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Abstract— Probe stations are specially instrumented nodes
from where probes can be sent to monitor the network. Probe sta-
tion locations affect probing efficiency, monitoring capability, and
deployment cost. We present probe station selection algorithms
and aim to minimize the number of probe stations and make
the monitoring robust against failures in a deterministic as well
as a non-deterministic environment. We provide experimental
evaluation of the proposed algorithms through simulation results.

Index Terms— Adaptive probing, Probe station selection, Fault
diagnosis, Network monitoring, Probabilistic dependencymodel.

I. I NTRODUCTION

Probing provides an effective tool for monitoring the net-
work for fault diagnosis. Probing tools monitor the network
by sending probes over the network and analyzing various net-
work parameters from information obtained from the probes.
An important problem to address while deploying probing
solutions is to identify node locations from where probes
can be sent and evaluated. We refer to such nodes as the
probe stations. The location of these probe stations should
be selected such that probes can be sent to all the network
components of interest. Presence of failures in the network
can make certain network components unreachable from some
part of the network. The probe station placement needs to be
made robust to such failures. The number of probe stations
should also be optimized for cost-effectiveness. In this paper,
we present algorithms to select suitable node locations to
deploy probe stations. We discuss various failures scenarios
and present probe station selection algorithms to provide
robustness against them.

Probe station selection algorithms use the information about
the routes used by the probes to reach various network com-
ponents. This information is captured in a dependency matrix
and then used to identify appropriate node locations to deploy
probe stations. We first use a deterministic dependency model
assuming complete knowledge of the network routes. How-
ever, in many scenarios there might be uncertainties present in
the obtained information about the network. The probe station
selection problem becomes even more challenging when this
information is not complete or accurate. We present algorithms
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for probe station placement where this information about the
dependencies is not deterministic.

II. RELATED WORK

Network probing with low overhead has prompted develop-
ment of many monitoring approaches. Due to space reasons,
we survey only those approaches that directly relate to probe
station placement. [8], [5], [12] propose intelligent distribution
of probe stations at various traffic points in the network.
Approaches presented in [4], [7], [2], [10] place probe stations
at end-points of end-to-end paths whose characteristics are of
interest. [11] and [3] use explicitly routed probes to reduce the
number of monitoring stations required. [6] proposes a strategy
to use high arity nodes for beacon placement. [9] proposes
an approach for beacon placement by identifying edge sets
that can be monitored by a beacon under all possible route
configurations.

The above approaches do not take network failures into
account. The problem of probe station selection becomes
harder when a network component’s failure is taken into
consideration. In this paper we propose a probe station place-
ment strategy that, along with minimizing the probe traffic
and probe station deployment overhead, makes the monitoring
robust against failures in the network. A related work in probe
station selection has been done by [1], where the authors
propose algorithms to compute locations of a minimal set
of monitoring stations such that all links are covered, even
in the presence of link failures. However there are some
significant differences. [1] focuses on monitoring link delays
and faults, while we consider node performance and node
failures, which brings up different node specific issues and
optimization possibilities like dealing with weakly connected
nodes, special treatment for neighboring nodes, node failures
etc. As a probe station itself is a node, we also address the case
of failure of a probe station itself. The above approaches also
do not consider the uncertainty in the obtained dependency
information about the routes. Most of the approaches assume
a deterministic environment with availability of completeand
accurate dependency information. We propose a probe station
selection approach to deal with the uncertainties involvedin
the collected information about the underlying network.

III. PROPOSED APPROACH FOR PROBE STATION SELECTION

In this section, we present a heuristic based approach that
incrementally selects nodes which provide a suitable location
to instantiate a probe station. The algorithm is based on the



Fig. 1. (a.) 3 independent paths to node 8 from probe station nodes 1, 6,
and 4, to detect failure of node 8 in a scenario of failure of 3 nodes (nodes
2, 7, and 8); (b.) A scenario of failure of nodes 4 and 5, where inappropriate
probe station placement (at nodes 2 and 6) makes node 5 a shadow node.

concept that to diagnose k failures in a network, the probe
stations should be placed such that each node can be probed
through k independent (node disjoint) paths.

