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Abstract—Despite the importance of traffic classification in 
modern networks, the number of languages tailored to this task is 
extremely limited. These languages can be valuable, because they 
allow the update of an application (e.g. firewall) in terms of 
supported protocols by simply updating its protocol description 
database, instead of recompiling the application from scratch. 
This paper presents a set of extensions to the Network Protocol 
Description Language (NetPDL) allowing support of traffic 
classification from data-link to application-layer protocols. A set 
of preliminary experimental results obtained with these new 
extensions is presented as well. 

I. INTRODUCTION 
The problem of traffic classification is rapidly becoming 

one of the hottest issues in modern networks. On one hand 
end-users tend to hide their traffic in order to escape Internet 
Service Providers or corporate rules, for example in terms of 
bandwidth limitation or firewall restrictions; on the other hand 
ISPs and enterprise network managers want to control the 
amount of bandwidth consumed per user and per application, 
limiting the most bandwidth-hungry applications or stopping 
some kind of traffic altogether.  

Several companies proposed their solutions for packet 
classification. However, almost all solutions are proprietary 
and leave no room to user customization. This is perceived as 
a big problem for at least two reasons. First, a customer has to 
rely on an official software update to support new protocols, 
say a new, fast growing peer-to-peer application. Software 
updates can be delayed because the manufacturer has to run 
several regression tests to avoid any side effect; this may 
impact delivery time substantially. Second, the customer may 
have protocols developed in-house in its intranet (financial 
accounting is a good example) and there is little chance that 
off-the-shelf products can correctly classify such traffic and 
give it the proper rights in terms of bandwidth and security. 

The NetPDL language (presented in [1]) addresses this 
problem by opening the path to protocol-independent 
applications. Figure 1 shows a possible architecture: the 
application relies on an external module that exports a set of 
functions such as GetFieldValue(FieldName). When the 
application calls this function, the NetPDL-aware module 
scans the NetPDL protocol database looking for the field the 
application is interested in, and then extracts the offset and the 
size of the field. Finally, it reads the data located at the 

calculated offset within the packet buffer and it returns it to 
the caller. Once based on this model, an application can 
understand any protocol described in the NetPDL protocol 
database; it can be updated by simply improving the list of 
supported protocols, which is located in an external file. This 
model does not require the application to be thoroughly tested 
after the modification (in fact, the application code has not 
been modified at all), and offers the customer the possibility to 
modify the protocol database for supporting its proprietary 
protocols. 

<protocol name=“ip”>
<field type=“bit” name=“ver” size=“1” mask=“0xF0”>
<field type=“bit” name=“hlen” size=“1” mask=“0xoF”>
<field type=“fixed” name=“tos” size=“1”>
<field type=“fixed” name=“tlen” size=“2”>
<field type=“fixed” name=“id” size=“2”>
...

</protocol>

User application

NetPDL
Protocol 
Database

ip.tos
=0?

... ...
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packet[offset:size]
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Figure 1. Possible architecture for a protocol-agnostic application. 

The NetPDL language has been proved extremely effective 
(and very simple) for describing protocols ranging from data-
link to transport layer. However, it was not very effective with 
application-layer protocols. This paper presents the work done 
to address this issue and a set of preliminary results of 
NetPDL-based application-layer classification. 

This paper is organized as follows. Section II presents a 
number of solutions proposed for protocol description and 
their drawbacks. Section III presents the modifications to 
NetPDL required to support application-layer classification. 
Section IV presents a first experimental evaluation of the 
resulting language in terms of protocol coverage and 
performance, and finally Section V presents some conclusive 
remarks and a brief look at the future research directions. 

