
13 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Extending the NetPDL Language to Support Traffic Classification / Risso, FULVIO GIOVANNI OTTAVIO; Baldini, A;
Bonomi, F.. - (2007). (Intervento presentato al convegno IEEE Globecom 2007 tenutosi a Washington D.C., USA nel
November 2007).

Original

Extending the NetPDL Language to Support Traffic Classification

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1666609 since:

Extending the NetPDL Language to Support Traffic
Classification

Fulvio Risso
Dip. di Automatica e Informatica, Politecnico di Torino

Corso Duca degli Abruzzi 24, Torino, Italy
fulvio.risso@polito.it

Andrea Baldini and Flavio Bonomi
Cisco Systems, Inc.

170 West Tasman Drive, San Jose 95134, CA, USA
{abaldini,flavio}@cisco.com

Abstract—Despite the importance of traffic classification in
modern networks, the number of languages tailored to this task is
extremely limited. These languages can be valuable, because they
allow the update of an application (e.g. firewall) in terms of
supported protocols by simply updating its protocol description
database, instead of recompiling the application from scratch.
This paper presents a set of extensions to the Network Protocol
Description Language (NetPDL) allowing support of traffic
classification from data-link to application-layer protocols. A set
of preliminary experimental results obtained with these new
extensions is presented as well.

I. INTRODUCTION
The problem of traffic classification is rapidly becoming

one of the hottest issues in modern networks. On one hand
end-users tend to hide their traffic in order to escape Internet
Service Providers or corporate rules, for example in terms of
bandwidth limitation or firewall restrictions; on the other hand
ISPs and enterprise network managers want to control the
amount of bandwidth consumed per user and per application,
limiting the most bandwidth-hungry applications or stopping
some kind of traffic altogether.

Several companies proposed their solutions for packet
classification. However, almost all solutions are proprietary
and leave no room to user customization. This is perceived as
a big problem for at least two reasons. First, a customer has to
rely on an official software update to support new protocols,
say a new, fast growing peer-to-peer application. Software
updates can be delayed because the manufacturer has to run
several regression tests to avoid any side effect; this may
impact delivery time substantially. Second, the customer may
have protocols developed in-house in its intranet (financial
accounting is a good example) and there is little chance that
off-the-shelf products can correctly classify such traffic and
give it the proper rights in terms of bandwidth and security.

The NetPDL language (presented in [1]) addresses this
problem by opening the path to protocol-independent
applications. Figure 1 shows a possible architecture: the
application relies on an external module that exports a set of
functions such as GetFieldValue(FieldName). When the
application calls this function, the NetPDL-aware module
scans the NetPDL protocol database looking for the field the
application is interested in, and then extracts the offset and the
size of the field. Finally, it reads the data located at the

calculated offset within the packet buffer and it returns it to
the caller. Once based on this model, an application can
understand any protocol described in the NetPDL protocol
database; it can be updated by simply improving the list of
supported protocols, which is located in an external file. This
model does not require the application to be thoroughly tested
after the modification (in fact, the application code has not
been modified at all), and offers the customer the possibility to
modify the protocol database for supporting its proprietary
protocols.

<protocol name=“ip”>
<field type=“bit” name=“ver” size=“1” mask=“0xF0”>
<field type=“bit” name=“hlen” size=“1” mask=“0xoF”>
<field type=“fixed” name=“tos” size=“1”>
<field type=“fixed” name=“tlen” size=“2”>
<field type=“fixed” name=“id” size=“2”>
...

</protocol>

User application

NetPDL
Protocol
Database

ip.tos
=0?

... ...

Read value at
packet[offset:size]

......

Get value
of ip.tos

NetPDL-aware module

Read NetPDL file
and locate field

“ip.tos”

Get offset, size of
this field

Figure 1. Possible architecture for a protocol-agnostic application.

The NetPDL language has been proved extremely effective
(and very simple) for describing protocols ranging from data-
link to transport layer. However, it was not very effective with
application-layer protocols. This paper presents the work done
to address this issue and a set of preliminary results of
NetPDL-based application-layer classification.

This paper is organized as follows. Section II presents a
number of solutions proposed for protocol description and
their drawbacks. Section III presents the modifications to
NetPDL required to support application-layer classification.
Section IV presents a first experimental evaluation of the
resulting language in terms of protocol coverage and
performance, and finally Section V presents some conclusive
remarks and a brief look at the future research directions.

