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Abstract— Enhancing the connectivity of wireless sensor net-
works is necessary to avoid the occurrence of coverage gaps. In
this paper, we aim at improving the network connectivity of a
given network by adding a set of relays to it. We characterize the
network connectivity by the Fiedler value, which is the second
smallest eigenvalue of the Laplacian matrix representing the
network graph. We propose a network-maintenance algorithm,
which finds the best locations for a given set of relays. The
proposed algorithm obtains the best relays’ locations through
a multi-level approach. In each level, the search problem can
be formulated as a standard semi-definite programming (SDP)
optimization problem. We show that the proposed algorithm can
increase the average Fiedler value by 35% by adding one relay
only.

I. INTRODUCTION

Recently, there have been much interest in wireless sensor
networks due to its various application areas such as battlefield
surveillance systems and industry monitoring systems [1]. A
sensor network consists of a large number of sensor nodes,
which are deployed in a particular area to measure certain
phenomenon such as temperature and pressure. These sensors
send their measured data to a central processing unit, which
collects the data and develops a decision. In general, each
sensor can transmit its data and relay other sensors’ data to
the sensors that are in its transmission range.

The network is considered connected if there is a path,
possibly a multi-hop path, from each sensor to the central
processing unit. Consequently, the network is connected if
there is a path between each two sensors in the network. After
deploying the sensors for sometime, some sensors lose their
available energy, which affects its ability to send its own data
as well as relay the other sensors’ data. This situation results in
having a coverage gap in the network area, i.e., some locations
will not be successfully sensed. Furthermore, it affects the
network connectivity and may result in the network being
disconnected. In this work, we are concerned about keeping
the network away from being disconnected, which is known
in the literature as network maintenance [2].

In the literature, there have been some works that considered
the connectivity in wireless networks. In [2], the authors
considered deploying as few additional nodes as possible to
reconnect a disconnected network. In [3], the authors have
considered the problem of maximizing a particular utility
function by deploying a certain number of relay nodes. In [4],
the authors proposed a mathematical approach to positioning
and flying an unmanned air vehicle (UAV) over a wireless ad

hoc network in order to optimize the network’s connectivity
for better Quality of Service (QoS) and coverage.

In this paper, the main goal is to fully enhance the
connectivity of the wireless sensor networks by adding an
available set of relays to the network. We quantify the network
connectivity using the Fiedler value [5], [6], [7], [8], which
will be defined later as the second smallest eigenvalue of the
Laplacian matrix representing the network graph. Hence, we
aim at finding the optimum locations for a given set of relays
in order to maximize the Fiedler value of the resulting graph.
Finding the optimum locations for such relays is a difficult
problem due to the continuous nature of this problem, which
results in an infinite number of possible solutions. In this paper
we overcome this problem and propose a network-maintenance
algorithm, which specifies the near-optimum locations for an
available number of relays K ≥ 1 to maximize the Fiedler
value of the network.

Our proposed network-maintenance algorithm can be ex-
plained as follows. First, we divide the network area into a
certain number of equal regions and represent each region by
a relay in its center. Second, we choose the best K relays’
locations by solving a semi-definite programming (SDP) opti-
mization problem. Third, we iteratively refine our solution by
dividing each obtained relay’s region into a number of smaller
regions and repeating the same procedure. Thus, our algorithm
consists of a number of stages, which are called levels. Finally,
we choose the best location after a few number of levels, where
each relay can be deployed.

The major contribution of this paper is to propose an al-
gorithm, which formulates the network-maintenance problem
as a semi-definite programming optimization problem. This
formulation significantly simplifies the problem and allows us
to utilize one of the available standard SDP solvers. By doing
so, we show that we can increase the Fiedler value by 35%
after adding one relay only. This result is very close to what
we get by exhaustively searching for the optimum location.
However, our proposed algorithm requires only 1/20 of the
time taken by the exhaustive search scheme. Finally, we point
out that our proposed network-maintenance algorithm can
be implemented through utilizing low-altitude UAVs. More
precisely, we can utilize one UAV or more, which can fly along
the obtained relays’ locations to improve the connectivity of
the ground network.

The rest of the paper is organized as follows. In the next
section, we describe the network model and review some
of the definitions related to the algebraic connectivity of a
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graph. In Section III, we formulate the network-maintenance
problem and describe our proposed algorithm to solve it. We
discuss the formulation of our optimization problem as a SDP
optimization problem in Section IV. In Section V, we present
some simulation results that show the significance of our
propose network-maintenance algorithm. Finally, Section VI
concludes the paper.

