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Abstract—Comprehensive performance analysis of the 
unordered V-BLAST algorithm with various power allocation 
strategies is presented, which makes use of analytical tools and 
resorts to Monte-Carlo simulations for validation purposes only. 
High-SNR approximations for the optimized average block and 
total error rates are given. The SNR gain of optimization is 
rigorously defined and studied using analytical tools, including 
lower and upper bounds, high and low SNR approximations. The 
gain is upper bounded by the number of transmitters, for any 
modulation format and any type of fading. This upper bound is 
achieved at high SNR by the considered optimization strategies. 
While the average optimization is less complex than the 
instantaneous one, its performance is almost as good at high SNR. 
A measure of robustness of the optimized algorithm is introduced 
and evaluated, including compact closed-form approximations. 
The optimized algorithm is shown to be robust to perturbations in 
individual and total transmit powers. Based on the algorithm 
robustness, a pre-set power allocation is suggested as a low-
complexity alternative to the other optimization strategies, which 
exhibits only a minor loss in performance over the practical SNR 
range. 

I. INTRODUCTION 
The V-BLAST algorithm [1] has attracted in recent years 

significant attention as a signal processing strategy in the 
MIMO receiver due to its relative simplicity and also the 
ability to achieve, under certain conditions, the full MIMO 
capacity. Unfortunately, the algorithm has a few drawbacks as 
well. The optimal ordering procedure is computationally-
demanding, which is a limitation for some applications. Since 
the successive interference cancellation is used, lower 
detection steps have on average a smaller SNR and thus 
produce more errors, which further propagate to higher steps 
[5]-[7] so that the overall error performance may be not 
satisfactory, especially if no coding is used. 

A popular approach to improve the error performance of the 
V-BLAST algorithm is to decrease the error rates at lower 
steps by employing a non-uniform power allocation among the 
transmitters. Several techniques have been reported that find 
the transmit (Tx) power allocation that minimizes the 
instantaneous (i.e. for given channel realization) total error rate 
(TBER)1 of the V-BLAST, with or without the optimal 
ordering [3][4]. The approximate solutions for the 

                                                        
1 The TBER is defined as the error rate at the output stream to which 
all the individual sub-streams are merged after the detection (see [7] 
for more details). Thus, it takes into account the actual number of 
errors at the transmitted symbol vector. The block error rate (BLER) 
is defined as the probability to have at least one error at the detected 
Tx symbol vector [7]. It does not take into account the actual number 
of errors, but only the fact of their presence. 

instantaneous Tx power allocation have also been found, based 
on various approximations. In [2], the instantaneous BLER1 
(rather than the TBER) is considered as an optimization 
criterion, and the optimum Tx power allocation is found 
numerically for the V-BLAST with two transmitters. Although 
the instantaneous power allocation techniques proposed in [2]-
[4] do demonstrate a few dB performance improvement over 
the original (unoptimized) V-BLAST, they also add 
considerably to the system complexity, since new feedback 
session and power reallocation are needed each time the 
channel matrix changes; the instantaneous per-stream 
(transmitter) SNRs also need to be sent to the Tx end.  

A less complex approach is to use an average rather than 
instantaneous optimization, i.e. the optimum power allocation 
is found based on the average error rate (BLER or TBER) 
[5],[8]-[10]. Since this ignores the small-scale fading, only 
occasional feedback sections and power reallocations are 
required, when the average SNR changes, and only the average 
SNR needs to be fed back to the Tx end. 

Performance evaluation of the optimized systems has been 
done in [2]-[5],[10] through simulations, by comparing 
optimized and non-optimized error rate curves, and it was 
noted that the optimum power allocation gives a few dB gain 
in terms of the SNR.  

In this paper, we present analytical performance evaluation 
of the optimized system via a rigorous definition of the SNR 
gain of the optimization and via a measure of robustness, in 
addition to the traditional error rate analysis. Upper and lower 
bounds on the SNR gain are given, which hold for any 
modulation and any type of fading. Specifically, it is shown 
that the SNR gain cannot exceed m  (the number of 
transmitters). This upper bound is achieved at high SNR. The 
lower bound is approached by the SNR gain at low SNR. 
Additional properties of the gain, including compact high and 
low-SNR approximations, are also given. These results are 
summarized in Theorems 1-5 and Corollaries in Section V. 

