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Abstract— In contrast to aggregate inter-packet metrics that 
quantify the arrival processes of aggregate traffic at a single 
point in the network, intraflow end-to-end per-packet 
performance metrics assess the level of service quality 
experienced by certain traffic types while routed over a network 
path. Consequently, while the former is influenced by the 
superimposition of a large number of concurrent ON/OFF 
sources, the latter mainly depends on the specific transport 
mechanisms employed by individual flows in conjunction with 
the temporal resource contention along the end-to-end path. In 
this paper, we have used a ubiquitous measurement technique to 
assess the unidirectional end-to-end delay characteristics 
experienced by diverse sets of IPv6 flows routed over 
heterogeneous wireless network configurations. We analysed 
numerous traces to find that, when viewed as time series data, 
often exhibit long-range dependence manifested by Hurst 
parameter estimates greater than 0.5. Our results suggest that 
the end-to-end packet delay can be bursty across multiple time 
scales even at the microflow level, implying high performance 
variability during sufficiently long-lived application sessions. We 
anticipate that the quantification of such intraflow phenomena 
can enable applications to optimise and adjust their operation in 
the face of potential performance degradation. 

Keywords- long-range dependence; autocorrelation; self-
similarity; unidirectional delay; IPv6 

I.  INTRODUCTION 
Self-similarity and Long-Range Dependence (LRD) have 

become widely accepted characteristics of facets of network 
traffic for more than a decade. Studies in LAN [11], WAN 
[15], and transport/application-specific traffic [6] have 
advocated its bursty behaviour not being flattened when 
averaged over long time scales, hence challenging the 
commonly assumed Poisson or Markovian arrival processes to 
model network traffic. Research has primarily focused on long-
term aggregate traffic characteristics, such as packet and 
session arrivals, to emphasise the importance of these 
“burstiness” preservation properties and their implications on 
the design, control, and analysis of high-speed networks. The 
LRD properties of aggregate network traffic have been linked 
to heavy-tailed, infinite variance phenomena at the level of 
individual source-destination pairs, represented by ON/OFF 
sources and packet trains models whereby a source alternates 
between active (ON-period) and idle (OFF-period) states [19]. 

However, not many studies have focused on investigating the 
existence (or otherwise) of LRD within finer-grained end-to-
end performance metrics at the level of individual flows. A few 
studies have reported non-stationary LRD in round-trip delay 
of synthetic UDP traffic [3], and in aggregate NTP/UDP flows 
[12], yet the burstiness preservation implications on the 
different transport mechanisms, the diverse physical 
infrastructures, and the unidirectional contributors of the per-
packet end-to-end delay of individual flows have not been 
investigated, partly due to the absence of adequate and 
ubiquitous instrumentation mechanisms. The dynamic 
operation of transport-level flow control algorithms and the 
temporal resource contention that can result in congestion and 
packet loss along the end-to-end path are among the primary 
parameters influencing the unidirectional delay behaviour and 
imposing high variability, ultimately affecting the applications 
throughput. Presence of LRD in intraflow packet delay would 
imply bursty and unpredictably variable end-to-end 
performance. At the same time, the increasing popularity of 
wireless local and wide area network technologies can itself 
introduce highly variant performance. Fluctuations in radio 
channel quality of W-LANs as well as the link-layer reliability 
mechanisms employed by W-WANs have already been 
reported as factors of increased variability in end-to-end packet 
delay [5][9]. Therefore, quantifying the intensity and longevity 
of such burstiness can prove useful for models capturing 
application behaviour that can then take this phenomenon into 
consideration while optimising application-level performance 
parameters. 