II. NETWORK MODEL

In this section, we describe the wireless sensor network model.
In addition, we review some related concepts related to the
algebraic connectivity of a graph [6], [9]. A wireless sensor
network can be modeled as an undirected simple finite graph
G(V,E), where V = v1, v2, · · · , vn is the set of all nodes
(sensors) and E is the set of all edges (links). An undirected
graph implies that all the links in the network are bidirectional,
hence, if node vi can reach node vj then the opposite is also
true. A simple graph means that there is no self loop in each
node and there are no multiple edges connecting two nodes.
Finally, a finite graph implies that the cardinality of the sets V
and E is finite. Let n and m denote the number of nodes and
edges in the graph, respectively, i.e., |V | = n and |E| = m,
where |.| denotes the cardinality of the given set.

We consider a simple topology model, which is denoted by
the disk model. In this model, two nodes are connected if the
distance between them is less than the transmission range. We
assume that all the sensors have fixed transmission power, i.e.,
fixed transmission radius R. Hence, an edge exists between
two nodes if the distance between them is less than R. For an
edge l, 1 ≤ l ≤ m, connecting nodes vi and vj , {vi, vj} ∈ V ,
define the edge vector al ∈ Rn, where al,i = 1, al,j = −1,
and the rest is zero. The incidence matrix A ∈ Rn×m of the
graph G is the matrix with with l-th column given by al. We
note that the graph G is connected if there exists a series of
edges (path) between each two nodes.

The n × n Laplacian matrix L is defined as

L = A AT =
m∑

l=1

al a
T
l . (1)

The diagonal entry Li,i is the degree of node i, and Li,j =
−1 if (vi, vj) ∈ E, otherwise Li,j = 0. We note that the
summation of the elements in each row (column) equals 0. In
addition, the Laplacian matrix is positive semi-definite L � 0
and its smallest eigenvalue is zero λ1(L) = 0. The second
smallest eigenvalue of L, λ2(L), is of great importance with
respect to algebraic connectivity of the graph G [6], [5]. It is
called Fiedler value and it measures how connected the graph
is because of following reasons. First, λ2(L) > 0 if and only
if G is connected and the multiplicity of the zero eigenvalue
is equal to the number of the connected sub-graphs. Second,
λ2(L) is monotone increasing in the edge set, i.e.,

if G1 = (V,E1) , G2 = (V,E2) , E1 ⊆ E2

then λ2(L1) ≤ λ2(L2) ,
(2)

where Lq denotes the Laplacian matrix of the graph Gq for
q = 1, 2.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, we formulate the network maintenance prob-
lem, then we propose our algorithm to solve it. The connec-
tivity problem can be formulated as follows. Given a base
network deployed in a g × g square area and represented by
the graph Gb = (Vb, Eb), as well as a set of K relays, what are
the optimum locations for these relays in order to maximize
the Fiedler value of the resulting network? Intuitively, adding
a relay to the base network may result in connecting two
sensors or more, which were not connected together. Because
this relay can be within the transmission range of these two
sensors, hence it can relay data from one sensor to the other.
Therefore, adding a relay may result in adding an edge or
more to the original graph.

Let Ec(K) denote the set of edges resulting from adding
a candidate set of K relays. Thus, the network maintenance
problem can be formulated as

max
Ec(K)

λ2

(
L

(
Eb ∪ Ec(K)

))
. (3)

Since each relay can be deployed anywhere in the network, the
location of each relay is considered as a continuous variable,
which belongs to the interval ([0, g], [0, g]). It is hard to solve
this problem in its current form due to the infinite number of
possible solutions.

