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Abstract—1In this paper we use an information flow model
for placement of traffic sinks in a wireless sensor network.
Our mathematical model translates a communication network
composed of countably many sensors into a continuum model
described by a continuous vector field. This vector field models
flow of information in a sensor network, and its magnitude is
the intensity of the communication activity, and its orientation
is the direction in which the traffic is forwarded. We use this
formulation for design of a sensor network in which the traffic
generated by the wireless sensors needs to be routed to one of the
multiple traffic sinks in different locations of the network. We
show that the optimal vector field satisfies a set of PDEs similar
to Maxwell’s equations in electrostatics, with Neumann boundary
conditions. We prove that the orientation of the vector field at the
location of each sink is the direction of the steepest descent of the
total communication cost function of the network. This direction
corresponds to the direction of force in an analogous electrostatics
problem. We use this result in order to introduce iterations that
relocate sinks and show that in the optimal placement of sinks,
the value of the vector field is zero at the location of each sinks.

I. INTRODUCTION

Wireless sensor networks have been studied extensively in
recent years. Such networks are made up of several hundred
to several thousand sensors distributed in a geographical area.
There are many applications for such networks including
military, environment monitoring, surveillance, agriculture and
home applications. Generally, sensors use radio frequency
channels for communicating, and it is desired to collect the
data acquired by all sensors at a few specific destinations in
the network for processing. Such stations are known as sinks
or fusion centers. For the purpose of communication to the
traffic sinks, the sensors relay the packets of each other in a
multi-hop way.

The idea of using a vector field to model information flow
in a wireless network, which is inspired by electrostatic, was
introduced in our former works [1,2]. This work was followed
by [3,4], where the author showed that the methodology leads
to an optimal deployment of sensor nodes. In this methodology
a traffic density vector field models transportation of traffic in
a wireless network. The vector field has two components at
every location of the network: a magnitude that represents the
density of communication at that location and an orientation
that gives the direction to which the traffic is forwarded. The
model is best suitable in situations where the sensors in the
network are distributed with a high enough density so that
the routes from individual sensors to the traffic sinks can
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be well approximated by the flux lines of the vector field
passing through sensors. The first property of the vector field
is that it satisfies a partial differential equation (PDE) that
guarantees the traffic of all sources is transported to the sinks.
This constraint is incorporated into our model through the
divergence of the vector field and represents flow conservation
law in conventional networks. Additionally, the vector field
satisfies a set of Neumann boundary conditions, which state
that the vector field has a zero component in the direction
normal to the boundary of the network.

We show that the divergence property of the traffic vector
field and the boundary conditions do not specify the vector
field uniquely. Therefore, we have a degree of freedom to
optimize a measure of performance in the network. For this
purpose, we minimize an integral of a quadratic form of the
vector field over the network area. This cost function has
many interesting properties. First, it tries to minimize the total
communication burden required to send the traffic created
by the sources to the destinations. Second, it spreads the
communication load of the network over the space, so that we
make the best use of the available space in the network. This
reduces the mutual interference between the wireless nodes,
and increases the overall network throughput. Additionally, in
[3] it is shown that minimizing the quadratic cost function
minimizes the total number of wireless nodes required to
transport the traffic generated by the sources to the sinks. The
optimization of the quadratic cost function leads to a second
PDE, which states that the curl of the vector field should be
zero. While we showed this property mathematically, it has an
interesting intuitive interpretation: since the curl of a vector
field is the density of its rotation, the “zero curl” property
states that the optimal traffic forwarding scheme based on the
vector field does not introduce any routing loops.

The solution of our optimization problem is found as the
joint solution of a set of PDEs that involve the divergence
property, the zero curl property, and the Neumann type bound-
ary conditions. The existence and uniqueness of the solution
for this system of PDEs is guaranteed based on the mature
literature on the PDEs [5,6]. An observation that helps us solve
the PDEs numerically is the fact that a zero curl vector field
(also known as an irrotational or conservative vector field)
can be written as the gradient of a potential field. Using this
property, we can translate the set of two first-order PDEs into a
single second-order PDE that involves the potential function.
The optimal solution of the problem, this potential function
satisfies the classical Poisson’s equation.