In this paper we have used in-line measurement to 
instrument operational IPv6 microflows delivered by reliable 
and unreliable transport mechanisms over mixed wired and 
wireless network configurations. We have analysed 
unidirectional delay traces and found evidence of Long-Range 
Dependence in delays experienced by both TCP and UDP 
microflows, manifesting itself through Hurst parameter 
estimates greater than 0.5. We compare and contrast the 
existence and intensity of the phenomenon between different 
types of unidirectional flows and two different wireless 
technologies. We empirically assess the relevance and accuracy 
of the most commonly used LRD estimators and we comment 
on the tail behaviour of the unidirectional delay distributions. 
Section II describes the measurement methodology and the 
experimental environment. In section III we provide a brief 
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definition and explanation of Long-Range Dependence and we 
outline the different time and frequency-domain methods used 
in our traces to obtain the Hurst parameter estimates. Section 
IV presents results obtained by the statistical analysis of our 
time series data supporting the case that unidirectional delay of 
IPv6 microflows can exhibit LRD characteristics. In Section V 
we discuss the accuracy and relevance of the revealed LRD 
behaviour in unidirectional delay, and we comment on the 
distributional characteristics of our time series data. Section VI 
concludes the paper. 

II. MEASUREMENT METHODOLOGY 

A. In-line Measurement Technique 
In-line measurement [16] is a two-point technique that 

exploits the concept of piggybacking per-packet, minimal 
measurement indicators within the payload datagrams, in order 
to reveal how actual traffic is routed between two nodes in the 
network. By exploiting the native extensibility features of IPv6, 
measurement data such as timestamps and packet counters are 
encoded in Type-Length-Value (TLV) structures and 
encapsulated within an IPv6 destination options extension 
header. The IPv6 specification provides the space for special-
purpose data to be encoded as a native part of the network-
layer header, hence making any mechanism that exploits this 
feature applicable to all traffic types carried over the IPv6 
Internet infrastructure. Destination options extension headers in 
particular, are only processed at the (ultimate) destination node 
identified in the destination address field of the main IPv6 
header. Hence, they can be defined and realistically deployed 
only at the edges of the network, without their presence 
negatively impacting the option-bearing datagrams at the 
intermediate forwarding nodes (a well-identified problem in 
IPv4). Unidirectional delay measurement has been 
implemented as a set of Linux kernel modules that timestamp 
time TA immediately before a packet is serialised at the NIC of 
the source IPv6 node, and time TB as soon as the packet arrives 
in the destination IPv6 node’s OS kernel. Unidirectional packet 
delay is then calculated as D = TB – TA. 

B. Measurement Environment 
End-to-end unidirectional delay measurements have been 

conducted over two diverse wireless service networks of the 
Mobile IPv6 Systems Research Laboratory (MSRL) 
infrastructure [13]. MSRL includes a wireless cellular network 
as well as a combination of 802.11 technologies and it 
comprises a real service infrastructure. The measurements were 
carried out between a host machine connected to MSRL’s 
wired backbone network (Linux 2.4.18; Intel 100BaseT 
adapter) and a host machine with multiple wireless interfaces 
(Linux 2.4.19; NOKIA D211 combo PCMCIA 802.11b/GPRS 
adapter), connected through the 802.11b/g campus-wide 
network and through the GPRS/GSM W-WAN network.  

The W-LAN infrastructure is part of Lancaster University 
campus wireless network, and includes 802.11b and 802.11g. 
Although the nominal speed for 802.11b is 11Mb/s, it has been 
observed that due to interference with other appliances 
operating at the same frequency band (2.4 GHz), the cards 
often fall-back to 5.5, 2, and 1 Mb/s. The W-WAN network is 

the Orange UK GPRS/GSM service network, practically 
allowing for speeds of up to 20/50 Kb/s (up/downlink), due to 
asymmetric slot allocation. Connectivity between Orange UK 
and the MSRL backbone is served by a 2 Mb/s wireless Frame 
Relay point-to-point link. 