In the sequel, we explain our proposed algorithm to solve
this problem. First, we divide the g × g network area into nc

equal square regions, each with width w. Thus, nc = ( g
w )2. We

represent each region by a relay deployed in its center. Thus,
we have a set of nc candidate relays, hence the subscript c,
and we want to choose the optimum K relays among these
nc relays. This optimization problem can be formulated as

max λ2

(
L(x)

)

s. t. 1T x = K, x ∈ {0, 1}nc ,
(4)

where

L(x) = Lb +
nc∑
l=1

xl Al A
T
l , (5)

and 1 ∈ Rnc is the all-ones vector.
In (5), Al is the incidence matrix resulting from adding

relay l to the original graph. Assuming that adding relay l
results in Il edges between the original n sensors, then the
matrix Al can be formed as Al = [a1

l , a
2
l , · · · , aIl

l ], where
az

l ∈ Rn, z = 1, 2. · · · , Il, represents an edge between two
original sensors. We note that the optimization vector in (5)
is the vector x ∈ Rnc . Each element in x is either 1 or 0,
which represents whether this relay should be chosen or not,
respectively. The optimization problem (4) is close to the one
in [6], with the matrix Al replaced by one edge vector. In
Section IV, we will show that the optimization problem in (4)
can be formulated as a standard semi-definite programming
(SDP) optimization problem and that it can be solved using
any SDP standard solver.

Assuming for the time being that the optimization problem
in (4) can be solved efficiently and that we can choose K
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Step 1 The first level: Divide the network area into nc equal
square regions. Each region is represented by a relay at its center.
Step 2 Solve the optimization problem in (4) and obtain the best
K < nc relays among the nc relays defined in Step 1.
Step 3 Start a new level: For each solution xk, k = 1, 2, · · · , K,
divide the k-th region into nc equal square regions and obtain the
best area for this relay. This can be solved using (4) by setting
K = 1.
Step 4 Repeat Step 3 until there is no improvement in the
resulting Fiedler value.

TABLE I

Proposed multi-level network-maintenance algorithm.

locations, denoted by xk, k = 1, 2, · · · ,K, among the nc

available ones. We call this stage of the algorithm by level. As
indicated earlier, each location xk, k = 1, 2, · · · ,K, represents
a square region of width w. Choosing xk = 1 implies that the
k-th region is more significant, in terms of the connectivity of
the whole network, than other ones that have not been chosen.
In order to improve the current solution, we repeat the same
procedure by dividing each k-th region into nc smaller areas
and representing each one by a relay at its center. Then, we
find the best location in these nc regions to have the relay
deployed there. This problem is the same as the one in (4)
by setting K = 1. We do the same step for each region
k, 1 ≤ k ≤ K obtained in (4). The proposed network-
maintenance algorithm applies a finite number of levels until
there is no more improvement in the connectivity. In Table I,
we summarize the implementation of our proposed network-
maintenance algorithm.

IV. SEMI-DEFINITE PROGRAMMING (SDP) FORMULATION

The exhaustive search scheme to solve (4) is done by com-
puting λ2(L) for different

(nc

K

)
Laplacian matrices, which

requires huge computations for large nc. Hence, we need
an efficient and quick way to solve (4). In this section, we
describe how the optimization problem in (4) can be relaxed
to SDP optimization problem.

By relaxing the Boolean constraint x ∈ {0, 1}nc to be a lin-
ear constraint x ∈ [0, 1]nc , we can represent the optimization
problem in (4) as

max λ2

(
L(x)

)

s. t. 1T x = K, 0 ≤ x ≤ 1 .
(6)

We note that the optimal value of the relaxation problem in
(6) is an upper bound for the optimal value of the original
problem (4), as it has a larger feasible region. As mentioned
in Section II, λ1

(
L(x)

)
= 0 and its corresponding eigenvector

is 1 ∈ Rn. Let y ∈ Rn be the eigenvector corresponding to
λ2

(
L(x)

)
. Thus, 1T y = 0 and ||y|| = 1. Since, L(x) y = λ2 y,

hence yT L(x) y = λ2 yT y = λ2. Therefor, the Fiedler value
can be expressed as

λ2

(
L(x)

)
= inf

y
{yT L(x) y | ||y|| = 1, 1T y = 0} . (7)

In (7), λ2

(
L(x)

)
is the point-wise infimum of a family of

linear functions of x. Hence, it is a concave function in x. In
addition, the relaxed constraints are linear in x. Therefore, the

optimization problem in (6) is a convex optimization problem
[10]. Furthermore, the convex optimization problem in (6) is
equivalent to the following SDP optimization problem [6], [9]

max s

s. t. s(I − 1
n

1 1T ) � L(x), 1T x = K, 0 ≤ x ≤ 1 ,
(8)

where I ∈ Rn×n is the identity matrix and � denotes semi-
positive definiteness. In the sequel, we show how the two
optimization problems in (6) and (8) are equivalent. Let