An interesting result of our methodology is its analogy to
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the theory of electrostatics in classical physics [7-9]. We will
observe that the traffic vector field is analogous to the electric
field intensity, the divergence and zero curl properties are
analogous to the Maxwell’s equations, the potential function
is analogous to the electric potential, the traffic sources are
analogous to a distributed density of positive charges, the
traffic sinks are analogous to negative point charges, and
the quadratic cost function is analogous to the energy in an
electrostatic equilibrium. Our proposed tool based on vector
calculus provides many different mathematical tools to address
the design issues of sensor networks:

e Optimal load assignment: The vector field gives the
optimal amount of traffic that needs to be routed to each
one of the traffic sinks. In an optimal assignment of the
network traffic load to the traffic sinks, the value of the
potential function at the location of all the traffic sinks
should be equal.

o Optimal partitioning of the network: the methodology
gives an optimal partitioning of the network into several
territories, each assigned to one of the traffic sinks.

o Placement of the traffic sinks: the vector field gives
direction over which each traffic sink should be relocated
in order to achieve the steepest descent of the cost
function. We show that this direction is analogous to the
direction of the applied force on a charged particle in
electrostatics. This issue is the focus of this paper.

The remainder of this paper is organized as follows: in Section
IT we give the background and summary of our prior results.
In Section III. We use the method to find the direction of
relocation of sinks that results in the steepest descent in
the cost function. We show a step by step summary of the
design algorithm in Section IV. Some illustrative examples
and numerical experiments are given in Section V, and the
paper concludes in Section VI.

II. INFORMATION FLOW AS A VECTOR FIELD

In this section, we give an overview of our previous work on
routing in wireless networks by using vector fields. We briefly
state our results here; more complete presentations of these
results can be found in [1,2,10].

Let us assume that we have a network in an area A on the
plane, with M information sinks that receive the traffic of all
the wireless nodes. The i sink is located at position z; =
(24,y:)- The density of traffic sources is given by the spatial
function denoted by r(z), which represents the data generation
rate in bps per unit area at location z. The total generation rate
of traffic of network is denoted by wo = [, r(z)dzdy, which
is desired to be collected in M information sinks. Assignment
of network traffic to the sinks is such that ‘" sink receives w;,
which we refer to as the weight of the sink, and accordingly
we define a density function to model both sources and sinks:

M
p(z) =1(z) — Zwi5(9§ —z:)0(y — vi)

Note that p(z) involves Dirac deltas for the spatial density
of information rate at the locations of sinks. Obviously,

Zgl w; = wp, which implies the total traffic collected by
the sinks is equal to the total traffic generated in the network.

In the next step, we define a vector quantity that models flow
of information. Let D(z) = (D, D,) denote this vector field!
whose direction represents the direction of flow of information
at point z = (z,y), and its magnitude represents the density of
information rate passing through a line segment perpendicular
to the direction of D(z). In other words, if we consider a line
segment with a small length Al at z and perpendicular to the
direction of D(z), the information crosses that line segment
with rate |D(z)|Al. The above definition of D(z) implies that
for a closed contour C' € A we have:

7{ D(z) -dn = / p(z)dzdy (1)
c s(C)

in which dn is a differential vector normal to the contour
at each point of its boundary and pointing to the outside of
the contour, the dot represents the inner product of vectors in
two-dimensional space, and S(C) is the area surrounded by
the closed contour C'. Equation (1) is analogous to Gauss’ law
in electrostatics theory, and it has a simple interpretation in our
formulation: the rate at which information exits a contour is
the net sum of the sources inside that contour. The following
is known as Divergence Theorem in vector calculus:

oD oD
D~dn:/ T+ —dady 2)
%c S(C)( Oz y )

Equations (1) and (2) hold for an arbitrary contour C'. This
implies the following PDE form for information flow:?

oD, 0D,
or + oy p(z)
in which x and y are variables of a Cartesian coordinate
frame in the network. In vector calculus, V- is also known as
divergence operator, and it gives the density of sources (sinks)
of a vector field [7]. It is important to note that equation (3) is
a representation of flow conservation law in continuous form.