III. LONG-RANGE DEPENDENCE (LRD) ESTIMATION 
A stochastic process or time series Y(t) in continuous time 

t ∈  is self-similar with self-similarity (Hurst) parameter 
0 1,H< <  if for all 0 and 0,tα > ≥  

 ( ) ( ).H
dY t a Y tα−=  

Self-similarity describes the phenomenon of a time series 
and its time-scaled version following the same distribution 
after normalizing by α-H. This implies that the autocorrelation 
function (ACF) of the stationary increment process 

( ) ( ) ( 1)X t Y t Y t= − −  at lag k is given by  
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the ACF decays hyperbolically which is the essential property 
that constitutes it not summable: 
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When such condition holds, the corresponding stationary 
process X(t) is said to be Long-Range Dependent (LRD). 
Intuitively, this property implies that the process has infinite 
memory for 0.5 < H < 1, meaning that the individually small 
high-lag correlations have an important cumulative effect. This 
is in contrast to conventional short-range dependent processes 
which are characterised by an exponential decay of the 
autocorrelations resulting in a summable ACF. In the context 
of intraflow packet delay, presence of LRD indicates that 
unidirectional delay remains bursty over a wide range of 
timescales for potentially infinitely long traffic flows.  

The intensity of LRD is expressed as the speed of decay of 
the series autocorrelation function and is measured by the value 
of the Hurst parameter; as 1H →  the dependence is stronger. 
Two theoretical models that have been used to simulate LRD is 
fractional Gaussian noise (fGn) which is the stationary 
increment process of fractional Brownian motion (fBm), and 
fractional ARIMA processes that can simultaneously model the 
short and long term behaviour of a time series [11]. For 
empirical time series, a number of time and frequency-domain 
estimators have been evaluated [2][18] for detecting LRD and 
quantifying its intensity by estimating the value of the Hurst 
exponent. In this paper we have employed the four most widely 
used estimators (see e.g. [3][7][10][12][18]), two from each 
domain, to assess the existence of LRD in unidirectional delay 
time series data for a number of diverse traffic flows. 



A. Time-domain estimators 
We have employed the aggregated variance and the 

rescaled adjusted range (R/S) estimators. The former examines 
the decay of the sample variance at increasing time aggregation 
levels which, for LRD time series, is slower than the reciprocal 
of the sample size. The R/S method examines the growth in the 
rescaled range of partial sums of deviations of the time series 
from its mean, as a function of the number of points in the 
time-aggregated series. 

B. Frequency-domain estimators 
The periodogram method is based on the discrete Fourier 

transform and is an estimate of the power spectral density of a 
discrete process which, for LRD series, should exhibit power-
law behaviour for frequencies (~10%) close to the origin. The 
Whittle estimator is a maximum likelihood type estimate which 
is applied to the periodogram of the time series and minimises 
the flowing function Q: 
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where ( )I λ  is the periodogram, ( );f λ η  is the spectral 
density at frequency λ, and η is the value that minimizes the 
function Q. 

The aggregated variance, R/S, and periodogram are 
heuristic, graphical methods that estimate the Hurst parameter 
by examining the slope of the line fitted to a log-log plot of the 
corresponding quantity of interest. On the other hand, Whittle 
provides an asymptotically exact estimate of H and a 
confidence interval. However, Whittle requires the empirical 
series to be consistent with a specific process whose underlying 
form must be provided. It can hence be applied to processes 
that have already been shown to exhibit LRD by other means. 
Previous studies have reported that Internet delay will not 
easily fit the fractional ARIMA model [3], hence fGN has been 
used as the underlying model for Whittle in this study. 

IV. UNIDIRECTIONAL DELAY ANALYSIS  
End-to-end unidirectional delay measurements were taken 

as part of a broader measurement experiment over the two 
wireless infrastructures during November 2005 [17]. Two 
representative types of applications were instrumented, bulk 
TCP and CBR UDP flows streamed to the wireless clients over 
the W-LAN and W-WAN environments. For bulk TCP 
transfers, the forward and reverse paths were simultaneously 
instrumented. Throughout the experiments, communication 
ends synchronised using the Network Time Protocol (NTP) 
with a common stratum 1 server through additional high-speed 
wired network interfaces, in order to avoid having NTP 
messages competing with the instrumented traffic over the 
bottleneck wireless links. The NTP daemon was allowed 
sufficient time to synchronise prior to the experiments until it 
reached a large polling interval. The offset reported by NTP 
was always on the order of 10-3 or less, with respect to the 
minimum one-way delay observed. All the delay traces were 
empirically examined against negative values as well as against 
linear alteration (either increase or decrease) of the minimum 

delay over time. None of these offset/skew phenomena were 
experienced. 

