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Abstract— Probe stations are specially instrumented nodes for probe station placement where this information aboat th
from where probes can be sent to monitor the network. Probe st- dependencies is not deterministic.
tion locations affect probing efficiency, monitoring capalility, and

deployment cost. We present probe station selection algohims II. RELATED WORK
and aim to minimize the number of probe stations and make . .
the monitoring robust against failures in a deterministic as well Network probing with low overhead has prompted develop-

as a non-deterministic environment. We provide experimerdl ment of many monitoring approaches. Due to space reasons,
evaluation of the proposed algorithms through simulation esults. e survey 0n|y those approaches that direcﬂy relate toq)rob
station placement. [8], [5], [12] propose intelligent distition

of probe stations at various traffic points in the network.
Approaches presented in [4], [7], [2], [10] place probeiste

at end-points of end-to-end paths whose characteristesfar

|. INTRODUCTION interest. [11] and [3] use explicitly routed probes to regltiee
number of monitoring stations required. [6] proposes degra

Probing provides an effective tool for monitoring the neEO use high arity nodes for beacon placement. [9] proposes
work for fault diagnosis. Probing tools monitor the networ 9 Y P : prop

an approach for beacon placement by identifying edge sets

by sending probes over the network and analyzing various n . :
y gp , : ) yzIng ﬁ1at can be monitored by a beacon under all possible route
work parameters from information obtained from the probes.

. : . . _configurations.
An important problem to address while deploying probing The above approaches do not take network failures into

solutions is to identify node locations from where probes

can be sent and evaluated. We refer to such nodes as ﬁﬁgount. The problem of probe station selection becomes

probe stations. The location of these probe stations shonﬁrder when a network components failure is taken into

be selected such that probes can be sent to all the netw%?l?smeration' In this paper we propose a probe statioreplac
ent strategy that, along with minimizing the probe traffic

components of interest. Presence of failures in the netwatk robe station deplovment overhead. makes the morgtorin
can make certain network components unreachable from sofng P ] 1 deploy ' 101y
ust against failures in the network. A related work inljgro

: r
art of the network. The probe station placement needs to 6? . .
P P P . sgtlon selection has been done by [1], where the authors
made robust to such failures. The number of probe station . h -

ropose algorithms to compute locations of a minimal set

should also be optimized for cost-effectiveness. In thij P S . .
P Bepa I)momtonng stations such that all links are covered, even

we present algorithms to select suitable node locations &

. : . : in" the presence of link failures. However there are some
deploy probe stations. We discuss various failures scesari. P

and present probe station selection algorithms to provia'éjjmﬁc"’mt dn‘fe_rences. (4 fpcuses on monitoring link e
. and faults, while we consider node performance and node
robustness against them.

. ) . . . failures, which brings up different node specific issues and
Probe station selection algorithms use the informatiorutbo = = =™ | ooe T . .
the routes used by the probes to reach various network co(r)ﬁ)t'm'Zatlon.'OOSS'b'“tIes like de_almg V.V'th weakly comned.

ponents. This information is captured in a dependency matHOdes’ special treatment for neighboring nodes, noderéailu

: . X . etc. As a probe station itself is a node, we also address #®e ca
and then used to identify appropriate node locations toajyepl . .
: . o f failure of a probe station itself. The above approachss al
probe stations. We first use a deterministic dependency moge . ; : .
. 0 not consider the uncertainty in the obtained dependency
assuming complete knowledge of the network routes. How-

: X . - . information about the routes. Most of the approaches assume
ever, in many scenarios there might be uncertainties prasen N : . Do
: . ) .a deterministic environment with availability of completed
the obtained information about the network. The probestati . ) .
. . ccurate dependency information. We propose a proberstatio
selection problem becomes even more challenging when

thi - . S .
. C . sesiectlon approach to deal with the uncertainties involved
information is not complete or accurate. We present algorst . . :

the collected information about the underlying network.