II. RELATED WORK 
Cisco is one of the most active vendors from the protocol 

language description point of view, starting from the Cisco 
Flexible Packet Matching [2], included in IOS version 12.4. 
However, this language is rather simple and does not 



inherently support traffic classification in the sense used in 
this paper. Perhaps the best example is the Network Based 
Application Recognition (NBAR) [3], which is able to define 
protocol formats at layers L2-L4, and, in some sense, also the 
format for some L7 protocols (filters such as "match protocol 
http url '*root.exe*'" are supported). Although its description 
capabilities are not perfect (it is not able to describe all the 
details within an application-layer protocol format), it 
implements some nice mechanisms that allow detecting an 
application by examining some packets of each connection, 
with some minimal state requirements. In this respect, NBAR 
does a deep packet inspection on packets in a session to 
determine which traffic category the flow belongs to. The 
categorization is usually done through a set of application-
dependent signatures that are applied packet-by-packet. While 
this method is reasonably simple and it does not require 
excessive hardware requirements, it does not cover all possible 
classification cases or protocols. For instance, even when a 
TCP re-assembler is used within NBAR (avoiding the 
misdetection of a signature spanning over different packets), 
NBAR has a limited capability to take into account the 
protocol state machine, which is acceptable for a wide range 
of applications but may be a problem for others. Moreover, 
users must use binary files (Packet Description Language 
Module, PDLM) to program the NBAR module. The 
customizability of the protocols supported by the network 
device is limited to the addition of some regular expressions 
for detecting new types of traffic. In addition, this language 
includes both protocol description and primitives to define the 
action logic, e.g. “raise an alert in case of an HTTP packet”. A 
good separation between protocol description (which is unique 
among different applications) and actions (which depends on 
the applications, e.g. packet decoding for sniffers, packet 
marking for QoS, and more) can give more flexibility and can 
make the language simpler. 

A second option provided by Cisco is the Service 
Management Language (SML) language [4]. This language is 
oriented toward L7 processing and includes different parts that 
describe message semantics (through multiple Abstract Data 
Types, such as numeric, string, ASN.1 types, and more), 
message encoding (e.g. ASCII vs. UNICODE strings) and 
sequence (i.e. the protocol state machine). The user-oriented 
part of the language is similar to Java, and allows service 
providers to write their own scripts in order to customize 
application processing [6] (e.g. performing an action in case a 
given event occurs), although this task is usually done by 
Cisco engineers under the supervision of the customer [5]. 
SML mixes protocol description and actions too, with the 
consequent additional complexity and difficulties of 
supporting other applications that need different sets of 
actions. In addition, this language mandates the use of a 
TCP/IP normalizer (i.e., a module that handles IP fragments 
and TCP segment reordering/duplication issues and more); 
hence cannot be used for L7 processing on a per-packet basis. 

Binpac [7], used by some dissectors distributed with BRO, 
is another example of a powerful language for protocol 
description. This declarative language supports the description 

of the header format, the protocol state machine, and allows 
correlating both directions of a flow. However, binpac is not 
very intuitive and its traffic classification capabilities are 
scarce (e.g. the signature-based classification must be done 
externally, then BinPac validates the selected protocol against 
its expected behavior). In addition, it mandates the use of a 
TCP/IP normalizer. 

Another example is the L7-filter [8] project, which 
classifies application-layer traffic through a set of signatures. 
However, it does not have any protocol description 
capabilities (only protocol signatures) and it is not able to 
correlate different directions of a flow. IPP2P [9], devoted to 
peer-to-peer traffic classification, may be interesting as well 
because of its possibility to use more advanced classification 
criteria (e.g. signatures in addition to other mechanisms), but 
the classification is hard-coded in the source code and no 
external descriptions are used. 

Among the existing set of languages, the most problematic 
characteristics are: difficult to understand, often proprietary, 
not designed to use on a per-packet basis, mostly signature-
based, and often tailored to application-layer classification, 
without support for L2-L4 classification. NetPDL aims at 
being non-proprietary, with per-packet processing in mind 
(although it can support TCP/IP normalization), easy to 
understand, and yet powerful. In addition, it supports the full 
range of L2-L7 classification. 