Delay measurements were taken upon arrival of each 
packet to its destination, hence at irregular time instants. In 
order to convert the traces to time series data, they were 
discretised into equally sized bins based on the packet arrival 
time. Delays of multiple packets arriving within each bin were 
averaged, and the mean delay was considered for the time 
series. Although this process inevitably smooths out short-term 
variations in packet delay, bin size was carefully selected to 
contain as few packets as possible, while at the same time 
avoiding empty bins.  

The totally different characteristics of traffic between the 
two directions of TCP bulk transfers and the UDP streaming 
flows constitute their simultaneous examination particularly 
interesting. Figure 1 indicatively shows the burstiness 
preservation of the unidirectional delay experienced by the data 
path of a TCP flow over the W-LAN topology at varying time 
scales, demonstrating the absence of a characteristic size of a 
burst. The upper left plot shows a complete presentation of the 
unidirectional delay time series using one-second bins. Then, 
the bottom left plot shows the same time series whose first 3-
second interval is “blown up” by a factor of ten, and the 
truncated time series has time granularity of 100 ms. Likewise, 
the rightmost plots show parts of the time series with an 
equivalent number of samples for time granularities of 500 and 
50 ms, respectively. Overall, the plots show significant bursts 
in intraflow one-way delay at different levels spanning almost 
three orders of magnitude. 

All LRD estimators are sensitive to phenomena such as 
periodicity, short-term correlations and non-stationarity in the 
time series and can be misled to inaccurate Hurst estimates or 
even to reporting LRD to non-LRD series [10]. In order to 
refine the LRD estimation process, we have employed a 
number of calibration techniques to remove and minimise the 
effect of such caveats. The traces have been empirically 
examined to ensure the absence of trends and non-stationarity 
such as long plateaus of high delay values. We have also used 
methods of controlled randomisation [8] to remove short-term 
correlations and periodicities that can be mistaken for LRD. 
Furthermore, the modified periodogram estimator has been 
applied on our delay traces to initially determine whether the 
time series agrees with a noise (rather than a motion) [4] and 
choose the appropriate methods for estimating H reliably. This 
method estimates the power spectrum of the signal by dividing 
the frequencies into logarithmically equally-spaced boxes and 
averaging the corresponding periodogram values inside each 
box [18]. For our traces, the slope of the resulting power 
spectral density plot assumed values 1 1,β− < <  implying the 
series can be categorised as fGn, and therefore aggregate 
variance, R/S, and periodogram can reliably estimate H [4]. 

The cumulative results of the three graphical Hurst 
parameter estimation methods described in the previous section 
are shown in figure 2. The plots have been clustered in two 
groups based on the wireless medium over which the 
measurements have been taken. 
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Figure 1.  Stochastic Self-Similarity – burstiness preservation across time 

scales of 50 ms, 100 ms, 500 ms, and 1000 ms for the bulk TCP data path over 
the W-LAN network 

Within each group, each row-triplet shows the graphical 
output in log-log scale of the aggregated variance, R/S and 
periodogram estimation methods for the TCP data, reverse and 
UDP flows, respectively. All the three graphical estimation 
methods indicate presence of LRD in all three types of flows 
examined, at different intensities, suggesting that unidirectional 
delay exhibits long memory characteristics irrespective of the 
individual transport mechanisms employed. However, all 
graphical estimators converge to similar values of LRD 
intensity for unidirectional flows of the same type. On the 
contrary, although the W-LAN and W-WAN infrastructures 
assume very different modes of operation, they do not seem to 
contribute themselves to massively different LRD intensity, i.e. 
flows of the same type routed over the two different networks 
exhibit in most cases similar-intensity LRD. The two time-
domain methods (aggregated variance and R/S) produce very 
similar estimates of LRD intensity greater than 0.8 for the end-
to-end packet delay of the TCP data flow over the W-LAN 
topology. The periodogram method suggests even stronger 
intensity (~0.95). For the TCP data flow routed over the W-
WAN network, LRD intensity is estimated between 0.7 and 0.8 
by all three methods. In this case, there is a greater divergence 
between the estimates produced by the two time-domain 
methods (~0.1), and the periodogram estimate lies between the 
other two. For both networks, the data path of the bulk TCP 
transfers seem to exhibit quite strong LRD (>0.73) as this is 
indicated by all three graphical estimation methods. Regarding 
the packet delay of the TCP acknowledgment path flows over 
both wireless networks, all three methods agree on much more 
conservative LRD estimates. Over W-LAN, the Hurst exponent 
is estimated between 0.59 and 0.68, with the aggregated 
variance and periodogram methods converging at the lower 
boundary. Likewise, marginal-to-moderate LRD is estimated 