II. RELATED WORK
Cisco is one of the most active vendors from the protocol

language description point of view, starting from the Cisco
Flexible Packet Matching [2], included in IOS version 12.4.
However, this language is rather simple and does not

inherently support traffic classification in the sense used in
this paper. Perhaps the best example is the Network Based
Application Recognition (NBAR) [3], which is able to define
protocol formats at layers L2-L4, and, in some sense, also the
format for some L7 protocols (filters such as "match protocol
http url '*root.exe*'" are supported). Although its description
capabilities are not perfect (it is not able to describe all the
details within an application-layer protocol format), it
implements some nice mechanisms that allow detecting an
application by examining some packets of each connection,
with some minimal state requirements. In this respect, NBAR
does a deep packet inspection on packets in a session to
determine which traffic category the flow belongs to. The
categorization is usually done through a set of application-
dependent signatures that are applied packet-by-packet. While
this method is reasonably simple and it does not require
excessive hardware requirements, it does not cover all possible
classification cases or protocols. For instance, even when a
TCP re-assembler is used within NBAR (avoiding the
misdetection of a signature spanning over different packets),
NBAR has a limited capability to take into account the
protocol state machine, which is acceptable for a wide range
of applications but may be a problem for others. Moreover,
users must use binary files (Packet Description Language
Module, PDLM) to program the NBAR module. The
customizability of the protocols supported by the network
device is limited to the addition of some regular expressions
for detecting new types of traffic. In addition, this language
includes both protocol description and primitives to define the
action logic, e.g. “raise an alert in case of an HTTP packet”. A
good separation between protocol description (which is unique
among different applications) and actions (which depends on
the applications, e.g. packet decoding for sniffers, packet
marking for QoS, and more) can give more flexibility and can
make the language simpler.

A second option provided by Cisco is the Service
Management Language (SML) language [4]. This language is
oriented toward L7 processing and includes different parts that
describe message semantics (through multiple Abstract Data
Types, such as numeric, string, ASN.1 types, and more),
message encoding (e.g. ASCII vs. UNICODE strings) and
sequence (i.e. the protocol state machine). The user-oriented
part of the language is similar to Java, and allows service
providers to write their own scripts in order to customize
application processing [6] (e.g. performing an action in case a
given event occurs), although this task is usually done by
Cisco engineers under the supervision of the customer [5].
SML mixes protocol description and actions too, with the
consequent additional complexity and difficulties of
supporting other applications that need different sets of
actions. In addition, this language mandates the use of a
TCP/IP normalizer (i.e., a module that handles IP fragments
and TCP segment reordering/duplication issues and more);
hence cannot be used for L7 processing on a per-packet basis.

Binpac [7], used by some dissectors distributed with BRO,
is another example of a powerful language for protocol
description. This declarative language supports the description

of the header format, the protocol state machine, and allows
correlating both directions of a flow. However, binpac is not
very intuitive and its traffic classification capabilities are
scarce (e.g. the signature-based classification must be done
externally, then BinPac validates the selected protocol against
its expected behavior). In addition, it mandates the use of a
TCP/IP normalizer.

Another example is the L7-filter [8] project, which
classifies application-layer traffic through a set of signatures.
However, it does not have any protocol description
capabilities (only protocol signatures) and it is not able to
correlate different directions of a flow. IPP2P [9], devoted to
peer-to-peer traffic classification, may be interesting as well
because of its possibility to use more advanced classification
criteria (e.g. signatures in addition to other mechanisms), but
the classification is hard-coded in the source code and no
external descriptions are used.

Among the existing set of languages, the most problematic
characteristics are: difficult to understand, often proprietary,
not designed to use on a per-packet basis, mostly signature-
based, and often tailored to application-layer classification,
without support for L2-L4 classification. NetPDL aims at
being non-proprietary, with per-packet processing in mind
(although it can support TCP/IP normalization), easy to
understand, and yet powerful. In addition, it supports the full
range of L2-L7 classification.