The impact of perturbations in the individual and total Tx 
powers on the performance of the optimized system is studied 
using a measure of robustness and relying on the generic 
principles of convex optimization [11]. It is demonstrated that 
the optimized system is robust to such perturbations, which 
also indicates that the closed-form approximations for the 
optimum power allocation can be used without noticeable loss 
in the performance. Based on this, a pre-set power allocation is 
suggested as a low-complexity alternative to other 
optimization strategies. Due to the robustness of the proposed 
power allocation, it is expected that a significant portion of the 
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theoretically-predicted gain can also be achieved in practice. 
Analytical results and conclusions are validated via Monte-

Carlo (MC) simulations. 

II. SYSTEM MODEL 
We employ the following standard baseband discrete-time 
system model, 

 1
m

i i ii s== + = α +∑r HΑs ξ h ξ  (1) 

where 1 2[ , ,... ]Tms s s=s  and 1 2[ , ,... ]Tnr r r=r  are the vectors 
representing the Tx and Rx symbols respectively, “T” denotes 
transposition, 1 2[ , ,... ]m=H h h h  is the n m×  matrix of the 
complex channel gains between each Tx and each Rx antenna, 
where ih  denotes i-th column of H , which are assumed to be 
i.i.d. Rayleigh fading unless otherwise indicated2, n and m are 
the numbers of Rx and Tx antennas respectively, n m≥ , ξ  is 
the vector of circularly-symmetric additive white Gaussian 
noise (AWGN), which is independent and identically 
distributed (i.i.d.) in each receiver, ( )1 , , mdiag= α αΑ … , 
where iα  is the power allocated to the i-th transmitter. For the 
regular (unoptimized) V-BLAST, the total power is distributed 
uniformly among the transmitters, 1 2 ... 1mα = α = = α = . In 
the optimized system, iα  are chosen to minimize the total 
BER or the BLER, either average or instantaneous. Since we 
rely on the BLAST error rate performance analysis in [5],[7]-
[9], we also adopt the same basic assumptions. 

III. ERROR RATES AND OPTIMUM POWER ALLOCATION 

Closed-from expressions for the BLER and TBER of the 
unordered V-BLAST can be found in [5],[7]-[10]. For the sake 
of simplicity and completeness, we give below their high-SNR 
approximations only. The average BLER can be expressed as 

 ( )
( )

2 1

1 1 04

im m
i

B ei n m i
i i i

C
P P −

− +
= =

≈ ≈
α γ

∑ ∑α , (2) 

where eiP  is the average error rate at step i conditioned on no 
errors at the previous steps, 0γ  is the average SNR, and 

!/( !( )!)i
kC k i k i= −  are the binomial coefficients. The second 

equality holds for BPSK modulation, which we assume 
below3, unless otherwise indicated. The average TBER with 
optimum power allocation can be approximated as 

 ( ) ( ) ( )
( )

2 1

1 1 0

21 12
2 2 4

im m
i

et ei n m i
i i i

m i C
P m i P

m m
−

− +
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− +
= − + ≈

α γ
∑ ∑α , (3) 

Based on these approximations, closed-form expressions for 
optimum power allocation have been obtained [8][9]. When 
the average BLER is used as the performance metric, the 
optimum power allocation is 

 
( )

1 1
2 10

,   ,  2, ,
4

m
opt opt opt i

i i i
i n m i

b
m i m

−
= − + +

α ≈ − α α ≈ =
γ

∑ … , (4) 

                                                        
2 some of our results hold true for arbitrary channels 
3 some of our results hold true for arbitrary modulation. 

where 

 ( )( )1/( 1)2
2 1 / 1

n m in m i
i ib n m i m C n m

− + +− +
−= − + − +  (5) 

Note that 1 mα →  and 2... 0mα α →  as 0γ → ∞ , i.e. most of 
the power goes to 1st transmitter at high SNR. This is 
consequence of the fact that 1st step error rate dominates the 
whole error rate. 

When the average TBER is used as the performance metric, 
the optimum power allocation is similar to that for the BLER-
based optimization, so that (4) can be used with ib  given by 

 
( ) ( )

( ) ( )

1/( 1)2
2 1 2

1 1

n m ii n m
i

i
C n m i m i m

b
m n m

− + +− +
− − + − +

 =
 + − + 

. (6) 

The same tendency in power distribution is also observed 
(most power going to 1st transmitter). 