Index Terms— Adaptive probing, Probe station selection, Fault
diagnosis, Network monitoring, Probabilistic dependencymodel.
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Algorithm SNR: Shadow Node Reduction Algorithm (Probe station
selection to localize any k faults )
input : MAXPSSETSIZE, MAXFAULTS

output: Probe station set

/ Define N, ST(n), ST(n).parent(m), PS=NULL, SN=V, PPath(p,n
() & T Neighbor(n), Parents(n)=NULL;

° ° Select node u with highest degree as first probe station;
InitializeDataStructures(u);
Fig. 1. (a.) 3 independent paths to node 8 from probe stataes 1, 6, repeat

and 4, to detect failure of node 8 in a scenario of failure ofo8les (nodes repeat

2, 7, and 8); (b.) A scenario of failure of nodes 4 and 5, wheegpropriate foreach node c, where ¢ ¢ PS do

probe station placement (at nodes 2 and 6) makes node 5 avshade. S(c) — ComputeShadowNodeSet();
end

Select node ¢ with smalle$(c)| as probe station;

. . . UpdateDataStructures(c);
concept that to diagnose k failures in a network, the probe if |PS| — MAXPSSETSIZE then
stations should be placed such that each node can be probed dfemm PS (Insufficient probe station set size);
through k independent (hode disjoint) paths. um”e‘%\” -0:

. _ResetShadowNodeSets();
A. Assumptions until [SN| = 0;
. . . . . return PS as the probe station locations;
We build probe station selection algorithms to diagnose. P

node failures in a network. The algorithms can be extendedProcedure InitializeDataStructures(node u)
to monitor other network components of interest, e.g., link g‘:gatéﬁ;;?WR;mpos"zou and Neighbor(u) from SN;
failures. We initially assume the availability of deternsiic Parents(w)— ST(u).Parent(w);
dependency information between the probes and the networlend
n0(_jes. In tr_lis section, we assume a consistent ro_uti_ng modeﬂ,rocedure ComputeShadowNodeSet (node c)
which we discuss later in this section. We place a limit on the s(c) — Nul;
maximum number of node failures that can be diagnosed andoreachnodex € V.do
the maximum number of probe stations that can be deployed. ga(&é(x‘;‘)»‘g;hgf Neighbor(c)) & (x € SN) & (ST(c) parent(x) &
To simplify the problem, we initially assume that the probe Add x to S(c);
station nodes do not fail. Later, we relax this assumption by end
considering probe station failures. We relax the assumptio gqym s(q);
about the dependency model and the routing model in Section
V where we consider the presence of incomplete or inaccuratié%cidt‘érigpdateDataS”“Ct“feS (node c)
dependency information. SN < S(0);
1) Routing model: In this section, we assume static single- foreach nodey ¢ PSdo
path routing. We also assume a traditional IP routing model __ Parents(y)— (Parents(y)J ST(c).Parent(y)
in which a forwarding node, on receiving packets for a -
destination node, sends the packets to the next hop listésl in Procedure ResetShadowNodeSets()
forwarding table for that destination. Under this assuompta fso';‘e‘a_ch'\‘n%;'e-;z o
forwgrdl_ng node will always forward_ packets_ for a particula if (z¢ P & (2 ¢ {V(peps) Neighbor(p)}) & (|Parents(?)| <
destination to the same next hop, irrespective of the source MAXFAULTS)) then
of the packets. We also assume that all routes in the network Add zto SN
are free of loops. In what follows, we refer to this set of eng

assumptions as thensistent IP routing model.

B. Proposed approach

It can be proved that the paths following the consistestfficient to verify the predecessors of node d on the twogath
routing model will have the following two properties: to be different.