III. CLASSIFYING APPLICATION PROTOCOLS WITH NETPDL
A NetPDL database is made up of a set of protocol

descriptions (element <protocol>), each one including a
header format section (element <format>) and an
<encapsulation> element, i.e. a set of expressions that
return the header that follows the current one. Figure 2 shows
an excerpt of the NetPDL description of an Ethernet header,
which consists of 3 fixed-length fields, whose length is
respectively 6/6/2 bytes. The <nextproto> element
contains the protocol encapsulation description, i.e., it
specifies how to determine the protocol (as indicated by the
value of the <nextproto> element) following the current
Ethernet header based on the value of the type field.

<protocol name="Ethernet" longname="Ethernet 802.3">
<format>
<fields>

<field type="fixed" name="dst" size="6"/>
<field type="fixed" name="src" size="6"/>

<field type="fixed" name="type" size="2"/>
</fields>

</format>
<encapsulation>
<switch expr="buf2int(type)">
<case value="0x0800"> <nextproto name="#IP"/> </case>

<case value="0x0806"> <nextproto name="#ARP"/> </case>
</switch>

</encapsulation>
</protocol>

Figure 2. NetPDL example.

Since NetPDL was originally defined for L2-L4 protocols,
its protocol classification primitives were rather simple. In

fact, L2-L4 protocols usually rely on the value of some fields
for choosing the next protocol, such as the ethertype field of
the Ethernet frame that specifies if the packet is IP or ARP.
Almost all these protocols can be successfully managed with
some if-then-else elements, and most of them can even use the
switch-case primitive, which allow defining an even simpler
condition for detecting the following protocol in the packet.

Classifying application-layer protocols is much more
complex, and at least three additional issues must be
addressed, namely protocol verification, session tracking, and
application-negotiated sessions.

A. Protocol verification
TCP/IP has an ambiguous mechanism for application-layer

de-multiplexing. For instance, while a value 0x800 in the
ethertype field uniquely identifies an IP packet, the value “80”
in the TCP port does not necessary mean that the packet
contains an HTTP payload, although HTTP should use the
TCP port 80. A robust packet classifier should perform some
form of validity check on the protocol to guarantee that the
packet really is what it appears to be. Unfortunately, the
verification process can be very difficult.

A first degree of verification relates to the correctness of the
transmitted data from the syntactical point of view (e.g. a
supposed HTTP payload should contain HTTP headers). A
verifier should decode all the fields contained in the message
and guarantee that the message is well formed, as in the case
of SML and binpac. This is extremely expensive from the
processing point of view; therefore regular expressions with
some other protocol-dependent constraints (e.g. a payload
length check for fixed-length data protocols) are often used for
this purpose.

A second degree of verification relates to protocol
conformance, (protocol conformance verification), e.g.
controlling that an HTTP GET Request from a client is
followed by a valid response from the server. This form of
verification is more accurate because it can validate the run-
time behavior of the protocol against its canonical state
machine as defined by specifications.

A third degree of verification refers to the semantic of the
data, e.g., the possibility to verify whether an image object
transferred by the HTTP protocol is in fact an image, or some
other form of content. This verification is extremely useful to
detect “smart tunneling” mechanisms, in which an application
uses another protocol to transport its data.

These three degrees of verification have different
complexity and requires different processing capabilities.
Being NetPDL packet-based and targeted to high-speed packet
processing applications, only the first type of verification is
well supported, although in principle it can be used also for
verifying the protocol behavior.

NetPDL supports the verification through the new
<verify> element (under <protocol>), which includes
both an expression and a set of associated actions. The
verification can either return “found” or “not found”, or it can
postpone the result with a “deferred” or “candidate” return
code. The “deferred” is used for protocols that require several
packets to be analyzed in order to return an exact answer (e.g.

RTP, Skype). Vice versa, the “candidate” is used for protocols
in which the payload can match several protocols at the same
time. For instance, KAZAA communicates through HTTP
messages that contain a special optional header; hence
KAZAA packets are also valid HTTP ones. However, the
NetPDL is able to differentiate among these protocols and
pick the correct one (in this case, the check against the HTTP
signature returns “candidate”, and this protocol will be the
correct one unless a check against another protocol returns
“found”, in which case the second protocol is chosen).