The approximations in (2)-(4) can be used to find the 
average error rates of the power-optimized V-BLAST. 
Specifically, based on (2) and (4), we observe that despite of 
the fact that the transmitters i to m are allocated small amounts 
of power (and, thus, the corresponding error rates increase 
compared to the unoptimized system), the 1st step error rate 
still dominates the overall performance, 

 
( )1 1

0

1

4
opt

e n mP
m − +≈

γ
, 

( )
( )( 2)

104

opt i
ei n m i n m

n m i

a
P

− + + +
− + +

≈
γ

, (7) 

where 2 1 /i n m i
i i ia C b − +

−= , so that 
1 2 ...opt opt opt

eme eP P P>> >> >>  at high SNR (the same 
relationship as for the unoptimized system in [7]). Thus, the 
average BLER can be approximated as 

 ( ) 1
01 1/ 4 n mopt opt

B eP P m − +≈ ≈ γ ,  (8) 

Comparing (8) to the average BLER without optimization, 
( ) 1

1 01/ 4 n m
B eP P − +≈ ≈ γ , we conclude that the power 

allocation brings 10log  dBm  SNR gain in terms of the 
average BLER. 

In a similar way, using (3), the optimized average TBER 
can be approximated as 

 
( )1 1

0

1 1
2 2 4

opt opt
et e n m

m mP P
m m m − +
+ +≈ ≈

γ
.  (9) 

Comparing (9) to the unoptimized TBER [7] 1 1 /et eP a P m≈ , 
where 1 1a >  quantifies the effect of error propagation (see 
[7][12] for details), we conclude that the optimum power 
allocation brings an SNR gain of  

 

1
112

1
n ma

m m
m

− +  < + 
, (10) 

i.e. less than that in terms of the average BLER. 

IV. ROBUSTNESS OF THE OPTIMUM POWER ALLOCATION 
When the optimization algorithm is implemented in a practical 
system, there are various sources of inaccuracies and 
perturbations, which may affect its performance but which 
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were ignored in the idealistic analysis above. These may 
include numerical inaccuracies of the optimization, inaccurate 
or outdated estimate of the average SNR, which result in 
inaccuracies in the optimum power allocation coefficients 

opt
iα . A robust algorithm, which is insensitive to all these 

factors, is desired from the practical perspective. 
In order to estimate the impact of these factors on the 

system performance, let us introduce the measure of 
robustness δ  (sensitivity) of the average error rate (either 
BLER or TBER) with the optimum power allocation, 

( )optP P= α , to the changes in system parameter u, 

 /
/

P P
u u

∆δ =
∆

, (11) 

where u may represent the total Tx power, 1
m

iiu == α∑ , or the 
power allocated to any of the transmitters, iu = α . The 
measure of robustness (11) is the ratio of the normalized 
variation in the performance /P P∆  to the normalized 
variation in the system parameter /u u∆ , which causes this 
performance variation. Note that the use of normalized 
differences in the definition is essential as it makes the 
measure to be independent of the scale. The algorithm is robust 
to variations in the system parameter u if relatively small 
change in u leads to relatively small change in the error rate 
P , i.e. when δ  is small or moderate number. 

When both the perturbation in the system parameter u∆  and 
in the system performance P∆  are small enough, one can use 
the derivatives in (11) instead of the finite differences, 

 P u
u P

∂′δ ≈ δ =
∂

, (12) 

so that /P u∂ ∂  determines the algorithm robustness, and ′δ  
serves as a measure of local robustness. It follows from the 
Lagrange multiplier technique [11] that 

iP P u∂ ∂α = ∂ ∂ = −λ , so that 

 /u P′δ ≈ δ = λ , (13) 
where λ  is the Lagrange multiplier evaluated at the optimum 
point [9], which is a part of the optimization problem solution. 
Thus, the appropriately normalized λ  is the measure of local 
sensitivity4 of the average error rate to variations in the total or 
individual Tx power. The normalized variation in the average 
error rate can be evaluated from the normalized variation in the 
system parameter using (13), 

 
P u u

P u u
∆ ∆ ∆

′= δ ≈ δ , (14) 

For the average BLER-based optimization at high SNR, using 
the results in [8][9], the Lagrange multiplier can be 
approximated as, 

 
( )2 1

0

1 1

4n m n m
n m
m − + − +

− +λ ≈
γ

, (15) 