III. CLASSIFYING APPLICATION PROTOCOLS WITH NETPDL 
A NetPDL database is made up of a set of protocol 

descriptions (element <protocol>), each one including a 
header format section (element <format>) and an 
<encapsulation> element, i.e. a set of expressions that 
return the header that follows the current one. Figure 2 shows 
an excerpt of the NetPDL description of an Ethernet header, 
which consists of 3 fixed-length fields, whose length is 
respectively 6/6/2 bytes. The <nextproto> element 
contains the protocol encapsulation description, i.e., it 
specifies how to determine the protocol (as indicated by the 
value of the <nextproto> element) following the current 
Ethernet header based on the value of the type field. 

 
<protocol name="Ethernet" longname="Ethernet 802.3">
<format>
<fields>

<field type="fixed" name="dst" size="6"/>
<field type="fixed" name="src" size="6"/>

<field type="fixed" name="type" size="2"/>
</fields>

</format>
<encapsulation>
<switch expr="buf2int(type)">
<case value="0x0800"> <nextproto name="#IP"/> </case>

<case value="0x0806"> <nextproto name="#ARP"/> </case>
</switch>

</encapsulation>
</protocol>  

Figure 2. NetPDL example. 

Since NetPDL was originally defined for L2-L4 protocols, 
its protocol classification primitives were rather simple. In 



fact, L2-L4 protocols usually rely on the value of some fields 
for choosing the next protocol, such as the ethertype field of 
the Ethernet frame that specifies if the packet is IP or ARP. 
Almost all these protocols can be successfully managed with 
some if-then-else elements, and most of them can even use the 
switch-case primitive, which allow defining an even simpler 
condition for detecting the following protocol in the packet. 

Classifying application-layer protocols is much more 
complex, and at least three additional issues must be 
addressed, namely protocol verification, session tracking, and 
application-negotiated sessions. 

A. Protocol verification 
TCP/IP has an ambiguous mechanism for application-layer 

de-multiplexing. For instance, while a value 0x800 in the 
ethertype field uniquely identifies an IP packet, the value “80” 
in the TCP port does not necessary mean that the packet 
contains an HTTP payload, although HTTP should use the 
TCP port 80. A robust packet classifier should perform some 
form of validity check on the protocol to guarantee that the 
packet really is what it appears to be. Unfortunately, the 
verification process can be very difficult.  

A first degree of verification relates to the correctness of the 
transmitted data from the syntactical point of view (e.g. a 
supposed HTTP payload should contain HTTP headers). A 
verifier should decode all the fields contained in the message 
and guarantee that the message is well formed, as in the case 
of SML and binpac. This is extremely expensive from the 
processing point of view; therefore regular expressions with 
some other protocol-dependent constraints (e.g. a payload 
length check for fixed-length data protocols) are often used for 
this purpose.  

A second degree of verification relates to protocol 
conformance, (protocol conformance verification), e.g. 
controlling that an HTTP GET Request from a client is 
followed by a valid response from the server. This form of 
verification is more accurate because it can validate the run-
time behavior of the protocol against its canonical state 
machine as defined by specifications.  

A third degree of verification refers to the semantic of the 
data, e.g., the possibility to verify whether an image object 
transferred by the HTTP protocol is in fact an image, or some 
other form of content. This verification is extremely useful to 
detect “smart tunneling” mechanisms, in which an application 
uses another protocol to transport its data. 

These three degrees of verification have different 
complexity and requires different processing capabilities. 
Being NetPDL packet-based and targeted to high-speed packet 
processing applications, only the first type of verification is 
well supported, although in principle it can be used also for 
verifying the protocol behavior. 

NetPDL supports the verification through the new 
<verify> element (under <protocol>), which includes 
both an expression and a set of associated actions. The 
verification can either return “found” or “not found”, or it can 
postpone the result with a “deferred” or “candidate” return 
code. The “deferred” is used for protocols that require several 
packets to be analyzed in order to return an exact answer (e.g. 