« If probe paths from two different probe stations to the With the assumptions made in Section IlI-A, it can be
same destination have one node in common, then phloved thata set of probe stations can localize any k non-
subsequent nodes on the two probe paths will be tpeobe-station node failures in the network if and only if there
same. exist k independent probe paths to each non-probe-station

« Probe paths P1 and P2 to a destination node d amde that is not a neighbor of any probe station.
independent (i.e., node-disjoint) if and only if P1 and Consider the example shown in Figure 1a. Failure of nodes
P2 have different predecessors to the node d. 2 and 7 prevents probe stations 1 and 6 respectively from

These properties provide an efficient test to identify th#iagnosing the health of node 8. However, with the assump-
independence of two paths to the same destination d. Instdiad of detecting at most 3 faults, and the availability of 3
of comparing the entire sequences of the two paths, it irdependent paths, there is one probe path to node 8 (path



from 4 to 8) with no intermediate failed nodes. Thus probany three faults in the network and so on. In other words, in
station node 4 can detect the failure of node 8. An incorrettte first iteration, probe stations are added such that each n
probe station placement can make some nodes unreachablgrabe station node is either a neighbor of a probe statiomasr h
a certain failure scenario. We use the tesinadow nodes to two independent probe paths. In the next iteration, morbgro
represent such nodes. Figure 1b shows how an incorrect pretaions are selected such that each non probe station imaide t
station placement at nodes 2 and 6, makes node 5 unreacha@bleot a probe station neighbor has three independent probe
on failure of node 4, making node 5 a shadow node. paths. The nodes are added in this fashion by incrementally
The neighbor nodes of a probe station do not needirkcreasing the overall diagnostic capability, till k faulin
independent paths as they can be uniquely diagnosed throttgh network can be localized. In Algorithm SNR, we use a
direct probes from the probe stations irrespective of thitfa data structure Parents(x) representing the set of nodeartha
present in the network. Thus all non-probe-station nodas tiparents of node x on probe paths from the selected probe
are not neighbors of probe stations and that do not hasations to node x. ThufParents(X) gives the total number
k independent paths from the probe stations belong to tbedisjoint probe paths available through the selected @rob
shadow node set. And the objective of probe station placemstation set. The inner loop finds an independent probe path to
algorithms is to minimize the shadow node set. The heuristach shadow node. Function ResetShadowNodes() resets the
used is to select a node as a probe station that minimizes gheadow node set to all nodes that are not probe stations, are
shadow node set. not probe station neighbors, and have less than k independen
probe paths to them. The inner loop when repeated, finds
another set of probe stations such that each shadow node has
A. Algorithm to localize node failures assuming no probe one additional independent path. This increases the déigno
station failures capability of the probe station set to localize one moretfaul
For clarity, we first do not take probe station failures intin the network. Also note that nodes with degree less than k
consideration. We assume a limit k on the maximum numbeannot have k independent paths. Probe stations are sklecte
of faults that need to be diagnosed in the network. Inititlly  so that such nodes are always neighbors of probe stations.
selected probe station set is empty and all nodes belongto
shadow node set. As explained in Section I1I-B, the heuwris
used is to choose a node that minimizes the shadow node 8
The first probe station is selected based on the node degreén a real network, the probe stations are also subject to
The node with the largest number of neighboring nodes chailure, and thus probe stations should be selected suthatha
remove maximum number of nodes from the shadow node g&@be station node failure can also be localized by the other
during the first probe station selection and hence is a gobgpbe stations. To find a probe station set that has the dapabi
candidate to be selected as the first probe station. HowrvetQ localize probe station failures, there are three maimtsoi
scenarios where some pre-placement of probe stationgiglret® note:
exists, this step of first probe station selection can bedaebi 1) Each probe station should also be probed by k indepen-
When only one probe station has been selected, all nodes dent probe paths.
that are not neighbors of the selected probe station belmng t2) All neighboring nodes to a probe station should also
the set of shadow nodes. All the nodes that do not belong have k independent probe paths.
to the selected probe station set are candidates for the nex3) There may exist scenarios of k failures where the failure
probe station selection. For each candidate probe stdtien, of a node with degree less than k cannot be localized.
algorithm determines how the shadow node set would changgtails of this algorithm are omitted for reasons of space.
if the candidate was selected as a probe station. This shadow
node set will consist of i) nodes that are not neighbors Of PROBE STATION PLACEMENT IN A NON-DETERMINISTIC
selected probe stations, and ii) nodes that do not have kianiq ENVIRONMENT
paths from the selected probe stations. Of all the candidatan this section, we deal with this issue of uncertainty
probe station nodes, the node that produces the smallestig@blved in the dependencies while computing the probe
of shadow nodes is selected as the next probe station nosiation set to monitor a network. We use a probabilistic
Note that the independence of paths can be verified simplgpendency model to represent the uncertainty involved in
by comparing the predecessors of the destination node on the dependencies between the end-to-end paths and the nodes
two probe paths as explained in Section Ill. The algorithiised on these paths. The weight assigned to the dependency
iteratively adds a new node to the probe station set tietween an end-to-end path p and a node n represents the