For small variations in the system parameter, 1
optu m≈ ≈ α , so 

                                                        
4 An extended discussion of this issue in the general framework of 
convex optimization can be found in [11]. 

that, using (8)and (15), the robustness measure with respect to 
the variations in the total or 1st transmitter power is 

 1 1n m′δ ≈ − + , (16) 

i.e. equal to the diversity order of the system. The algorithm is 
locally robust as long as ( )n m−  is not too large; 1 1′δ ≈  and 
consequently / /P P u u∆ ≈ ∆  if n m= . This result is a 
consequence of the fact that the high-SNR average BLER is 
dominated by the 1st step BER (see (8)) so that its diversity 
order and hence the sensitivity to the Tx power is minimum 
when n m= ; increasing ( )n m−  results in increasing diversity 
order and hence in increasing sensitivity to the Tx power. 
Thus, the beneficial effect of higher diversity order with more 
Rx antennas is accompanied by the negative effect of higher 
sensitivity to variations in system parameters. 

The robustness measure with respect to 2... mα α  can be 
approximated as 

 
( )

1
10

1 1,    2...
4

i
i i

n m i

bn m i m
m −

− + +

− +′δ ≈ =
γ

� , (17) 

Thus, the algorithm is also robust in terms of 2 , , mα α…  at 
high SNR. Furthermore, higher steps exhibit better robustness 
since, comparing (16) and (17), 1 ,  2...i i m′ ′δ > δ = . It should 
be noted that this robustness of the algorithm is an unexpected 
by-product, which was not a goal of the original design. 

For the TBER-based optimization, (16) and (17), and hence 
the conclusions above also hold true; ib  is given by (6) in this 
case. As an example, Fig. 1 shows the average TBER versus 

1α  for 2x2 V-BLAST. When 1α  is far away from 1
optα , the 

slope of the curves is quite steep and determined by the 
diversity order of the dominating step; thus, allocating too little 
power to the 1st Tx increases the 1st step BER, making it 
dominant, whereas giving too much power to the 1st Tx boosts 
the 2nd step BER. Note that the slope is steeper in the domain 
of the dominating 2nd step BER, apparently because of its 
higher diversity order. But as the power allocation algorithm 
attempts to balance these two extremes and approaches 1

optα , 
the curves become very flat, confirming local (in the vicinity 
of 1

optα ) insensitivity of the TBER to variations in 1α . 

0 0.5 1 1.5 2
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α 1
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γ0
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=20 dB α
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P
e2
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P
e1

dominates
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Fig. 1. Average TBER versus α1 for 2x2 V-BLAST with BPSK 

modulation. 

Thus, small inaccuracies in αopt do not affect the average 
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error rate significantly. This hints at the conclusion that the 
approximate closed-form αopt will result in almost the same 
average error rate as the accurate numerical one. Numerical 
(MC-based) analysis confirms this expectation.  

It should also be pointed out that the choice of the 
optimization criteria (BLER or TBER) does not affect 
significantly the final result either [8][9]. Thus, BLER or 
TBER can be used equally well as a performance criterion for 
optimization. 

Small sensitivity of the BLER/TBER to α suggests even 
further simplification in the optimization algorithm: since optα  
changes slowly with the SNR (see (4)), we can pick up only 
one fixed (pre-set) value of α  and still get performance 
improvement for a wide range of 0γ . Such simplified 
algorithm does not require any feedback at all, and yet, as Fig. 
2 demonstrates, it attains almost the same performance as the 
dynamically optimized system. In this example, the 3x3 V-
BLAST with [ ]2 0.6   0.4 T=α  is considered, and its 
performance is very close to the optimized V-BLAST in the 
range of 0 0 35 dBγ = … . 

0 10 20 30 40
10-5

10-4

10-3

10-2

10-1

 

 Unoptimized 
 Optimized
 α=[2, 0.6, 0.4]

 

TB
ER

SNR [dB]  
Fig. 2. TBER of 3x3 V-BLAST with BPSK modulation for pre-set 

(fixed) power allocation. 

It should be noted that it is the robustness of the algorithm that 
is responsible for small difference between instantaneous and 
average optimization at high SNR observed in [8][9]. 