The boundary condition of the above PDE is a result of the
fact that information is not intended to exit the boundary of
the network or enter it from the outside.

D, (z) =0z € DA €

V -D(z) = 3)

in which D,,(z) is the normal component of D(z) along the
boundary of A, and OA represents the boundary of A. This
condition is known as Neumann boundary condition.

An important note about the PDE of (3) and the boundary
condition of (4) is that these conditions do not result in a
unique value for D(z). The remaining issue is to decide
what additional condition(s) to place on D(z) so that the
resulting vector field generates a desirable set of routes. The
intuition we follow is that by making D(z) as uniform as
possible we obtain routes that cause the traffic to be highly
dispersed throughout the network. In turn, this decreases both
node congestion and collisions, and leads to high throughput.

IThroughout this paper, the boldface letters represent vector quantities.
2The operator V appears in different forms in many PDEs in the context
of vector calculus. This operator is defined as V = %i + % 7, where ¢ and

7 represent unit vectors along = and y axes respectively.
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Spreading the communication load can be accomplished by
minimizing the following quadratic cost function:

- / K (2)|D(2)| dzdy )
A

in which K(z) takes into consideration the cost of routing
through point z in the network. In [1], we have used K (z) for
energy efficient routing by assigning relatively high values to
it in areas of the network where the sensors have low residual
energies. Also, we showed that this form of cost function
results in maximum spreading of the communication load
among the network resources. It balances the communication
load of the network in such a way that we avoid having a
high load somewhere in the network while the resources are
underutilized somewhere else. Moreover, it is shown in [3]
that minimizing the above cost function minimizes the number
of sensor nodes required to handle the total communication
burden of the network. The summary of optimization problem
and its constraints can be written as:

(z)2dxdy
p( ) & Dn( )=0, Vz € 0A
(6)
Our prior work includes two results regarding the optimization
problem presented in (6). The first result gives the necessary
and sufficient conditions for optimality of the cost function
with a given assignment of communication load to the sinks,
which implies fixed w; values. Our second result gives the
necessary and sufficient conditions for optimality when the
weights of the sinks are a part of the optimization problem,
and we find optimal w; values for sinks.

The basic result: if E(z) = K(z)D(z), then the cost function
in (6) is optimal if and only if curl® of E(z) is zero:

Minimize =LK
s.t. V D( )=

OFE,
Jy or

OE, -

V x E(z) = (— Vi =

in which k is a unit vector normal to the network plane. Since
V x E is zero, E is conservative, and it can be written as the

gradient of a scalar potential function: E(z) = VU(z). This
potential function satisfies:
VK(z).VU(z
v2U(s) - YREVUE _ g0 o)

K(z)

When K (z) is constant over the network, the potential func-
tion satisfies the Poisson’s equation:

0*’U  9*U

2 [
VAU(e) = G5+

=p(2)

The combination of the divergence property, the zero-curl
property, and the boundary conditions give D(z) uniquely.
Note that boundary conditions of D imply that the gradient
of U is zero along the normal direction to the boundary.

31n the context of vector calculus, V X is the two dimensional curl operator,
whose value for a vector field F = [F, Fy] is defined as: V X F(z) =
(- dFI(z) i aFy(z))

(ie., k =ix ]) Curl operator gives the density of rotation of a vector field.

k, where k is a unit vector perpendicular to ¢ and j

Optimizing weights of sinks: in this case the optimization is
written as:
Minimize =K z)|2dzdy
.. p(z) =r(z) - zﬁil wid(x — 23)3(y — y:)
iy Wi = Wo
V- -D(z) =p(z) & D,(z)=0, Vz€ A
®)

We solve this optimization by using the following result:

If the potential function at the locations of M sinks is Uy,
Us, ..., Uy, then the necessary and sufficient conditions for
optimality of the cost function in (8) are:

VxE@) =0 & U=U;, V1<ij<M

Additionally if we increase the weight of sink ¢ by a small
amount €, and subtract that amount from the weight of sink
7, then the increment in the cost function in (8) is:

AJ = 2€(U1 - UJ)

In section IV we use the above results to develop iterations
that optimize the assignment of the network traffic to the sinks.
Such iterations reduce the load assignment of the sinks that
have a high potential value and assign more load to those
with a lower potential value. In [10] we have shown that
the iterations converge to optimal weights and hence optimal
assignment of the network load to the sinks.

III. PLACEMENT OF THE TRAFFIC SINKS

So far we have assumed that the traffic sinks are fixed at
their locations. In this section, we show how our vector field
formulation gives an algorithm for relocating traffic sinks such
that the steepest decrease in the cost function is achieved. Note
that the steepest descent direction corresponds to the gradient
of the cost function with respect to the location of each traffic
sink. The following theorem gives the basis for a method to
relocate the sinks for decreasing the cost function.

Theorem: Assume that the location of the traffic sink i is z; =
(4, Y:). If a small incremental change is made to the location
of this traffic sink, and it is moved to (x; + Ax,y; + Ay), the
amount of change in the optimal value of the cost function
given in (6) is:

where Az = (Az, Ay).

Proof: We use the following identities:
Identity 1: If ¢ is a scalar function and F is a vector field,
then:

V- (cF)=¢V-F+F- Ve (10)

Identity 2: If A is a region in the plane with boundary 0A,
and F' is a vector field on A, then

/V-Fdacdy:jg F-dn
A oA

in which dn is the differential vector normal to the boundary
of A pointing outward. The second identity is the divergence
theorem, which we also used it before in equation (2).

(1)
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Assume D(z), E(z), U(z) and p(z) represent the values of
vector fields, the potential function and the density of sources
for the case in which sink 7 is at z;, and assume D’(z), E'(z),
U’(z), and p’(z) represent the same quantities after we make a
small change in the location of sink 7 and move it to z; + Az,.
After this change, density of sources is:

p'(z) = p(z) + wid(z — ;)6 (y — yi)
—w;d(r — z; — Az)d(y — yi — Ay)
Now we make the following definitions:
D'(z) = D(z) + d(z)
E'(z) = E(z) + e(2)
It is easy to verify that:
V-d(z) = /() — p(z) = widle =20~ y)= 1)
wid(z — z; — Ax)d(y — yi — Ay)
The change of the cost after moving the ** traffic sink is:
AJ = J(D’) J(D) =
Ja K ID’ (z)]* - ID(Z)IQ)dxdy =
Ja K )+d( )I? = D(2)[? )dxdy—
2/, K(z)d( -D(z)dxdy + [, K(z)|d(z)|*dzdy

Since (Az, Ay) is very small in both components, we can
ignore the second order term in the above equation. Hence:
AJ = 2 fA )d(z) - D(z)dzdy =
2/,d da:dy
Note that we have used K ( )D(z) =
Identity 1 for ¢ = U(z) and F' = d(z):

V- (U(z)d(z)) =U(z)V -d(z) + d(z) - VU(z)
By using E(z) = VU(z), the above equation is written as:
d(z) - E(z) = V- (U(2)d(2)) - U(z)V - d(z)
Substituting the above value in equation (13) leads us to:
AJ = 2fA U(z)d(z))dzdy—
2[,U( )dwdy

Now we use the dlvergence theorem given in Identity 2 for
F = U(z)d(z) We have:

/ v. (2))dady = ng U(z)d(z) - dn

in which dn is a differential vector normal to 0 A and pointing
outward. Recall that the Neumann boundary condition states
both D(z) and D’(z) have zero components in the direction
normal to the boundary of A. Hence, d(z) = D'(z) — D(z)
also has zero normal component at every point of the boundary
of A. This causes the inner product in the integrand of equation
(15) to be 0. Therefore:

/V (16)

On the other hand from equation (12) we have V - d(z) =
wid(z — 2:)0(y — yi) — wid(x — z; — Ax)d(y — yi — Ay).