A. Assumptions

We build probe station selection algorithms to diagnose
node failures in a network. The algorithms can be extended
to monitor other network components of interest, e.g., link
failures. We initially assume the availability of deterministic
dependency information between the probes and the network
nodes. In this section, we assume a consistent routing model
which we discuss later in this section. We place a limit on the
maximum number of node failures that can be diagnosed and
the maximum number of probe stations that can be deployed.
To simplify the problem, we initially assume that the probe
station nodes do not fail. Later, we relax this assumption by
considering probe station failures. We relax the assumptions
about the dependency model and the routing model in Section
V where we consider the presence of incomplete or inaccurate
dependency information.

1) Routing model: In this section, we assume static single-
path routing. We also assume a traditional IP routing model
in which a forwarding node, on receiving packets for a
destination node, sends the packets to the next hop listed inits
forwarding table for that destination. Under this assumption, a
forwarding node will always forward packets for a particular
destination to the same next hop, irrespective of the source
of the packets. We also assume that all routes in the network
are free of loops. In what follows, we refer to this set of
assumptions as theconsistent IP routing model .

B. Proposed approach

It can be proved that the paths following the consistent
routing model will have the following two properties:

• If probe paths from two different probe stations to the
same destination have one node in common, then all
subsequent nodes on the two probe paths will be the
same.

• Probe paths P1 and P2 to a destination node d are
independent (i.e., node-disjoint) if and only if P1 and
P2 have different predecessors to the node d.

These properties provide an efficient test to identify the
independence of two paths to the same destination d. Instead
of comparing the entire sequences of the two paths, it is

Algorithm SNR: Shadow Node Reduction Algorithm (Probe station
selection to localize any k faults )

input : MAXPSSETSIZE, MAXFAULTS
output: Probe station set
Define N, ST(n), ST(n).parent(m), PS=NULL, SN=V, PPath(p,n),
Neighbor(n), Parents(n)=NULL;
Select node u with highest degree as first probe station;
InitializeDataStructures(u);
repeat

repeat
foreach node c, where c /∈ PS do

S(c)← ComputeShadowNodeSet();
end
Select node c with smallest|S(c)| as probe station;
UpdateDataStructures(c);
if |PS| ← MAXPSSETSIZE then

return PS (Insufficient probe station set size);
end

until |SN| = 0 ;
ResetShadowNodeSets();

until |SN| = 0 ;
return PS as the probe station locations;
;
Procedure InitializeDataStructures(node u)
Add u to PS; Remove u and Neighbor(u) from SN;
foreach node w /∈ PS do

Parents(w)← ST(u).Parent(w);
end
;
Procedure ComputeShadowNodeSet (node c)
S(c)← Null;
foreach node x ∈ V do

if ((x 6= c) & (x /∈ Neighbor(c)) & (x ∈ SN) & (ST(c).parent(x) ∈
Parents(x))) then

Add x to S(c);
end

end
return S(c);
;
Procedure UpdateDataStructures (node c)
Add c to PS;
SN← S(c);
foreach node y /∈ PS do

Parents(y)← (Parents(y)∪ ST(c).Parent(y)
end
;
Procedure ResetShadowNodeSets()
SN← NULL;
foreach node z do

if ((z /∈ PS) & (z /∈ {∀(p∈PS) Neighbor(p)}) & (|Parents(z)| <
MAXFAULTS)) then

Add z to SN
end

end

sufficient to verify the predecessors of node d on the two paths
to be different.

With the assumptions made in Section III-A, it can be
proved thata set of probe stations can localize any k non-
probe-station node failures in the network if and only if there
exist k independent probe paths to each non-probe-station
node that is not a neighbor of any probe station.

Consider the example shown in Figure 1a. Failure of nodes
2 and 7 prevents probe stations 1 and 6 respectively from
diagnosing the health of node 8. However, with the assump-
tion of detecting at most 3 faults, and the availability of 3
independent paths, there is one probe path to node 8 (path
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from 4 to 8) with no intermediate failed nodes. Thus probe
station node 4 can detect the failure of node 8. An incorrect
probe station placement can make some nodes unreachable in
a certain failure scenario. We use the termshadow nodes to
represent such nodes. Figure 1b shows how an incorrect probe
station placement at nodes 2 and 6, makes node 5 unreachable
on failure of node 4, making node 5 a shadow node.