for the TCP reverse path delay over W-WAN. The three 
estimators agree on H values between 0.57 and 0.67 with the 
periodogram estimate lying approximately in the middle 
between the estimates of the two time-domain methods. There 
is a greater diversity in the LRD estimates produced by the 
three graphical methods for the end-to-end delay experienced 
by the CBR UDP flows over the two wireless topologies. Over 
W-LAN, the R/S method estimates the Hurst exponent at 0.71, 
whereas the aggregated variance and the periodogram methods 
agree on much stronger LRD (>0.9). Over W-WAN, the 
aggregated variance method suggests moderate LRD (~0.67) 
whereas the R/S and the periodogram agree on much greater H 
estimates (>0.9). After all the delay series being found to 
exhibit LRD by the three ‘detection’ estimators, Whittle was 
subsequently employed and the corresponding H estimates are 
shown in table I. With the single exception of the UDP 
streaming flow over the W-WAN topology, the Whittle method 
produces more conservative Hurst exponent estimates than the 
three graphical estimators. For the TCP data path flows, it 
suggests stronger intensity for the W-LAN traffic (>0.7) and 
moderate intensity for the W-WAN flows. The marginal-to-
moderate intensity for the TCP reverse path flows is also 
supported by Whittle which produces H estimates just above 
0.5 (<0.56). For the UDP flows, Whittle suggests moderate-to-
strong LRD intensity assuming H values of ~0.69 and ~0.74 
for traffic routed over the W-LAN and the W-WAN topologies, 
respectively. With two exceptions, the 95% C.I. is less than or 
equal to 0.03. For the delays experienced by the TCP data path 
and the UDP streaming flow over the W-WAN topology, the 
95% C.I. reaches 0.14 and a 0.2, respectively. 

V. DISCUSSION  
Although all four estimators report LRD in the 

unidirectional delay experienced by all flows routed over the 
two wireless networks, there is certain diversity regarding the 
intensity of LRD between the different estimators. Whittle, in 
most cases provides a narrow 95% C.I. which suffice to 
characterise weak, moderate and strong LRD. Additional 
methods based on wavelets have also been developed [1] for 
LRD estimation, yet lately a consistent overestimation of the 
Hurst parameter on synthesized LRD series has been reported 
[10]. What is indisputable, however, are computed sample 
statistics such as ACF which exhibit nontrivial correlations at 
large lags. 

Figure 3 indicatively shows the ACFs of the packet delay 
for the TCP data, reverse, and UDP flows over the W-LAN 
topology, respectively. It is evident that for the TCP data and 
UDP flows, the ACFs follow asymptotic decay, in accordance 
to moderate-to-strong LRD estimated by all the methods. On 
the contrary, for the TCP reverse path where marginal LRD 
was reported, the ACF initially decays asymptotically, but after 
a certain lag drops to zero and subsequently remains within its 
95% C.I. Similar behaviour has been observed for the 
corresponding flows routed over the W-WAN topology. We 
have also examined the tail behaviour of our delay distributions 
in order to assess the effect of variability and consistency with 
fGn. Using the Log-Log Complementary Distribution (LLCD) 
plot, the tail index of the distribution can be computed as the 
slope for the random variable above some threshold value. 
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Figure 2.  The three graphical LRD estimation methods applied to the three different flow types routed over the (a) W-LAN and (b) W-WAN configurations, 

respectively. (Upper row): TCP data path. (Middle row): TCP reverse path. (Lower row): CBR UDP streaming flow. In each row triplet:- (Leftmost plot): 
Aggregated Variance method. (Middle plot): R/S method. (Rightmost plot): Periodogram method. 