The robustness considered above is local robustness, i.e. for 
small variations in the vicinity of the unperturbed values of the 
system parameter. When variations are not small, the finite 
differences in (11) cannot be accurately approximated by the 
derivatives and the approximations in (12), (13), (16), (17) 
may not be accurate. In such a case, one has to consider a 
measure of global robustness. To this end, let us consider the 
average error rate of the perturbed system ( );P u u+ ∆α , 
where u∆  is not necessarily small and u  is the total Tx 
power. Let opt

u∆α  denote the optimum power allocation of the 
perturbed system, so that the optimum allocation for the 
unperturbed system is 0 0

opt opt
u∆ ==α α  , the optimized average 

error rate of the unperturbed system is ( )0 ;optP uα , and the 
optimized average error rate of the perturbed system is 

( );opt
uP u u∆ + ∆α . From the general theory of convex 

optimization [11], the last two quantities are related by the 
following global inequality, 

 0( ; ) ( ; )opt opt
uP P u u P u u∆∆ = + ∆ − ≥ −λ∆α α , (18) 

where λ  is evaluated at 0u∆ = , and the equality is achieved 
for 0u∆ = . It follows that if ∆u is positive, i.e. the total Tx 
power is increased, the optimal value of P  decreases by no 
more than uλ∆ ; if ∆u is negative, i.e. total Tx power is 
decreased, the optimal value of P  is guaranteed to increase by 
at least uλ ∆ . Dividing (18) by P , one obtains 
 / /P P u u′∆ ≥ −δ ∆ , (19) 
where ′δ  is given by (13). Therefore, ′δ , which was 
introduced as a measure of local robustness in (13), also serves 
as a measure of global robustness in (19). Since ,P u∆ ∆  may 
be positive as well as negative (they always have opposite 
sign), we re-write (19) in the form which includes only 
positive terms, 

 
/ /,  0;   ,  0
/ /

P P P Pu u
u u u u

∆ ∆′ ′≤ δ ∆ > ≥ δ ∆ <
∆ ∆

 (20) 

′δ  gives upper and lower bounds on the normalized variation 
in the error rate due to any (not necessarily small) variation ∆u 
in the total Tx power, for positive and negative ∆u (i.e. 
increasing and decreasing the total Tx power), respectively. 
Thus, when the total Tx power is increased by u∆ , the average 
error rate decreases by not more than /P u u′δ ∆ ; when the total 
Tx power is decreased by u∆ , the average error rate increases 
by at least /P u u′δ ∆ , so that the positive effect never exceeds 
the negative one. Since the inequality in (19) transforms into 
the approximate equality for small perturbations (see (14)), 
these two effects are equal in that case.  

Clearly, the Lagrange multiplier λ  plays a key role not only 
in the local, but also in the global robustness. Since it is not 
known in closed-form for arbitrary SNR, the high-SNR 
approximation in (15) can be used with reasonable accuracy 
(for 0 0 dBγ > ). 

V. SNR GAIN OF OPTIMUM POWER ALLOCATION 
In this section, we explore some properties of the SNR gain of 
optimization using mostly analytical techniques, and use 
numerical results only as the last resort. The analysis and 
conclusions below are valid for any modulation format, unless 
otherwise stated. 

The SNR gain of optimum power allocation is defined as the 
difference in the SNR required to achieve the same error rate 
in the optimized and unoptimized systems, i.e. from 

 ( ) ( )1 ,..., ,...,opt opt
mP Pα α = α α , (21) 

where P is the performance criterion, i.e.the BLER or the 
TBER, either instantaneous or average; the left-hand side 
represents the optimized error rate under the total power 
constraint 1

m opt
ii m= α =∑ , the right-hand side represents the 

error rate for the uniform power allocation, iα = α , and the 
SNR gain is G = α . For the average optimization, the average 
error rate is used in (21). For the instantaneous optimization, 
one may use both instantaneous and average error rate in (21). 
In the former case, one obtains the instantaneous gain of the 

1930-529X/07/$25.00 © 2007 Crown Copyright
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

1511



  

instantaneous optimization, and in the latter case, one obtains 
the average gain (i.e. in terms of the average error rate) of the 
instantaneous optimization. To be able to compare the 
instantaneous and average optimizations below, we use the 
average gain of the instantaneous optimization instG . It 
compares to the gain of the average optimization avG  as 
follows: inst avG G≥ , i.e. the instantaneous optimization is at 
least as good as the average one. We consider below the SNR 
gain defined in terms of the BLER and the TBER, and also 
compare the properties of these two different definitions, 
which share many similarities. 

