
an LER () and fij=0 otherwise. Define N/2 PPCs based on
(9). Initialize P1～PN to all-0 matrices. Set 1→p.

b) Pick up an entry fij covered by PPCp, find its images to form a 4-
tuple {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)}. If it is a DD tuple, set the two
dominant entries to “1” in Pp, and the other two non-dominant entries to
“1” in Pp+N/2. If it is an isomorphic tuple, check whether another
isomorphic tuple most recently occurred in the same line pair. If no, set
any pair of the diagonal entries of the tuple to “1” in Pp and the other two
diagonal entries to “1” in Pp+N/2. Otherwise, if such a preceding
isomorphic tuple occurred in examining PPCt (p>t), then invoke the
butterfly mechanism to set the entries in Pp, such that the number of 1s in
this line pair of F can be covered by Pp and Pt alternatively. If a pair of
diagonal entries are set to “1” in Pp, then set the other pair of diagonal
entries to “1” in Pp+N/2. Repeat Step 2b) for each fij covered by PPCp, until
the two configurations Pp and Pp+N/2 are obtained.

c) Set p+1→p. Repeat Step 2b) until p=N/2+1.
d) Set φ1～φN/2 to and φN/2+1～φN to . If

some 1s in F are covered by PN/2+1～PN, increase the corresponding
entries in Q by one. Denote the updated Q by Q´.
Step 3: Schedule the quotient matrix:

a) Construct a bipartite multigraph G from Q´. Find a minimal edge-
coloring of G to get at most NS-N colors. Set N+1→n.

b) For a specific color in the edge-coloring of G, construct a
configuration Pn from the edges assigned to that color. Set
and n+1→n. Repeat step 3b) for each of the colors in G.

 )/(NNT S −

 )/(NNT S − []





−×)(2 NN
T

S

 )/(NNT Sn −=φ

Fig. 8. SRF algorithm (for even switch size N).

[] )(2/ NNT S −>

Row isomorphic

0 0
0 1

0 0
1 0

0 1
0 0

0 1
1 0

0 0
0 0

1 1
1 1

1 1
1 0

1 1
0 1

1 01 0
0 1

1 0
0 0

0 1
1 1

fi(N-j-1)
f(N-i-1)(N-j-1) f(N-i-1)j

fij

(b) (a) (c) (d) (e) (f) (g) (h) (i) (j) (k)

1 1
0 0

1 0
1 0

0 1
0 1

0 0
1 1

(l) (m) (n) (o) (p)

Diagonal dominant Column isomorphic
Fig. 6. Sixteen possible combinations of {fij, fi(N-j-1), f(N-i-1)j, f(N-i-1)(N-j-1)}.

1 1

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

IV. PERFORMANCE ANALYSIS AND DISCUSSION
Sschedule in (6) for ADAPTIVE and in (10) for SRF are

compared in Fig. 9 for N=64. We did not directly compare the
overall speedup S because it involves other parameters such as
T and δ. From Fig. 9, again we can see that DOUBLE [4] is a
special case of ADATIVE [5]. DOUBLE generates Sschedule=2 at
NS=128, but we can get Sschedule=1.75 with SRF. This gives a cut
of 12.5% on Sschedule. On the other hand, with Sschedule=2, SRF
only requires NS=112 configurations to schedule C(T).

A simple example is given in Fig. 10 to compare the three
algorithms. Although DOUBLE produces the smallest Sschedule
(but with the largest NS), it has the largest overall speedup of
S=14, whereas ADAPTIVE has S=8.4 and SRF has S=7.

Note that SRF does not allow NS=N. But this case can be
efficiently handled by the minimum delay scheduling algorithm
QLEF [6]. Also note that predefining PPCs in a cyclic-manner
using (9) is not necessary. We did so only to facilitate our
presentation. In fact, any set of N/2 non-overlapping
permutation sub-matrices in Z1 can be used as PPCs.

V. CONCLUSION
We proposed a new algorithm SRF (Scheduling Residue

First) to improve the scheduling efficiency for high-speed
routers with optical switch fabrics. SRF significantly reduces
the speedup factor Sschedule. Compared with DOUBLE, a 12.5%
cut on Sschedule is achieved. Consequently, SRF outperforms the
existing DOUBLE and ADAPTIVE algorithms by requiring a
lower overall speedup for performance guaranteed switching.