1) NetPDL and packet boundaries

One of the problems involved in protocol verification is
that, at application level, the payload may span over several
packets. Even if NetPDL is packet-based, it is agnostic with
respect to the definition of packet. For instance, a packet can
be either a frame (as transmitted on the Ethernet) or a virtual
packet, i.e. a buffer that contains all the payloads put together
by a TCP normalizer, as shown in Figure 3. In case an
Ethernet frame is processed, the NetPDL engine cannot
execute any operation beyond the packet payload; vice versa,
if the TCP normalizer puts together all the pieces of a message
and delivers the resulting buffer to the NetPDL engine, this
will be able to perform its verification controls over the
appropriate amount of data. However, NetPDL does not have
any primitives for TCP normalization; hence some external
module (from NetPDL point of view) must address this task in
case we want NetPDL to operate on messages instead of
packets..

The problem of data reassembly can be present at several
layers, e.g., several ATM cells that contain an IP packet, IP
fragmented packets, applications whose payload spans over
several TCP packets; in any case, this is outside the scope of
the NetPDL language. The user must take care of pre-
formatting the data in such a way that the NetPDL engine gets
a buffer with the entire set of data it expects for that protocol.

Eth IP TCP Payload1 Eth IP TCP Payload2 Eth IP TCP Payload3

HTTP headers HTTP payload

NetPDL
processing engine

HTTP message (“virtual packet”)Ethernet frame

Figure 3. Processing real and virtual packets in NetPDL.

2) Verification vs. classification
Protocol classification is usually done only through the

syntactical analysis. For instance, the packet payload (or a
reassembled payload, in case of large messages) is often
compared against a set of signatures, which characterize the
protocol that generated that message. Signatures are used
because of their speed, since complete syntactical verification
may be extremely slow.

Once the protocol has been identified, there is nothing more
to do from the classification standpoint; a more sophisticated
verification process is targeted mostly at checking that the

protocol has a correct behavior, which is useful to protect the
network from crafted messages that exploit security
vulnerabilities in hosts.

Although this cannot be taken as a “hard” rule, we can say
that the accuracy of the verification depends on needs: the
syntactical verification is enough for classification purposes,
while the protocol conformance verification is useful mostly
for security purposes. Conversely, the semantic verification
can be very useful for classification (e.g. to protect from
applications implementing smart tunneling techniques), but at
the best of the authors’ knowledge, there are no technologies
that are able to address this issue at this time.

B. Session Tracking
Session Tracking is mostly used to keep track of TCP

sessions. This mechanism leverages a simple table containing
the 5-tuple that includes the ID of known sessions and the
associated application-layer protocol.

The use of the session tracking is often different in packet-
based technologies (e.g. NBAR) and in stream-based
technologies (e.g. SML, BinPac). In packet-based
technologies, the session table stores the result of the signature
matching; for instance, signatures are usually present only at
the beginning of the session, so the result must be saved to
associate following packets of the same session to the protocol
detected in the previous step. When a packet belongs to a
known session, the protocol signature should not be verified
again and the selected protocol should be used for further
processing. By contrast, in stream-based technologies the
session table is used to retrieve a pointer to the given session,
perform the TCP reassembly and jump to the correct L7
protocol analyzer.

In order to implement the session tracking, NetPDL defines
a special bi-dimensional variable (element <lookuptable>)
that supports an arbitrary number of fields. Fields are either
keys to locate entries (“primary key” in database terminology)
or data (such as protocol ID) related to the given element.

Although bi-dimensional variables can have any use, they
are particularly useful for transport-layer session tracking.
These entries (e.g. TCP sessions) have the necessity of being
properly managed, e.g., we must be able to purge “zombie”
TCP sessions that are no longer active. For this reason,
NetPDL can associate an attribute to each entry, defining its
validity. An entry can last forever (unless deleted by an
explicit command in the NetPDL file), or it can be
automatically cleared off after a given inactivity time.

C. Application-negotiated sessions
The third problem is the case of applications that

dynamically negotiate the parameters of the session, e.g., the
case of FTP data connection whose ports are dynamically
negotiated in the FTP control channel, or SIP sessions that
dynamically negotiate RTP ports.

NetPDL supports a set of processing elements through a
new <execute-code> section (under <protocol>). For
instance, the definition of the FTP protocol will contain a
piece of code that recognizes the negotiation of a new FTP
data session, and inserts a new entry into the TCP session

table. Usually these entries do not have to go through a
verification process – i.e., if the “master” session is trusted (it
has already been verified before), its “child” sessions should
be trusted as well.