RTP, Skype). Vice versa, the “candidate” is used for protocols 
in which the payload can match several protocols at the same 
time. For instance, KAZAA communicates through HTTP 
messages that contain a special optional header; hence 
KAZAA packets are also valid HTTP ones. However, the 
NetPDL is able to differentiate among these protocols and 
pick the correct one (in this case, the check against the HTTP 
signature returns “candidate”, and this protocol will be the 
correct one unless a check against another protocol returns 
“found”, in which case the second protocol is chosen). 

 
1) NetPDL and packet boundaries 

One of the problems involved in protocol verification is 
that, at application level, the payload may span over several 
packets. Even if NetPDL is packet-based, it is agnostic with 
respect to the definition of packet. For instance, a packet can 
be either a frame (as transmitted on the Ethernet) or a virtual 
packet, i.e. a buffer that contains all the payloads put together 
by a TCP normalizer, as shown in Figure 3. In case an 
Ethernet frame is processed, the NetPDL engine cannot 
execute any operation beyond the packet payload; vice versa, 
if the TCP normalizer puts together all the pieces of a message 
and delivers the resulting buffer to the NetPDL engine, this 
will be able to perform its verification controls over the 
appropriate amount of data. However, NetPDL does not have 
any primitives for TCP normalization; hence some external 
module (from NetPDL point of view) must address this task in 
case we want NetPDL to operate on messages instead of 
packets.. 

The problem of data reassembly can be present at several 
layers, e.g., several ATM cells that contain an IP packet, IP 
fragmented packets, applications whose payload spans over 
several TCP packets; in any case, this is outside the scope of 
the NetPDL language. The user must take care of pre-
formatting the data in such a way that the NetPDL engine gets 
a buffer with the entire set of data it expects for that protocol. 

 
Eth IP TCP Payload1 Eth IP TCP Payload2 Eth IP TCP Payload3

HTTP headers HTTP payload

NetPDL
processing engine

HTTP message (“virtual packet”)Ethernet frame

 
Figure 3. Processing real and virtual packets in NetPDL. 

2) Verification vs. classification 
Protocol classification is usually done only through the 

syntactical analysis. For instance, the packet payload (or a 
reassembled payload, in case of large messages) is often 
compared against a set of signatures, which characterize the 
protocol that generated that message. Signatures are used 
because of their speed, since complete syntactical verification 
may be extremely slow. 

Once the protocol has been identified, there is nothing more 
to do from the classification standpoint; a more sophisticated 
verification process is targeted mostly at checking that the 



protocol has a correct behavior, which is useful to protect the 
network from crafted messages that exploit security 
vulnerabilities in hosts. 

Although this cannot be taken as a “hard” rule, we can say 
that the accuracy of the verification depends on needs: the 
syntactical verification is enough for classification purposes, 
while the protocol conformance verification is useful mostly 
for security purposes. Conversely, the semantic verification 
can be very useful for classification (e.g. to protect from 
applications implementing smart tunneling techniques), but at 
the best of the authors’ knowledge, there are no technologies 
that are able to address this issue at this time. 

B.  Session Tracking 
Session Tracking is mostly used to keep track of TCP 

sessions. This mechanism leverages a simple table containing 
the 5-tuple that includes the ID of known sessions and the 
associated application-layer protocol.  

The use of the session tracking is often different in packet-
based technologies (e.g. NBAR) and in stream-based 
technologies (e.g. SML, BinPac). In packet-based 
technologies, the session table stores the result of the signature 
matching; for instance, signatures are usually present only at 
the beginning of the session, so the result must be saved to 
associate following packets of the same session to the protocol 
detected in the previous step. When a packet belongs to a 
known session, the protocol signature should not be verified 
again and the selected protocol should be used for further 
processing. By contrast, in stream-based technologies the 
session table is used to retrieve a pointer to the given session, 
perform the TCP reassembly and jump to the correct L7 
protocol analyzer. 