the desired capacity of diagnosing k faults is achieved. Theobability that node n is used by the probe on the end-to-end
algorithm terminates when no shadow nodes are presentpagh p.

the probe station set size reaches the maximum limit. ]

This approach is presented in Algorithm SNR. In thi§ Routing model:
algorithm, probe stations are first selected to find any two Unlike the previous assumption, in a non-deterministic
faults in the network. Then new nodes are added to localizavironment a node might forward a packet for a particular

IV. ALGORITHMS FOR PROBE STATION SELECTION

[[g? Algorithmto localize probe station failures along with non-
E(Ebe station node failures



destination to different next hops with different probdtssk. B(Ipq) =1- UneNodeS(p)modes(q) P(p,n).P(q,n)

For instance, in scenarios with load balancers or dynamicwhere the termJ, c xoges(p)nNodes(q) £ (s 7)-P (g, 1) rep-
routing, traffic for a particular destination might be radit® resents the probability that the two paths p and q overlap, by
different next hops with different probabilities. using the nodes that are common on both paths. The higher

Algorithm PSNR: Probabilistic Shadow Node Reduction (Probe

station selection to localize any k faults in the network

in a non-deterministic environment)

The algorithm is same as Algorithm SNR, with some procedures
implemented differently. Path(m,n):nodes on path from nm;to
PSPath(w):nodes on path from the selected probe stationsd®e w;
PathCount(n):number of independent probe paths to node n;

Procedure InitializeDataStructures(node u)
Add u to PS;
Remove node u and Neighbor(u) from SN ;
Initialize PathCount(w) for each w PS, to 1,
foreach node w ¢ PS do

foreach node t ¢ PS do

P(PSPath(w), t}— P(Path(u,w),t);

end

end

Procedure ComputeShadowNodeSet (node c)
S(c) < Null ;
PathCount(c,ny— PathCount(n) for each node¢h PS;
foreach node x € V do
if (x# c) & (x ¢ Neighbor(c)) & (x € N) then
Overlap — 0;
foreach node n € (Path(c,x) N PSPath(x)) do
Overlap — U(Overlap, P(PSPath(x),n).P(Path(c,x),n))
end
if (1-Overlap) > Threshold then
Add x to S(c)
end
else
Increment PathCount(c,n) by 1
end
end
end
return S(c);

Procedure UpdateDataStructures (node c)
Add c to PS;
SN « S(c);
PathCount(n)— PathCount(c,n) for each node¢hPS;
foreach node y ¢ PS do
foreach node t ¢ PS do
P(PSPath(y),ty— U(P(PSPath(y),t), P(Path(c,y),t));
end
end

Procedure ResetShadowNodeSets()
SN «— NULL;
foreach node z do
if (z¢ PSS & (z2¢ {V(peprs) Neighbor(p)}) & (|PathCount(z)| <
MAXFAULTS)) then
Add z to SN
end
end

B. Test of independent paths:

the value ofB(I, 4)), the stronger is the belief that probes p
and q are independent.