One additional problem related to this point is that often the
entire 5-tuple is not known in advance. For example, the
PASV command used in FTP passive connections leaves one
of the TCP ports unknown. NetPDL supports also the insertion
of partial entries – i.e., entries in which part of the primary key
is missing; the entry can be automatically replaced with a
complete one as soon as a session matches. This behavior is
highly customizable and there are cases in which the partial
entry can still stay in the session table. For example, a protocol
processing logic may create the TCP session table in which an
entry such “ip_unknown, port_unknown, ip_cisco_com, port
80 protocol HTTP” is statically allocated at time zero. This
rule allow immediately to associate any TCP packet directed
to the cisco.com IP address on port 80 as belonging to the
HTTP protocol, and it should not be replaced when an hit
occurs.

The capabilities in terms of tables provided by the NetPDL
language are rather sophisticated; for more details, please refer
to the NetPDL documentation [10].

IV. EXPERIMENTAL EVALUATION
The NetPDL language went through a major revision

compared to previous versions [1]. In addition to the elements
that were briefly introduced in the previous section (for more
details, please refer to the NetPDL documentation [10]), there
was a major rewrite of the syntax related to protocol fields and
expressions (it uses a more readable syntax, no longer based
on XML, with typed operands), and a better cleanup of the
main NetPDL sections (e.g., the new section devoted to code
processing, the <execute-code>). Additional improvements
include the possibility to define external processing handlers
(when a given element of the NetPDL file is encountered, the
processing can continue to a function defined into an external
program), and a major rewrite of the API used by the Packet
Decoder module within the NetBee library [11], which is the
most advanced tool based on NetPDL nowadays.

A. The TCP/UDP encapsulation section
After the language basics, presented in Section III, this

section presents an example on how the new elements can be
combined together to create a piece of code that performs
packet classification. This paragraph presents perhaps the
most significant example of protocol classification, namely the
skeleton of the <encapsulation> section of the TCP
protocol (shown in Figure 4), which uses the new elements but
also takes care of performance issues, as explained later.

When a TCP packet is found, the NetPDL code extracts the
session ID and performs a lookup in the TCP session table. If
the session is already known (what we call dynamic entry), the
processing continues with the protocol stored in that record
(element <nextproto>). In the opposite case, the NetPDL
executes a section that contains what we call well-known
entries. This section verifies (<nextproto-candidate>

element) if the packet contains a protocol usually associated to
a well-known port (e.g. HTTP in case of port 80). If the
protocol is still unknown, the NetPDL lists a set of protocols
that must be checked against the payload (what we call “try
and see” entries), until a match is found. In the unfortunate
case that the protocol is still unknown, the packet is associated
to a default protocol.

In theory, “well-known” entries are not necessary. In this
case the “try and see” section will be executed for all the new
sessions, but this results in a performance deterioration since
multiple signatures have to be checked till the correct one if
found. Vice versa, the “well-known entries” section allows
testing the most likely signature first; only if this step fails the
execution continues with the “try and see” section.

Is packet in
session table?

Is stardard
port?

Can we guess
what is it?

Jump to
"defaultproto"

Jump to that
protocol

Is protocol
check ok?

End

<if expr="checklookuptable($tcpsessiontable, ...) >

<if-true>

<nextproto proto="$tcpsession.nextproto"/>

</if-true>

<switch expr="sourceport">

<case value="21"><nextproto-candidate proto="#ftp"/> </case>

<case value="80"><nextproto-candidate proto="#http"/></case>

</switch>

<switch expr="destport">

<case value="21"><nextproto-candidate proto="#ftp"/> </case>

<case value="80"><nextproto-candidate proto="#http"/></case>

</switch>

<nextproto-candidate proto="#http"/>

<nextproto-candidate proto="#skype"/>

Dynamic entries

“Well-known” entries

"Try and see" entries

Y

N

Y

Y

N

N

Y

N

Figure 4. Structure of the packet classification section of the TCP protocol.