BLER SNR Gain of the Optimum Power Allocation: In this 
section, we consider the BLER-based optimization strategies 
and present universal bounds on the BLER SNR gain, either 
instantaneous or average, which hold for arbitrary modulation 
and fading. These results are further refined in the case of 
BPSK modulation and Rayleigh-fading channel. 

Theorem 1. The BLER SNR gain of optimum power 
allocation, either instantaneous or average, for arbitrary 
modulation and fading, is bounded as follows 
 1 G m≤ ≤  (22) 

Proof. The key to the proof is the fact that the BLER, either 
instantaneous or average, is a monotonically decreasing 
function in each argument 1 ,..., mα α  (see (2) or [8][9] for 
arbitrary SNR) , and the fact that eiP  is a monotonically 
decreasing function of the SNR. Based on this fact and also on 
the inequality ( ) ( )1 ,..., 1,...,1opt opt

B m BP Pα α ≤ , which simply 
states that the optimized system is at least as good as the 
unoptimized one, the lower bound in (22) follows. Using the 
monotonic-decreasing property of the BLER and the fact that 

i mα ≤ , which follows from the total power constraint, one 
concludes that ( ) ( )1 ,..., ,...,opt opt

B m BP P m mα α ≥ . Comparing 
this inequality with the definition of the gain in (21) in view of 
the monotonic-decreasing property of the BLER, the upper 
bound follows. Q.E.D. 

Below we explore the small-SNR behavior of the SNR gain 
in terms of the average BLER, which is related to the lower 
bound in Theorem 1, for the BLER-based optimization and for 
a variety of modulation formats. 

Theorem 2. Small-SNR behavior of the BLER SNR gain for 
the average BLER-based optimization is as follows: 
 0 01 as  0avG G→ ≥ γ → , (23) 

where 

( ) 0

2

0 2
0 0

,  ,  coherent detection
i

i eii
i

iii

m a PG a
a α γ =

∂= =
∂ α γ

∑
∑

( )
0

0
0 0

max
,  ,  noncoherent detection

i

i eii
i

i ii

b PG m b
b

α γ =

∂= =
∂ α γ∑

(24) 
and ,  i ia b  are the coefficients in 1st term of MacLaurin’s 
series expansion of eiP . The equality in (23) is achieved, i.e. 

0 1G = , if and only if all ia  or all ib  are equal, for coherent 
and non-coherent detection respectively. 

Sketch of the proof: expand the BLER in MacLaurin’s series 

and use it to find the optimum power allocation and the 
corresponding BLER; the gain is found via (21) (detailed proof 
is given in the extended version of this paper [12]).  

This result is valid for a variety of modulation formats for 
which the error rate admits MacLaurin’s series expansion in 
SNR or SNR  about SNR=0. In most cases, the strict 
inequality in (23) holds, i.e. there is an SNR gain of 
optimization even at very low SNR, since different eiP  exhibit 
different behavior so that the expansion coefficients are also 
different. As an example, for coherent BPSK and non-coherent 
BFSK, 0 0.17 dBG =  and 0.79 dB  respectively, for 2x2 
system. 

Corollary 2.1. The result in (23), (24) also applies to the 
instantaneous gain of the instantaneous optimization, in which 
case eiP  should be used in (24) instead of eiP , and the 
coefficients ,  i ia b  and hence the gain depend on the channel 
realization, as long as the derivatives in (24) exist and are not 
all equal to zero simultaneously. 

Corollary 2.2. The average SNR gain of the instantaneous 
optimization is also lower bounded by 0G  in (24), 

0 1instG G≥ ≥ , because of inst avG G≥ .  
Thus, we conclude that (23) holds for a variety of scenarios 

for BLER-based optimization.We now show that the upper 
bound in (22) is achieved at high SNR. 

Theorem 3. High-SNR behavior of the average BLER SNR 
gain, for both instantaneous and average optimizations using 
either BLER or TBER as an objective, with BPSK modulation 
in Rayleigh fading channel, is as follows: 
 0 as  G m→ γ → ∞  (25) 

Proof. From the high SNR approximation of the average 
BLER (8) and corresponding approximation of the 
unoptimized BLER, ( )1 1 0

MRC
B e n mP P P − +≈ = γ  [7], the first step 

dominates for both unoptimized and optimized systems. Using 
this in (21), one obtains avG m→  as 0γ → ∞ . Using (22) and 

inst avG G≥ , this also holds for the average gain of the 
instantaneous optimization, instG m→  as 0γ → ∞ . Q.E.D. 