The neighbor nodes of a probe station do not need k
independent paths as they can be uniquely diagnosed through
direct probes from the probe stations irrespective of the faults
present in the network. Thus all non-probe-station nodes that
are not neighbors of probe stations and that do not have
k independent paths from the probe stations belong to the
shadow node set. And the objective of probe station placement
algorithms is to minimize the shadow node set. The heuristic
used is to select a node as a probe station that minimizes the
shadow node set.

IV. A LGORITHMS FOR PROBE STATION SELECTION

A. Algorithm to localize node failures assuming no probe
station failures

For clarity, we first do not take probe station failures into
consideration. We assume a limit k on the maximum number
of faults that need to be diagnosed in the network. Initiallythe
selected probe station set is empty and all nodes belong to the
shadow node set. As explained in Section III-B, the heuristic
used is to choose a node that minimizes the shadow node set.
The first probe station is selected based on the node degree.
The node with the largest number of neighboring nodes can
remove maximum number of nodes from the shadow node set
during the first probe station selection and hence is a good
candidate to be selected as the first probe station. However in
scenarios where some pre-placement of probe stations already
exists, this step of first probe station selection can be avoided.

When only one probe station has been selected, all nodes
that are not neighbors of the selected probe station belong to
the set of shadow nodes. All the nodes that do not belong
to the selected probe station set are candidates for the next
probe station selection. For each candidate probe station,the
algorithm determines how the shadow node set would change
if the candidate was selected as a probe station. This shadow
node set will consist of i) nodes that are not neighbors of
selected probe stations, and ii) nodes that do not have k unique
paths from the selected probe stations. Of all the candidate
probe station nodes, the node that produces the smallest set
of shadow nodes is selected as the next probe station node.
Note that the independence of paths can be verified simply
by comparing the predecessors of the destination node on the
two probe paths as explained in Section III. The algorithm
iteratively adds a new node to the probe station set till
the desired capacity of diagnosing k faults is achieved. The
algorithm terminates when no shadow nodes are present or
the probe station set size reaches the maximum limit.

This approach is presented in Algorithm SNR. In this
algorithm, probe stations are first selected to find any two
faults in the network. Then new nodes are added to localize

any three faults in the network and so on. In other words, in
the first iteration, probe stations are added such that each non
probe station node is either a neighbor of a probe station or has
two independent probe paths. In the next iteration, more probe
stations are selected such that each non probe station node that
is not a probe station neighbor has three independent probe
paths. The nodes are added in this fashion by incrementally
increasing the overall diagnostic capability, till k faults in
the network can be localized. In Algorithm SNR, we use a
data structure Parents(x) representing the set of nodes that are
parents of node x on probe paths from the selected probe
stations to node x. Thus|Parents(x)| gives the total number
of disjoint probe paths available through the selected probe
station set. The inner loop finds an independent probe path to
each shadow node. Function ResetShadowNodes() resets the
shadow node set to all nodes that are not probe stations, are
not probe station neighbors, and have less than k independent
probe paths to them. The inner loop when repeated, finds
another set of probe stations such that each shadow node has
one additional independent path. This increases the diagnostic
capability of the probe station set to localize one more fault
in the network. Also note that nodes with degree less than k
cannot have k independent paths. Probe stations are selected
so that such nodes are always neighbors of probe stations.

B. Algorithm to localize probe station failures along with non-
probe station node failures

In a real network, the probe stations are also subject to
failure, and thus probe stations should be selected such that a
probe station node failure can also be localized by the other
probe stations. To find a probe station set that has the capability
to localize probe station failures, there are three main points
to note:

1) Each probe station should also be probed by k indepen-
dent probe paths.

2) All neighboring nodes to a probe station should also
have k independent probe paths.