B. Processing complexity
Although a more detailed evaluation of the performance of

NetPDL (in terms of accuracy of protocol classification and
protocol coverage) is deferred to a following paper, Table 1
presents some performance results in terms of processing cost
per packet. It refers to a trace of about 9GB containing 15M
packets, captured at the exit link of our University. The file
was first processed deleting all the packets that belong to
sessions that started before the beginning of the capture. Tests
were performed on a standard Pentium 4 PC clocked at 3.0
GHz with 2 GB of memory and made use of the
PacketDecoder sample provided in the NetBee library,
which decodes packets associating each field with its value
and its position in the packet dump (this excludes all the
processing related to NetPDL “visualization primitives”).

The first result refers to the processing cost with the
previous version of the NetPDL language, in which packet
classification was extremely simple (port-based). The second
relates to a NetPDL file in which the session tracking has been
turned on, and the result is significantly better because of the
faster classification for packets belonging to known TCP/UDP
sessions (a lookup in the session table instead of processing
the entire encapsulation section). In the third case, the session
tracking is coupled with protocol verification capabilities, and
the result shows that the protocol verification makes the
processing cost almost three times higher, due to the extensive
usage of regular expression. The fourth case enables all the

features (including the “try and see” section), and the cost is
even higher because of the need to compare the payload
against a multiple set of signatures in order to find out the
correct protocol. Note that this fourth cost is still lower than
the original first result, obtained forcing the classification to
be done on all the packets.

Although the number reported in the first case is higher than
the one shown in previous experiments [12] (mostly due to a
larger set of supported protocols and a bigger capture file that
does not fit in cache), the results demonstrate that the
additional capabilities of the NetPDL language do not
dramatically increase the processing cost. Interestingly, the
session tracking capability is even able to decrease the
processing cost due to fast protocol classification for packets
belonging to a known session.

TABLE 1
NETPDL PERFORMANCE EVALUATION

Test mode Processing cost

Old Netpdl, no session tracking 265 µs/packet
Session tracking, no protocol verification 41 µs/packet
Session tracking with protocol verification 110 µs/packet
Session tracking with protocol verification and
“try and see” entries

243 µs/packet

C. Protocol coverage
At the time of writing, 122 protocols are defined using the

current NetPDL specification. This number can definitely
increase, since it depends mostly on the effort required to
understand a new protocol and write the corresponding
description in NetPDL. From the protocol coverage
standpoint, NetPDL should be able to classify all the protocols
that are handled by similar technology, such as l7filter and
NBAR, which are mostly based on signatures. Currently we
support many IETF protocols, and several VoIP and P2P
applications. With the current set of protocols and the current
signatures, the classification process performed on the
previous capture trace returns the result shown in Table 2, in
which most packets are associated to a L7 protocols and only
about 3% of them are unknown.

At this time, the authors do not have any number to
demonstrate the accuracy of the classification, which is left to
future work; however, being the classification methods similar
to previously cited technologies, we do expect to have
accuracy equal or better than them. For instance, L7-filter does
not support RTP (Real Time Protocol) because it cannot be
detected through signatures, while NetPDL has full support for
it. In addition, NetPDL supports several protocols that
negotiate other connections at run-time, such as SIP, FTP, and
more.

TABLE 2
NETPDL CLASSIFICATION EXAMPLE

Protocol Number of packets Share (%)

Edonkey over TCP 5803125 35.31%
Samba 3847739 23.41%
HTTP 2352677 14.31%
Microsoft SQL Server 1335405 8.12%

Edonkey over UDP 826500 5.03%
TCP (e.g., 3-way handshake) 634865 3.86%
Unknown 552486 3.36%
Other recognized protocols 1083580 6.59%

D. Readability
The readability of NetPDL files plays an important role in

the language definition. Since creating a GUI that helps to
define these files is a difficult process, the easiest way of
updating the definition is to edit files by hand.

Obviously, the increased number of XML elements and
attributes present in the language and the complexity of the
classification make the readability worse than in previous
versions. However, we feel that the general readability is still
good; the <format> section (which contains the list of the
fields of the protocol) has only been slightly modified, and the
<encapsulation> section remains the same for most
protocols, with the notably exceptions of TCP and UDP. Also
in these cases the readability is still excellent. Unfortunately,
some more elements are required for session management and
for protocol verification; since these look more like
programming instructions, they have been located in the new
<execute-code> section. Although the processing code is
not something easier to read when formatted through XML
element, the readability of most of these sections still looks
acceptable.