In order to implement the session tracking, NetPDL defines 
a special bi-dimensional variable (element <lookuptable>) 
that supports an arbitrary number of fields. Fields are either 
keys to locate entries (“primary key” in database terminology) 
or data (such as protocol ID) related to the given element. 

Although bi-dimensional variables can have any use, they 
are particularly useful for transport-layer session tracking. 
These entries (e.g. TCP sessions) have the necessity of being 
properly managed, e.g., we must be able to purge “zombie” 
TCP sessions that are no longer active. For this reason, 
NetPDL can associate an attribute to each entry, defining its 
validity. An entry can last forever (unless deleted by an 
explicit command in the NetPDL file), or it can be 
automatically cleared off after a given inactivity time. 

C. Application-negotiated sessions 
The third problem is the case of applications that 

dynamically negotiate the parameters of the session, e.g., the 
case of FTP data connection whose ports are dynamically 
negotiated in the FTP control channel, or SIP sessions that 
dynamically negotiate RTP ports. 

NetPDL supports a set of processing elements through a 
new <execute-code> section (under <protocol>). For 
instance, the definition of the FTP protocol will contain a 
piece of code that recognizes the negotiation of a new FTP 
data session, and inserts a new entry into the TCP session 

table. Usually these entries do not have to go through a 
verification process – i.e., if the “master” session is trusted (it 
has already been verified before), its “child” sessions should 
be trusted as well. 

One additional problem related to this point is that often the 
entire 5-tuple is not known in advance. For example, the 
PASV command used in FTP passive connections leaves one 
of the TCP ports unknown. NetPDL supports also the insertion 
of partial entries – i.e., entries in which part of the primary key 
is missing; the entry can be automatically replaced with a 
complete one as soon as a session matches. This behavior is 
highly customizable and there are cases in which the partial 
entry can still stay in the session table. For example, a protocol 
processing logic may create the TCP session table in which an 
entry such “ip_unknown, port_unknown, ip_cisco_com, port 
80  protocol HTTP” is statically allocated at time zero. This 
rule allow immediately to associate any TCP packet directed 
to the cisco.com IP address on port 80 as belonging to the 
HTTP protocol, and it should not be replaced when an hit 
occurs. 

The capabilities in terms of tables provided by the NetPDL 
language are rather sophisticated; for more details, please refer 
to the NetPDL documentation [10]. 

IV. EXPERIMENTAL EVALUATION 
The NetPDL language went through a major revision 

compared to previous versions [1]. In addition to the elements 
that were briefly introduced in the previous section (for more 
details, please refer to the NetPDL documentation [10]), there 
was a major rewrite of the syntax related to protocol fields and 
expressions (it uses a more readable syntax, no longer based 
on XML, with typed operands), and a better cleanup of the 
main NetPDL sections (e.g., the new section devoted to code 
processing, the <execute-code>). Additional improvements 
include the possibility to define external processing handlers 
(when a given element of the NetPDL file is encountered, the 
processing can continue to a function defined into an external 
program), and a major rewrite of the API used by the Packet 
Decoder module within the NetBee library [11], which is the 
most advanced tool based on NetPDL nowadays. 

A. The TCP/UDP encapsulation section 
After the language basics, presented in Section III, this 

section presents an example on how the new elements can be 
combined together to create a piece of code that performs 
packet classification. This paragraph presents perhaps the 
most significant example of protocol classification, namely the 
skeleton of the <encapsulation> section of the TCP 
protocol (shown in Figure 4), which uses the new elements but 
also takes care of performance issues, as explained later.  

When a TCP packet is found, the NetPDL code extracts the 
session ID and performs a lookup in the TCP session table. If 
the session is already known (what we call dynamic entry), the 
processing continues with the protocol stored in that record 
(element <nextproto>). In the opposite case, the NetPDL 
executes a section that contains what we call well-known 
entries. This section verifies (<nextproto-candidate> 



element) if the packet contains a protocol usually associated to 
a well-known port (e.g. HTTP in case of port 80).  If the 
protocol is still unknown, the NetPDL lists a set of protocols 
that must be checked against the payload (what we call “try 
and see” entries), until a match is found. In the unfortunate 
case that the protocol is still unknown, the packet is associated 
to a default protocol.  