APPENDIX
Lemma 1: In DOUBLE, if a line (row i or column j) in R

contains k LERs, then in Q we have

,rowfor
21

ikNq
N

j
ij 



−≤∑

=

 .columnfor
2

or
1

jkNq
N

i
ij 



−≤∑

=

Proof: After C(T) is divided by T/N, we have

RQTC +=
N
T)(ijijij rq

N
Tcor += ,

Assume row i of R contains k LERs. Because

Trq
N
Tc

N

j
ij

N

j
ij

N

j
ij ≤+= ∑∑∑

=== 111

,

we have

2
21

1

kN

N
T

k
N

TT

N
T

rT
q

N

j
ijN

j
ij −=

×−
<

−
≤

∑
∑ =

=

.

Since ∑N
j=1qij is an integer, we then have





−≤∑

= 21

kNq
N

j
ij .

REFERENCES
[1] O. B. Spahn, C. Sullivan, J. Burkhart, C. Tigges, and E. Garcia, “GaAs-

based microelectromechanical waveguide switch”, Proc. 2000
IEEE/LEOS Intl. Conf. on Optical MEMS, pp. 41-42, Aug. 2000.

[2] A. J. Agranat, “Electroholographic wavelength selective crossconnect”,
1999 Digest of the LEOS Summer Topical Meetings, pp. 61-62, Jul.
1999.

[3] K. Kar, D. Stiliadis, T. V. Lakshman and L. Tassiulas, “Scheduling
algorithms for optical packet fabrics”, IEEE Journal on Selected Areas in
Communications, vol. 21, issue 7, pp. 1143-1155, Sept. 2003.

[4] B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
configuration overhead”, IEEE/ACM Trans. Networking, vol. 11, no. 5,
pp. 835-847, Oct. 2003.

[5] Bin Wu and Kwan L. Yeung, “Minimizing internal speedup for
performance guaranteed optical packet switches”, IEEE GLOBECOM
'04, vol. 3, pp. 1742-1746, Dec. 2004.

[6] Bin Wu and Kwan L. Yeung, “Traffic scheduling in non-blocking optical
packet switches with minimum delay”, IEEE GLOBECOM '05, vol.
4, pp. 2041-2045, Dec. 2005.

[7] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs”, SIAM
Journal on Computing, vol. 11, pp. 540-546, Aug. 1982.

Fig. 9. Sschedule for N=64.

NS

S s
ch

ed
ul

e

DOUBLE

NS >64

NN
NS

S −
+= 1schedule

)(4
31schedule NN
NS

S −
+=

ADAPTIVE

SRF



















+



















≤



















+



















=

1
1

1
1

7

1
1

1
1

7

5510
3210
2410
4300

1010
1110
0012
0102

7)(TC



















+



















+



















+

1111
1111
1111
1111

7

1

7
1

1
7

P3 Q R P1 P2 P4 P5～P8

14,2,7,8:DOUBLE schedule ==== SS
N
TNS

P1 P2 P3～P6



















+


















=

12580
10980
2480
41000

0000
0000
0001
0001

14)(TC



















+



















+



















≤

1111
1111
1111
1111

14
1

14

1

14

Q R

4.8,3,14,6:ADAPTIVE schedule ===
−

= SS
NN

TN
S

S

Fig. 10. An example of DOUBLE, ADAPTIVE and SRF.

7,5.2,14,6:SRF schedule ===
−

= SS
NN

TN
S

S



















=

1010
1110
0010
0100

F



















+


















≤


















+


















=

12580
10900
2480
41000

0000
0010
0001
0001

14

12580
10980
2480
41000

0000
0000
0001
0001

14)(TC

Q R Q´ R´



















+



















+



















+



















≤

1
1

1
1

7

1
1

1
1

7

1
1

1
1

14

1
1

1
1

14

P3 P1 P2 P4



















+



















+
1

14
1

1

14

P5 P6

,

12580
10980
24814
410014



















=)(TC

3,28,4 === δTN

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