C. Algorithm for probe station placement in a non-

deterministic environment

For clarity, we do not consider probe station failures and
assume that probe stations can always probe their neighbors
irrespective of other faults in the network. As discussed in
Section 1V, this algorithm can be extended to relax these
assumptions. As before, the first probe station is selected
as the node with highest degree. We represent the already
selected probe stations with a set S. P(Path(S,n),m) epses
the probability that paths from probe stations in set S toenod
n use node m. For a candidate probe station c, the probability
that ¢ provides an independent path to a shadow node s, can
be obtained by computing

B(I(path(s,n),Path(c,n))) =

1—J P(Path(S,n), m).P(Path(c,n), m)
wherem € Nodes(Path(S,n)) N Nodes(Path(c,n)).

If this value is greater than a threshold, then the path is
considered to be independent. A candidate node that pmvide
maximum number of independent paths is selected as the next
probe station. Once a probe station c is selected, it is added
to the set S and the probability P(Path(S,n), m) for each node
n to which node c¢ provides an independent path and for each
node m used by these paths, is updated as follows:

P(Path(SUc,n),m) = U(P(Path(S, n), m), P(Path(c,n), m))

The algorithm stops when each non-probe station node that
is not a probe station neighbor has k independent paths. We
present this approach in Algorithm PSNR.

V1. SIMULATION RESULTS

In this section we present experimental evaluation of al-
gorithms for probe station selection introduced in thisgrap
We do not consider probe station failures in these expetisnen
We use exhaustive-search-based Optimal algorithm as &benc
mark. Because of its high computational complexity, we were
not able to run the Optimal algorithm for larger networkst Fo
evaluation of the proposed algorithm on larger networks, we
compared the proposed algorithms with alternative allgorst
where probes stations are selected at random location®in th
network till the desired diagnostic power is obtained.

A. Smulation model

Let MD, AD, and N represent the maximum node degree,
average node degree, and the total number of nodes in the

In a non-deterministic environment, to verify the indenetwork respectively. Given these three parameters, waere

pendence of two paths, all nodes on one path need to daetwork of N nodes, randomly introducing N*AD links such
verified to be different from all nodes on another path. Alsthat no node has a network degree greater than MD, and also
the independence of the two paths p and g needs to dxgsuring that the network is connected. We conducted exper-
represented with a confidence in our belief that the two patimsents on network sizes ranging from 10 to 200 nodes with
are independent. The belief value can be computed as followserage network degrees ranging from 3 to 9 and maximum

4



Fig. 2. Comparison of SNR and Optimal algorithm for netwonkth average
node degrees 6 and 9.
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Fig. 3. Comparison of SNR and Random algorithm for networlth awverage
node degrees 6 and 9.

probabilities to the nodes on these paths on the basis of the
lengths of the paths. The nodes on the shorter path are adsign
higher probability. From Figure 4 we can see that Algorithm
PSNR performs close to optimal (computing a probe station
set size bigger by only 1.15 nodes for a 25 node network
with degree 6). Figure 4 also compares the probe station set
sizes computed by PSNR and Random algorithm showing a
significant improvement by PSNR algorithm over the Random
algorithm (computing a probe station set size smaller by 20
nodes for a 50 node network).

VIl. CONCLUSION

We presented algorithms to select suitable locations to
deploy the probe stations. We first presented the algorithms
assuming the availability of complete and accurate inferma
tion about the underlying network. Later we relaxed this
assumption and considered the presence of uncertainties in
the dependency information. We made the placement robust
against various failures in the network. We evaluated ttoe pr
posed algorithms through simulation results and compdred t
proposed heuristics with the Optimal and Random placement
algorithms. As part of on-going research, we are working on
developing algorithms to select appropriate probes to be se
from these probe stations to monitor the network for fault

node degree set to min(20, network size). Each point platted diaﬁl;gnosis.

the graph is an average of 20 runs. We compared the compute
probe station set size and the execution time of the algosth

e views and conclusions contained in this document arsettud the
authors and should not be interpreted as representing fr@abpolicies,

to detect 4 failures in the network in a deterministic and &ther expressed or implied of the Army Research Laboratoryhe U.S.

non-deterministic environment.

Government.

Figures 2 and 3 present the results for the SNR, Exhaustive
and Random algorithms for a deterministic environment: Fig
ure 2 shows that the SNR algorithm computes probe statidh
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