 

TABLE I.  HURST EXPONENT ESTIMATES USING THE WHITTLE METHOD 

Whittle Estimator Microflow H estimate & 95% C.I. 

TCP data path [W-LAN] 0.7386717 ± 0.025 

TCP data path [W-WAN] 0.599419 ± 0.15 

TCP reverse path [W-LAN] 0.5523367 ± 0.007 

TCP reverse path [W-WAN] 0.5282069 ± 0.014 

CBR UDP [W-LAN] 0.6865489 ± 0.003 

CBR UDP [W-WAN] 0.741881 ± 0.20 

 
Figure 4 shows the LLCD plots of the unidirectional flows 

with moderate-to-strong LRD over the two wireless media. 
Each plot also includes the LLCD of an analogous rate 
(1/mean) and size exponential distribution. It can be seen that, 
mainly, the tails of the distributions decay at a sub-exponential 
rate. For the UDP flow over the W-LAN network, the tail, 
although heavier than exponential, has an index greater than 2. 
Hence the distribution is not considered as heavy-tailed in the 
traditional infinite variance sense. The non-heavy-tailness of 
the distributions is consistent with fGn. However, LRD 
behaviour exhibited by packet delay over all wireless paths can 
have an intimate relationship with other, heavy-tailed network 

phenomena at the level of individual store-and-forward 
engines, queues, and transport-layer mechanisms. 

VI. CONCLUSION 
We have examined the unidirectional delay behaviour of 

different traffic types routed over diverse wireless topologies, 
which admittedly suffer from disproportionally large and 
variable delays with respect to wired network infrastructures. 
After rigorous analysis we found clear LRD behaviour in the 
packet delay of bulk TCP data path and UDP traffic, implying 
highly variable delays for arbitrary long time intervals. This 
result can hence have a significant impact on the design of 
packetisation mechanisms towards improving the end-to-end 
network service delivery. 

Accurate estimation of LRD intensity proved rather 
challenging. Nevertheless, estimators seem to all agree on a 
coarser classification of weak-moderate-strong LRD. 

Although the analysis concentrated on IPv6 flows, we 
believe that similar behaviour will be evident to IPv4 traffic, 
since the same transport mechanisms handle end-to-end 
communication on top of both versions of the Internet Protocol. 
Whether intermediate routers actually handle both IPv4 and 
IPv6 traffic identically and how this can influence the end-to-
end packet delay, deserves further experimental investigation. 
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Figure 3.  Autocorrelation function (ACF) of the packet delay time series over the W-LAN network. (Left): TCP data path. (Middle): TCP reverse path. (Right): 

CBR UDP streaming flow 

 

1 2 3 4 5 6 7

-7
-6

-5
-4

-3
-2

-1
0

TCP Data Flow - WLAN

Log10(One-Way Delay in ms)

Lo
g1

0(
P[

X
>x

])

OWD Process
Exponential Process

6 7 8 9

-6
-4

-2
0

TCP Data Flow - WWAN

Log10(One-Way Delay in ms)

Lo
g1

0(
P[

X
>x

])

OWD Process
Exponential Process

1 2 3 4 5 6

-8
-6

-4
-2

0

CBR UDP Flow - WLAN

Log10(One-Way Delay in ms)

Lo
g1

0(
P[

X
>x

])

OWD Process
Exponential Process

6.0 6.5 7.0 7.5 8.0 8.5 9.0

-7
-6

-5
-4

-3
-2

-1

CBR UDP Flow - WWAN

Log10(One-Way Delay in ms)

Lo
g1

0(
P[

X
>x

])

OWD Process
Exponential Process

 
Figure 4.   LLCD plots of the unidirectional delay time series data 

 

Future work will focus on the comparative delay analysis of 
very-long-lived flows routed over wired and wireless 
infrastructures, and on the relation between LRD behaviour in 
delay and other network and transport-layer phenomena. 
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