13)

E(z). Now we use

(14)

15)

d(z))dxdy =0

By substituting (17) and (16) in (14) we find:
Ui, yi))

Now we use the fact that E(z) = VU (z), hence if Az and
Ay are small values, then we can write:

U(zi;yi) =

AJ =2w;(U(x; + Az, y; + Ay) — (18)

Uz + Az, y; + Ay) —

R R 1
E(z;,y:) - (Avi+ Ayj) = E(z;,y;) - Az (19
By substituting (19) in (18):
AJ =2w;E(z;,y;) - Az (20)

QED.

The above theorem yields the following results:

Corollary 1: The gradient of cost function J with respect to
the location of ith sink, z;, can be written as:

8Zi = 2le(zz)
Therefore, the direction of steepest descent of the cost function
is the opposite of the gradient, i.e., F; = —2w;E(z;).

We call F; the force at the it

Corollary 2: The necessary condition for optimality of the cost
function with respect to locations of sinks is that E(z;) = 0
for all sinks.

Generally, because the density of the sources p(z) has a
Dirac delta form in the location of the traffic sinks, E(z) shows
a high sensitivity to z when we are close to a sink. To avoid
possible errors, we use an average of E(z) in the neighborhood
of each traffic sink to find the steepest descent direction for
relocation of that sink. This average is defined as:

B = 57 ], B

where S; is a small area containing the traffic sink 4, and
|S;| represents the area of S;. Accordingly, we define force at
the i*" sink as F(z;) = —2w;E;. Relocation of sinks in the
direction of steepest descent leads us to update the location of
each sink in the following manner:

sink.

z)dxdy 21

2] Fi(z])
where z is the location of the traffic sink ¢ at the 5" iteration,
and 6 is a small step size. We stop the iterations when the
maximum of the absolute values of F; among all the traffic
sinks is below a certain threshold.

An interesting note about the relocation algorithm is that
the value of F; is analogous to the force applied to a charged
particle in electrostatics. Also, the cost function is analogous
to the potential energy. Since force is always in the direction
of reducing the potential energy, relocating the traffic sinks in
its direction always reduces the cost function. In addition to
force, the vector field model for the design of sensor networks

(22)

= ZJ. — le

-th

Therefore: has a one-to-one similarity to electrostatics quantities. Various

J.U (z) d(z)dzdy = aspects of this analogy are shown in Table I. The similarity

w; [L,U P z) x —x;)0(y — y; ) dxdy— (17 with electrostatics gives many useful intuitions to solve sensor

w; [, U(2)6(x — x; — Ax)d(y — y; — Ay)dzdy networking problems through analogies. However, despite the

= w;(U(xs,y:) — U(z; + Az, y; + Ay)) analogy aspects of the vector field model with electrostatics,
1214
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TABLE I

Sensor network analysis tool based on vector space vs. electrostatics

Sensor Network Electrostatics
Load density D(z) Electric displacement: D
E(z) Electric field: E = %
K(z)~ T Dielectric Constant: €
J(D) = Potential Energy:
[ 4 K(2)|D(z)|*dzdy e=[ %I_E‘dedy
U(z) Electric potential: V'
p(z) Density of charges: p
A sink with weight w; A Particle with Negative Charge ¢
Force: F; = —2w; E(z;) Force: F = qF
V- D(z) = p(z) Maxwell’s equation: V - D = p
V xE(z) =0 Maxwell’s equation: V X [E = 0