L̃(x) = L(x) − s(I − 1
n

1 1T ) , (9)

where s is an unknown scalar. Thus, for any n × 1 vector y,
where ||y|| = 1 and 1T y = 0, we get

yT L̃(x) y = yT L(x) y − s(yT I y − 1
n

(yT 1) (1T y))

= yT L(x) y − s .
(10)

To ensure that L̃(x) � 0, i.e., s(I − 1
n1 1T ) � L(x), then the

maximum possible value of s is

s = inf
y

{yT L(x) y| ||y|| = 1, 1T y = 0}
= λ2

(
L(x)

)
,

(11)

where the second equality holds from (7). Hence, maximizing
s in (8) is equivalent to maximizing λ2

(
L(x)

)
in (6), given

that all the other constraints are satisfied.
The optimal solution for (8) is obtained numerically using

one of the standard SDP solvers such as the SDPA-M software
package [11]. Finally, we use a heuristic to obtain a Boolean
vector from the SDP optimal solution, which is the solution
for the original problem in (4). In this paper, we consider a
simple heuristic, which is to set the largest K xl to 1 and the
rest to 0. In the future, we will consider more sophisticated
algorithm to obtain the combinatorial solution.

V. SIMULATION RESULTS

In this section, we present some simulation results to show the
performance of our proposed network-maintenance algorithm.
In the simulations, we have used the SDPA-M software
package [11] to solve the SDP problem in (8) at each level. In
order to associate edges with certain relay, first we find all the
sensors in the original graph that are within distance R of this
relay’s location. Second, we construct an edge between each
two of these sensors. Obviously, it may happen that two relays
result in a common edge. For such case, we choose the relay
which results in the maximum number of edges. Intuitively,
we need to have as many edges as possible associated with
the least number of relays.

In order to illustrate our proposed network-maintenance
algorithm, we consider the small network shown in Fig. 1.
It consists of a set of n = 20 sensors, deployed randomly in
a 6× 6 area. Each sensor is marked with + and each edge is
represented by a solid line connecting two sensors. We assume
that an edge exists between each two sensors if the distance
between them is less than R = 2. We assume that the number
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Fig. 1. Sensor network consisting of n = 20 nodes in a 6× 6 area. Sensors
and relay are represented in + and 0, respectively. Original and new edges
are represented in solid and dashed lines, respectively.
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Fig. 2. The Fiedler value versus the number of levels employing K = 1
relay for a sensor network consisting of n = 20 nodes deployed in a 6 × 6
area.

of available relays is one, K = 1. By calculating the Laplacian
matrix of the original network, we find that its Fiedler value
is λ2(0) = λ2(K)|K=0 = 0.2359.

As we explained in Section III, our proposed network-
maintenance algorithm finds the optimum location of this relay
through a number of levels. In the first level, it divides the
network area into nc = 9 square regions, each of width 2, and
deploys a relay at the center of each region. We notice that
the algorithm picks the region represented by a relay deployed
at (3, 5). Deploying a relay at this location (3, 5) results in
an increase in the Fiedler value to be λ2(1) = 0.3679. In
the second level, this small region is divided into nc = 9
smaller regions and the Fiedler value increases slightly to
be λ2(1) = 0.377. After 4 levels, the algorithm chooses the
location (3, 4.33) to be the best location for the relay. Fig. 1
depicts the best location of the relay, represented by 0, as
well as the edges resulting from adding this relay shown in
dashed lines. For this choice, the resulting final Fiedler value
is λ2(1) = 0.3782.

Fig. 2 depicts the Fiedler value versus the number of levels
for the network shown in Fig. 1. As shown, there is an increase
of the Fiedler value in the first few levels until the third one.
After that, the Fiedler value is constant and does not increase
with more levels. This result signifies the efficiency of our
proposed algorithm and its ability to obtain the best relays’
locations within a few levels. Based on that result, we set the
number of levels to be 3 in the rest of this section.
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Fig. 3. The Fiedler value versus the number of added relay for a sensor
network consisting of n = 20 nodes deployed in a 6 × 6 area.
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Fig. 4. The average Fiedler value versus the number of added relay for 100
sensor networks, each consists of n = 100 nodes and deployed in a 10× 10
area.