Although in principle the <execute-code> section can
accommodate any type of code (since the processing
primitives of NetPDL are now similar to the ones in any high-
level language such as C), the authors believe that the code in
that section should be kept at the minimum, and more
advanced processing code (e.g., statistical analysis for
improving the classification) should be written elsewhere with
a more appropriate language. This is now possible through
external callbacks, which pass control to an external program
when a NetPDL element with the callhandle attribute is found.

E. Implementation-dependant limitations
The current engine implementation does not have TCP/IP

normalization capabilities; hence the verification process is
limited to a single packet. This leads to some false negatives
related to the syntactical validation (a protocol signature split
across two packets makes this protocol undetectable), but still
allows to perform protocol conformance verification (the
engine can correctly classify sessions using several packets
satisfying a set of conditions), which in fact is implemented in
some dissectors, e.g., RTP, Skype.

One point deferred to future work is the evaluation of
classification accuracy, also in case a TCP normalizer is used.
However, as previously said, the TCP normalizer is out of
scope of the NetPDL language and it is a matter of engine
implementation.

V. CONCLUSIONS
This paper presents a set of extensions to the NetPDL

language allowing the implementation of application-layer
classification. These new language primitives are simple
(albeit powerful) and lead to protocol definition files that are

still quite readable.
Performances obtainable with these new extensions are

interesting: the protocol coverage is pretty high, and a first
implementation (far from being optimized) is already
processing packets at a reasonably speed.

Future work on this topic will focus on a deeper evaluation
of the accuracy of the classification achievable with NetPDL,
with and without TCP/IP normalizer. Another point will be a
more accurate examination of the descriptive capabilities of
the language related to application-layer protocols, to
understand if the format description capabilities defined for
L2-L4 protocols are still suitable for L7 protocols.

ACKNOWLEDGMENT
The authors wish to thank Mario Baldi, Satish Gannu, Pere

Monclus, Olivier Morandi, and Bob Olsen, for their comments
and their many suggestions, and Christian Novello, who spent
part of its graduation thesis working on these issues.

REFERENCES
[1] Mario Baldi, Fulvio Risso, “NetPDL: An Extensible XML-Based

Language for Packet Header Description”, Elsevier Computer Networks
Journal (COMNET), Volume 50, Issue 5, Pages 688-706, April 2006.

[2] Cisco Systems, Cisco IOS Flexible Packet Matching; included in Cisco
IOS 12.4. Available at http://www.cisco.com/en/US/products/ps6723/
products_ios_protocol_group_home.html.

[3] Cisco Systems, “Network Based Application Recognition” (NBAR).
Available at http://www.cisco.com/en/US/products/ps6616/
products_ios_protocol_group_home.html.

[4] Opher Reviv, “Inside network programming with SML”, EE Times, Aug
2003. Available at http://www.eetimes.com/story/OEG20030818S0077.

[5] Alex Goldman, “Control P2P Traffic”, ISP-Planet, April 2003.
Available at http://www.isp-planet.com/equipment/2003/p-
cube_engage.html.

[6] Cisco Systems, “Service Control Application Suite for Broadband”, API
Programmer's Guide Ver. 2.5.5. Available at
http://cco.cisco.com/application/pdf/en/us/guest/products/ps6135/c1671/
ccmigration_09186a0080424911.pdf.

[7] Ruoming Pang, Vern Paxson, Robin Sommer, Larry Peterson, “binpac: a
yacc for writing application protocol parsers”, Proceedings of the 6th
ACM SIGCOMM on Internet Measurement, Pages: 289-300, Rio de
Janeiro, Brazil, October 2006.

[8] L7filter, Application Layer Packet Classifier for Linux, May 2003.
Available at http://l7-filter.sourceforge.net/.

[9] The IPP2P project. Available online at http://www.ipp2p.org.
[10] Fulvio Risso, “NetPDL Language Specification”. February 2007.

Available at http//test.nbee.org:8080/netpdl/.
[11] Computer Networks Group (NetGroup) at Politecnico di Torino, “The

NetBee Library”. August 2004. Available at http://www.nbee.org/.
[12] Mario Baldi, Fulvio Risso, “Using XML for Efficient and Modular

Packet Processing”, Proceedings of IEEE Globecom 2005, St. Louis,
Missouri, USA, December 2005.