the Neumann boundary condition in our problem does not ap-
pear in electrostatics* and therefore, most of the mathematical
derivations in our problem need to be done independently and
not through the analogy. For example, calculation of force
applied to a particle with charge ¢ in electrostatics is done
by removing that charge and calculating the electric field
E in absence of that charge, and finally the force is found
through F = qf[-f. Such a simple approach is not applicable in
finding force in our problem since removing a sink with weight
w; causes [, p(z)dxdy to become nonzero, which leads to
a contradiction: using the Neumann boundary condition on
the boundary of network implies that §,, D(z) - dn = 0
(because D(z) is tangent to the boundary of network at every
point of it); on the other hand using Gauss’ law on the
boundary implies that §, D(z)-dn = [, p(z)dzdy # 0. This
contradiction shows that the problem after removing a sink
does not have a solution. Fortunately, in most of practical
cases, mature tools in vector calculus and PDEs help us
perform analysis (similar to the one we did in this section to
find force values) without a direct dependence on the analogy,
while the analogy gives strong intuitions to use the right vector
calculus tools and useful insights to the properties of interest.

IV. SUMMARY OF THE DESIGN ALGORITHM

The results of the previous sections can be summarized as an
algorithm that optimally partitions the network into territories
of the traffic sinks and relocates the sinks in the direction of
the steepest descent of the cost function. The design steps are:

1. Find the total amount of information of sources wy =
[y r(z)dady.

2. Assign the total load wy evenly among the traffic sinks:
wi:wo/MforlgiSM.

3. Form p(z) = r(z) — ¥,0, wid(x — 2:)8(y — vi)

4. Numerically solve the PDE for potential function of
equation (7).

5. If the values of the potential function at all the traffic
sinks are the same (or all the pairwise differences are very
small), the optimal weights for the given locations of the
traffic sinks are found. Otherwise decrease the weights

4Boundary conditions in electrostatics are as follows: if the charge density
along the boundary is zero, then the normal component of I and the tangent
component of [E are continuous on the two sides of each boundary point.

of the sinks that have a higher potential value than
the average of U(z;) among all sinks, and conversely,
increase the weights of the sinks that have a smaller
potential than the above average:

Aw; = —y(U(z:) — & S0, Ulz))

wh = w; + Aw;

and go to step 3.
The above algorithm gives the optimal values of the weights
of the traffic sinks when their locations are fixed. Note that
reassignment of weights in step 4 preserves the sum of weights
of all sinks at constant wq. If relocation of the traffic sinks
for decreasing the cost function is a part of the optimization
problem, the following step is added to the iterations:
6. Form force values, FZ(ZZ ) = —2w;E(2?), for all sinks.
If the values of F;(z]) are zero (or very small) for all

(2
sinks then stop; otherwise, relocate the sink by using,

2" =] +0F(z))
and go to step 3.

In the above algorithm, both v and 6 are small nonnegative
step sizes. The last step of the algorithm relocates sinks in the
direction of the steepest descent of cost function. An issue of
interest is to find the territories of the traffic sinks. At the end
of the algorithm, the territories are found by following the flux
lines of E(z) = VU(z). A point z belongs to the territory of
the traffic sink ¢ if the flux line starting at z terminates at the
location of the traffic sink . Note that the divergence property
implies that only one flux line passes through every point that
is not a traffic sink, and the flux lines can only terminate at
the locations of a traffic sink. Therefore, each point resides in
the territory of one of the traffic sinks.

V. A NUMERICAL EXAMPLE

In this section we present a numerical example of a sensor
network with multiple sinks. In this example we find the
optimal weight and the territory for each traffic sink and use
the direction of steepest descent of the cost function in order
to relocate the sinks. The network is a 1 x 1 area, and we
assume that the total load is 100, and is uniformly distributed
in the network, i.e., (z) = 100 for all (z) in the network.
Also we assume K(z) = 1. We place 9 traffic sinks in the
network at the following locations:

z1 = (0.20,0.30) 2z = (0.40,0.35) z3 = (0.67,0.30)
z4 = (0.25,0.60) z5 = (0.65,0.55) zg = (0.85,0.55)
z7 = (0.30,0.80) zg = (0.60,0.78) zo = (0.80,0.82)

In the next step we divide the total load of 100 units
evenly among the traffic sinks. This means that w; = wy =