3) There may exist scenarios of k failures where the failure
of a node with degree less than k cannot be localized.

Details of this algorithm are omitted for reasons of space.

V. PROBE STATION PLACEMENT IN A NON-DETERMINISTIC

ENVIRONMENT

In this section, we deal with this issue of uncertainty
involved in the dependencies while computing the probe
station set to monitor a network. We use a probabilistic
dependency model to represent the uncertainty involved in
the dependencies between the end-to-end paths and the nodes
used on these paths. The weight assigned to the dependency
between an end-to-end path p and a node n represents the
probability that node n is used by the probe on the end-to-end
path p.

A. Routing model:

Unlike the previous assumption, in a non-deterministic
environment a node might forward a packet for a particular
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destination to different next hops with different probabilities.
For instance, in scenarios with load balancers or dynamic
routing, traffic for a particular destination might be routed to
different next hops with different probabilities.

Algorithm PSNR: Probabilistic Shadow Node Reduction (Probe
station selection to localize any k faults in the network
in a non-deterministic environment)

The algorithm is same as Algorithm SNR, with some procedures
implemented differently. Path(m,n):nodes on path from m ton;
PSPath(w):nodes on path from the selected probe stations tonode w;
PathCount(n):number of independent probe paths to node n;
;
Procedure InitializeDataStructures(node u)
Add u to PS;
Remove node u and Neighbor(u) from SN ;
Initialize PathCount(w) for each w/∈ PS, to 1;
foreach node w /∈ PS do

foreach node t /∈ PS do
P(PSPath(w), t)← P(Path(u,w),t);

end
end
;
Procedure ComputeShadowNodeSet (node c)
S(c)← Null ;
PathCount(c,n)← PathCount(n) for each node n/∈ PS;
foreach node x ∈ V do

if ((x 6= c) & (x /∈ Neighbor(c)) & (x ∈ SN) then
Overlap← 0;
foreach node n ∈ (Path(c,x) ∩ PSPath(x)) do

Overlap←
⋃

(Overlap, P(PSPath(x),n).P(Path(c,x),n))
end
if (1-Overlap) > Threshold then

Add x to S(c)
end
else

Increment PathCount(c,n) by 1
end

end
end
return S(c);
;
Procedure UpdateDataStructures (node c)
Add c to PS;
SN← S(c);
PathCount(n)← PathCount(c,n) for each node n/∈ PS;
foreach node y /∈ PS do

foreach node t /∈ PS do
P(PSPath(y),t)←

⋃
(P(PSPath(y),t), P(Path(c,y),t));

end
end
;
Procedure ResetShadowNodeSets()
SN← NULL;
foreach node z do

if ((z /∈ PS) & (z /∈ {∀(p∈PS) Neighbor(p)}) & (|PathCount(z)| <
MAXFAULTS)) then

Add z to SN
end

end

B. Test of independent paths:

In a non-deterministic environment, to verify the inde-
pendence of two paths, all nodes on one path need to be
verified to be different from all nodes on another path. Also,
the independence of the two paths p and q needs to be
represented with a confidence in our belief that the two paths
are independent. The belief value can be computed as follows:

B(I(p,q)) = 1 −

⋃
n∈Nodes(p)∩Nodes(q)

P (p, n).P (q, n)

where the term
⋃

n∈Nodes(p)∩Nodes(q) P (p, n).P (q, n) rep-
resents the probability that the two paths p and q overlap, by
using the nodes that are common on both paths. The higher
the value ofB(I(p,q)), the stronger is the belief that probes p
and q are independent.