In theory, “well-known” entries are not necessary. In this 
case the “try and see” section will be executed for all the new 
sessions, but this results in a performance deterioration since 
multiple signatures have to be checked till the correct one if 
found. Vice versa, the “well-known entries” section allows 
testing the most likely signature first; only if this step fails the 
execution continues with the “try and see” section. 
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<if expr="checklookuptable($tcpsessiontable, ...) >

<if-true>

<nextproto proto="$tcpsession.nextproto"/>

</if-true>

<switch expr="sourceport">

<case value="21"><nextproto-candidate proto="#ftp"/> </case>

<case value="80"><nextproto-candidate proto="#http"/></case>

</switch>

<switch expr="destport">

<case value="21"><nextproto-candidate proto="#ftp"/> </case>

<case value="80"><nextproto-candidate proto="#http"/></case>

</switch>

<nextproto-candidate proto="#http"/>

<nextproto-candidate proto="#skype"/>
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Figure 4. Structure of the packet classification section of the TCP protocol. 

B. Processing complexity 
Although a more detailed evaluation of the performance of 

NetPDL (in terms of accuracy of protocol classification and 
protocol coverage) is deferred to a following paper, Table 1 
presents some performance results in terms of processing cost 
per packet. It refers to a trace of about 9GB containing 15M 
packets, captured at the exit link of our University. The file 
was first processed deleting all the packets that belong to 
sessions that started before the beginning of the capture. Tests 
were performed on a standard Pentium 4 PC clocked at 3.0 
GHz with 2 GB of memory and made use of the 
PacketDecoder sample provided in the NetBee library, 
which decodes packets associating each field with its value 
and its position in the packet dump (this excludes all the 
processing related to NetPDL “visualization primitives”). 

The first result refers to the processing cost with the 
previous version of the NetPDL language, in which packet 
classification was extremely simple (port-based). The second 
relates to a NetPDL file in which the session tracking has been 
turned on, and the result is significantly better because of the 
faster classification for packets belonging to known TCP/UDP 
sessions (a lookup in the session table instead of processing 
the entire encapsulation section). In the third case, the session 
tracking is coupled with protocol verification capabilities, and 
the result shows that the protocol verification makes the 
processing cost almost three times higher, due to the extensive 
usage of regular expression. The fourth case enables all the 

features (including the “try and see” section), and the cost is 
even higher because of the need to compare the payload 
against a multiple set of signatures in order to find out the 
correct protocol. Note that this fourth cost is still lower than 
the original first result, obtained forcing the classification to 
be done on all the packets. 

Although the number reported in the first case is higher than 
the one shown in previous experiments [12] (mostly due to a 
larger set of supported protocols and a bigger capture file that 
does not fit in cache), the results demonstrate that the 
additional capabilities of the NetPDL language do not 
dramatically increase the processing cost. Interestingly, the 
session tracking capability is even able to decrease the 
processing cost due to fast protocol classification for packets 
belonging to a known session. 

TABLE 1 
NETPDL PERFORMANCE EVALUATION 

Test mode Processing cost 

Old Netpdl, no session tracking 265 µs/packet 
Session tracking, no protocol verification   41 µs/packet 
Session tracking with protocol verification 110 µs/packet 
Session tracking with protocol verification and 
“try and see” entries 

243 µs/packet 

C. Protocol coverage 
At the time of writing, 122 protocols are defined using the 

current NetPDL specification. This number can definitely 
increase, since it depends mostly on the effort required to 
understand a new protocol and write the corresponding 
description in NetPDL. From the protocol coverage 
standpoint, NetPDL should be able to classify all the protocols 
that are handled by similar technology, such as l7filter and 
NBAR, which are mostly based on signatures. Currently we 
support many IETF protocols, and several VoIP and P2P 
applications. With the current set of protocols and the current 
signatures, the classification process performed on the 
previous capture trace returns the result shown in Table 2, in 
which most packets are associated to a L7 protocols and only 
about 3% of them are unknown. 