Next, we explore the effect of increasing the number of
possible relays on the Fiedler value. Fig. 3 depicts the Fiedler
value as a function of the added number of relays. Obviously,
the Fiedler value increases with the number of added relays.
We note that there is a large increase in the Fiedler value
due to the addition of the first few relays, which is 5 in this
example. As we increase the number of added nodes beyond
that, we notice that the Fiedler value of the resulting graph is
almost constant and does not increase.

We also compare the performance of our proposed algorithm
with the exhaustive search and random addition schemes. We
have implemented the exhaustive search scheme by dividing
the 6 × 6 network area into many small regions, each region
is represented by a relay at its center. The random addition
scheme chooses randomly K relays’ locations. Fig. 3 depicts
the Fiedler value of these two schemes. We have implemented
the exhaustive search algorithm up to K = 4 nodes due to the
huge processing time needed to get the results. As shown, the
performance of our proposed algorithm almost coincide with
the exhaustive search performance in K = 1 and K = 4 cases.
Finally, we notice that the random addition performs poorly
compared to our proposed algorithm.

We also consider a more realistic scenario where we have
a large number of sensors, n = 100, deployed in a 10 × 10
area. The transmission radius is R = 3. Fig 4 depicts the
Fiedler value for various schemes averaged over 100 inde-
pendent network realizations. In each realization, 100 sensors
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Fig. 5. Sensor network consisting of n = 200 nodes in a 25×25 area. The
network is reconnected by adding K = 1 relay at the location (4.98, 5.02).

are uniformly deployed in the network area. At K = 1,
the performance of our proposed algorithm is close to the
exhaustive search one. For the K = 1 case, our proposed
network-maintenance algorithm needs 6.77 seconds to choose
the best location, while the exhaustive search scheme needs
138.44 seconds to do the same job. Thus, our proposed
algorithm achieves almost the same performance as that of
the exhaustive search scheme to allocate a single relay in
approximately 1/20 of the time needed for the exhaustive
search scheme. The percentage of the enhancement in the
Fiedler value can be calculated as I(K) = λ2(K)−λ2(0)

λ2(0)
% . In

a sensor network of n = 100 sensors deployed in a 10×10 area
with transmission radius R = 3, the Fiedler value increases
by I(1) = 35% due to the addition of one relay only.

Finally, we consider the case when the original network is
disconnected, i.e., λ2(0) = 0. Fig. 5 depicts a 25×25 network
of n = 200 nodes, which is divided into two sub-networks. By
following our network-maintenance algorithm using nc = 25
locations, we find out that the network can be connected using
one relay only deployed at (4.98, 5.02). By deploying this
relay the Fiedler value jumps to λ2(1) = 0.0473. Fig. 6 depicts
the Fiedler value of this disconnected network versus the
number of added relays. The performances of both exhaustive
search and random addition schemes are depicted as well in
Fig. 6. For the K = 1 case, the optimum solution obtained
through our algorithm in 11.6 seconds and the exhaustive
search solution obtained in 955.6 seconds result in the same
Fiedler value. Hence, our proposed algorithm achieves the
same performance in time equal to 1/82 of that needed by
the exhaustive search scheme.

We note that for a disconnected network, our proposed
algorithm does not guarantee that it can reconnect this network
by adding a predetermined set of relays to it. In the future,
we will consider the network rebuilding problem, in which
we determine the minimum number of relays along with their
optimum locations needed in order to reconnect a disconnected
network.

VI. CONCLUSION

In this paper, we have addressed the problem of improving the
connectivity in wireless sensor networks. We have considered
the Fiedler value as the network connectivity measure. We
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Fig. 6. The Fiedler value versus the number of added relay for a disconnected
sensor network consisting of n = 200 nodes and deployed in a 25×25 area.

have proposed a network maintenance algorithm, which finds
the optimum locations for an available set of relays that result
in the maximum possible Fiedler value. This algorithm finds
the near-optimum location through a small number of levels.
In each level, the network maintenance problem is formulated
as a semi-definite programming (SDP) optimization problem,
which can be solved using the available standard SDP solvers.
We showed that adding the first few relays has a more
significant effect than adding more relays afterwards. In a
sensor network of n = 100 sensors deployed in a 10×10 area
with transmission radius R = 3, the Fiedler value is increased
by 35% due to the addition of one relay only. Moreover, our
proposed algorithm achieves almost the same performance as
that of the exhaustive search scheme to allocate a single relay
in approximately 1/20 of the time needed for the exhaustive
search scheme.
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