Corollary 3.1. Theorem 3 also extends to any 
modulation/fading for which the first step error rate dominates 
the average BLER at high SNR. Based on the diversity order 
argument, this condition should hold for most modulation 
formats in Rayleigh-fading channels. 

For the average BLER-based optimization with BPSK 
modulation in a Rayleigh fading channel, a high-SNR 
approximation of the average BLER SNR gain is given by 

 
1 3

, 01 / 4
av

n m n m
m n

G
G

c
∞

− + − +
≈

+ γ
 (26) 

where ( ) 3 2 2
, 2 2[ 1 3 ]/[ ]n m n m n m

m nc n m b m mb− + − + − += − + + , 
G m∞ = . This approximation follows along the lines of the 
proof of Theorem 3. Note that (26) reduces to (25) for 

0γ → ∞ , as it should be. The convergence to the upper bound 
in (25) is however slow, since the convergence condition is 

3
0 1n m− + γ >> . 

It follows from (26) that the BLER SNR gain of the average 
BLER-based optimization with BPSK modulation is an 
increasing function of the average SNR in the high-SNR range. 
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Numerical evidence indicates that this also holds for low to 
intermediate SNR. This conclusion is further reinforced by the 
following Theorem. 

Theorem 4. Under the total power constraint 1
m

ii u= α =∑ , 
where u is the total Tx power, the BLER SNR gain of BLER-
based optimization in (21), either instantaneous or average, is a 
monotonically increasing function of u: 

 
( )

0
B

G
u P

∂ λ= − ≥
∂ ∂ α α ∂α…

 (27) 

Proof. omitted due to the page limit (see [12]). 

TBER SNR Gain of the Optimum Power Allocation: In this 
section, we adapt the results of the previous section to the SNR 
gain defined in terms of the average TBER. Due to the page 
limit, we give the results without proofs ([12] gives detailed 
proofs). 

Theorem 1 holds, provided some additional conditions are 
satisfied by the average TBER and the optimum power 
allocation, which are not very restrictive [12]. 

Theorem 2 still holds for the average TBER SNR gain, with 
the substitution of ei etP P→  in (24). 

Theorem 3 is no longer valid, i.e. the upper bound m is 
never attained if the gain is defined in terms of the TBER. 
Instead, the following holds. 

Theorem 5. High SNR behavior of the average TBER SNR 
gain for the average optimization is as follows: 
 0 as  avG G∞→ γ → ∞ , (28) 

where G∞  is given by the left-hand side of (10). 
Thus, the improvement in average TBER is less than the 

upper-bound in (22). The reason for this is the increased power 
of propagating errors for the optimized system, due to higher 
power going to lower steps, compared to the unoptimized one. 
For example, the optimum power allocation algorithm gives 
most of the power to the 1st Tx trying to avoid the errors at the 
1st step. But if the error does occur at the 1st step, its amplitude 
is higher than that for the unoptimized system, which makes 
the error propagation effect more severe. 

VI. EXAMPLES 
To illustrate the generic results above and to demonstrated 
their validity via Monte-Carlo simulations, we consider the 
2 2×  V-BLAST .  

It follows from (25) and (28) that the SNR gain is 
2avG = (3 dB) and 8 / 5avG = (2 dB) at high SNR, for the 

average BLER and TBER respectively. Thus, while the 
optimum power allocation is insensitive to the criteria (i.e. 
either BLER or TBER) [8][9], the SNR gain of optimization 
does depend on it, though not in a dramatic way. Fig. 3 
demonstrates the accuracy of the analytical result in (26). 
Additionally, we note that the average BLER gain of the 
instantaneous optimization also tends to 3 dB and attains this 
bound, but much faster than that of the average optimization.  

The SNR gain of the optimum power allocation is almost 
the same, at high SNR, as that of the optimal ordering 
procedure (see [6] for details). The computational complexity, 
however, of the former is much less than that of the latter. 

Hence, the average power optimization can be used instead of 
the optimal ordering with roughly the same performance. 

Similar conclusions also hold in terms of the TBER SNR 
gain. 
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Fig. 3. Average BLER SNR gain vs. SNR for 2x2 V-BLAST with 

BPSK modulation (MC- Monte-Carlo simulations). 
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