C. Algorithm for probe station placement in a non-
deterministic environment

For clarity, we do not consider probe station failures and
assume that probe stations can always probe their neighbors
irrespective of other faults in the network. As discussed in
Section IV, this algorithm can be extended to relax these
assumptions. As before, the first probe station is selected
as the node with highest degree. We represent the already
selected probe stations with a set S. P(Path(S,n),m) represents
the probability that paths from probe stations in set S to node
n use node m. For a candidate probe station c, the probability
that c provides an independent path to a shadow node s, can
be obtained by computing

B(I(P ath(S,n),P ath(c,n))) =

1 −

⋃
P (Path(S, n), m).P (Path(c, n), m)

wherem ∈ Nodes(Path(S, n)) ∩ Nodes(Path(c, n)).
If this value is greater than a threshold, then the path is

considered to be independent. A candidate node that provides
maximum number of independent paths is selected as the next
probe station. Once a probe station c is selected, it is added
to the set S and the probability P(Path(S,n), m) for each node
n to which node c provides an independent path and for each
node m used by these paths, is updated as follows:

P (Path(S ∪ c, n), m) =
⋃

(P (Path(S, n), m), P (Path(c, n), m))

The algorithm stops when each non-probe station node that
is not a probe station neighbor has k independent paths. We
present this approach in Algorithm PSNR.

VI. SIMULATION RESULTS

In this section we present experimental evaluation of al-
gorithms for probe station selection introduced in this paper.
We do not consider probe station failures in these experiments.
We use exhaustive-search-based Optimal algorithm as a bench-
mark. Because of its high computational complexity, we were
not able to run the Optimal algorithm for larger networks. For
evaluation of the proposed algorithm on larger networks, we
compared the proposed algorithms with alternative algorithms
where probes stations are selected at random locations in the
network till the desired diagnostic power is obtained.

A. Simulation model

Let MD, AD, and N represent the maximum node degree,
average node degree, and the total number of nodes in the
network respectively. Given these three parameters, we create
a network of N nodes, randomly introducing N*AD links such
that no node has a network degree greater than MD, and also
ensuring that the network is connected. We conducted exper-
iments on network sizes ranging from 10 to 200 nodes with
average network degrees ranging from 3 to 9 and maximum
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Fig. 2. Comparison of SNR and Optimal algorithm for networkswith average
node degrees 6 and 9.

Fig. 3. Comparison of SNR and Random algorithm for networks with average
node degrees 6 and 9.

node degree set to min(20, network size). Each point plottedon
the graph is an average of 20 runs. We compared the computed
probe station set size and the execution time of the algorithms
to detect 4 failures in the network in a deterministic and a
non-deterministic environment.

Figures 2 and 3 present the results for the SNR, Exhaustive
and Random algorithms for a deterministic environment. Fig-
ure 2 shows that the SNR algorithm computes probe station
sets of sizes close to the optimal probe station set sizes
computed by the Optimal algorithm (greater by only 0.5 for 30
node network with average node degree 9). Moreover the SNR
algorithm runs in significantly less time (750ms less for 30
node network) than the Optimal algorithm. Figure 3 shows that
the probe station set sizes computed by the SNR algorithm are
smaller than the Random algorithm taking marginally longer
time than the Random algorithm. Moreover, the difference in
the probe station set sizes computed by SNR and Random
algorithms grows bigger with increasing network size.

We built a probabilistic dependency model by computing
multiple paths between a source-destination pair and assigning

Fig. 4. Comparison of PSNR, Optimal, and Random algorithms for networks
with average node degrees 4 and 6.

probabilities to the nodes on these paths on the basis of the
lengths of the paths. The nodes on the shorter path are assigned
higher probability. From Figure 4 we can see that Algorithm
PSNR performs close to optimal (computing a probe station
set size bigger by only 1.15 nodes for a 25 node network
with degree 6). Figure 4 also compares the probe station set
sizes computed by PSNR and Random algorithm showing a
significant improvement by PSNR algorithm over the Random
algorithm (computing a probe station set size smaller by 20
nodes for a 50 node network).

VII. C ONCLUSION

We presented algorithms to select suitable locations to
deploy the probe stations. We first presented the algorithms
assuming the availability of complete and accurate informa-
tion about the underlying network. Later we relaxed this
assumption and considered the presence of uncertainties in
the dependency information. We made the placement robust
against various failures in the network. We evaluated the pro-
posed algorithms through simulation results and compared the
proposed heuristics with the Optimal and Random placement
algorithms. As part of on-going research, we are working on
developing algorithms to select appropriate probes to be sent
from these probe stations to monitor the network for fault
diagnosis.
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