At this time, the authors do not have any number to 
demonstrate the accuracy of the classification, which is left to 
future work; however, being the classification methods similar 
to previously cited technologies, we do expect to have 
accuracy equal or better than them. For instance, L7-filter does 
not support RTP (Real Time Protocol) because it cannot be 
detected through signatures, while NetPDL has full support for 
it. In addition, NetPDL supports several protocols that 
negotiate other connections at run-time, such as SIP, FTP, and 
more. 

TABLE 2 
NETPDL CLASSIFICATION EXAMPLE 

Protocol Number of packets Share (%) 

Edonkey over TCP 5803125 35.31% 
Samba 3847739 23.41% 
HTTP 2352677 14.31% 
Microsoft SQL Server 1335405  8.12% 



Edonkey over UDP   826500  5.03% 
TCP (e.g., 3-way handshake)   634865  3.86% 
Unknown   552486  3.36% 
Other recognized protocols 1083580 6.59% 

D. Readability 
The readability of NetPDL files plays an important role in 

the language definition. Since creating a GUI that helps to 
define these files is a difficult process, the easiest way of 
updating the definition is to edit files by hand. 

Obviously, the increased number of XML elements and 
attributes present in the language and the complexity of the 
classification make the readability worse than in previous 
versions. However, we feel that the general readability is still 
good; the <format> section (which contains the list of the 
fields of the protocol) has only been slightly modified, and the 
<encapsulation> section remains the same for most 
protocols, with the notably exceptions of TCP and UDP. Also 
in these cases the readability is still excellent. Unfortunately, 
some more elements are required for session management and 
for protocol verification; since these look more like 
programming instructions, they have been located in the new 
<execute-code> section. Although the processing code is 
not something easier to read when formatted through XML 
element, the readability of most of these sections still looks 
acceptable. 

Although in principle the <execute-code> section can 
accommodate any type of code (since the processing 
primitives of NetPDL are now similar to the ones in any high-
level language such as C), the authors believe that the code in 
that section should be kept at the minimum, and more 
advanced processing code (e.g., statistical analysis for 
improving the classification) should be written elsewhere with 
a more appropriate language. This is now possible through 
external callbacks, which pass control to an external program 
when a NetPDL element with the callhandle attribute is found. 

E. Implementation-dependant limitations 
The current engine implementation does not have TCP/IP 

normalization capabilities; hence the verification process is 
limited to a single packet. This leads to some false negatives 
related to the syntactical validation (a protocol signature split 
across two packets makes this protocol undetectable), but still 
allows to perform protocol conformance verification (the 
engine can correctly classify sessions using several packets 
satisfying a set of conditions), which in fact is implemented in 
some dissectors, e.g., RTP, Skype. 

One point deferred to future work is the evaluation of 
classification accuracy, also in case a TCP normalizer is used. 
However, as previously said, the TCP normalizer is out of 
scope of the NetPDL language and it is a matter of engine 
implementation. 

V. CONCLUSIONS 
This paper presents a set of extensions to the NetPDL 

language allowing the implementation of application-layer 
classification. These new language primitives are simple 
(albeit powerful) and lead to protocol definition files that are 

still quite readable. 
Performances obtainable with these new extensions are 

interesting: the protocol coverage is pretty high, and a first 
implementation (far from being optimized) is already 
processing packets at a reasonably speed. 

Future work on this topic will focus on a deeper evaluation 
of the accuracy of the classification achievable with NetPDL, 
with and without TCP/IP normalizer. Another point will be a 
more accurate examination of the descriptive capabilities of 
the language related to application-layer protocols, to 
understand if the format description capabilities defined for 
L2-L4 protocols are still suitable for L7 protocols. 
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