.= wg = wp/9 = 11.1. Then, we solve the PDE for
the potential function U(z) numerically, and from it we find
D(z). The resulting potential function is shown in Fig. 1-(a),
the corresponding equipotential lines are shown in Fig. 1-(b).
The values of the potential functions at the traffic sinks are:
U, = 0.0074, Uy = 0.0201, Us = 0.0118, Uy = 0.0233,
Us = 0.0465, Us = 0.0430, U; = 0.0262, Ug = 0.0485,
and Uy = 0.0543. The total value of the cost function in this
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Fig. 1. (a) The value of the potential function U(z) for the case with 9
traffic sinks. (b) The equipotential lines of U (z)
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Fig. 2. (a) The territories for different traffic sinks before applying
steepest relocation iterations based on force. (b) Placement of sinks and their
corresponding territories after applying steepest relocation iterations based on
force. The dark dots show the location of the traffic sinks during the iterations
that use the, and the small dark squares show the final placement of the sinks.

case is 1.81. Since the values of the potential function are not
the same at all the locations of the sinks, we know that we
can update the weights of the sinks to further reduce the cost
function. In the next step, we use the iterations in Section IV to
update the weights in order to optimize the cost function with
respect to the weights of the sinks. The calculations show that
the algorithm converges to the weight values within 1 percent
of the optimal weights in 3 iterations:

w; =141 wy =114 w3 =155 wy =115 ws =78
We = 9.9 wy = 12.2 wg = 8.8 W9 = 8.7

With the above values of weights, the cost function reduces
to 1.09, which shows about 66% decrease. We have used the
gradient step size v = 200. Also, the values of the potential
function at the traffic sinks were calculated to be U; = ... =
Uy = 0.0281. The territories for the 9 traffic sinks at the end
of these iterations are shown in Fig. 2-(a).

In the last step we use force values to iteratively relocate
each sink in the direction of steepest descent of the cost func-
tion. At each iteration of relocating sinks, we use the iterations
that balance the load among sinks and make the potential value
at locations of all of them equal. We continue iterations until
all sinks have zero value for force and all of them have equal
potential. The results show that the final placement of the sinks
are centers of nine even squares partitioning the network into a
chessboard-like pattern. With this placement, the cost function
reduces to 0.73, which shows a 33% improvement in the cost
function compared to the previous case. The territory of each
sink is one of the squares. The placement of the sinks, the
resulting territories after relocating iterations, and the traces of
sinks during steepest descent relocations are shown in Fig. 2-

(b). Although the resulting territories and optimal placement
of the traffic sinks were predictable from the symmetry of this
problem, the result shows that relocating along force values
can successfully find the optimal placement of the sinks.

VI. CONCLUSION

In this paper, we presented a mathematical formulation based
on vector space analysis in order to study several design
aspects of wireless sensor networks. We defined a conservative
vector field related to the communication load in the network
and expressed it as the gradient of a scalar function. In an
optimal assignment of the network load to the sinks, the value
of potential function at the locations of all sinks should be
equal. Based on this fact, we gave iterations that lead us to
the optimal partitioning of network into territories of sinks.
Additionally, we showed that the steepest descent in the cost
function is achieved by relocating each sink in the direction
of a force value, which is proportional to the value of the
vector field at the location of that sink. We used this result to
introduce iterations that relocate sinks until it finds a placement
in which the vector field is zero at location of all sinks. The
cost function keeps decreasing during such iterations. It should
be remarked that iterations for relocating of sinks continue
until force is zero at location of all sinks. Although in all
of the numerical examples that the authors have studied the
iterations lead to a globally optimal placement of sinks, this
fact demand future research. It needs to be investigated under
what conditions the placement after relocation iterations is a
global optimum, and if the algorithm may be trapped in local
optima, under what conditions a trapping is likely to happen.
As a final remark, in this paper we assumed that the traffic
received by the sinks is equal to the total traffic generated
in the network and date is not aggregated along the paths.
Studying the flow models under data aggregation needs to be
considered in future extensions of this works.
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