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Abstract—Via collaborative beamforming, nodes in a wireless
network are able to transmit a common message over long
distances in an energy efficient fashion. However, the process of
making available the same message to all collaborating nodes in-
troduces delays. In this paper, a MAC-PHY cross-layer scheme is
proposed that enables collaborative beamforming at significantly
reduced collaboration overhead. It consists of two phases.In the
first phase, nodes transmit locally in a random access time-slotted
fashion. Simultaneous transmissions from multiple sourcenodes
are viewed as linear mixtures of all transmitted packets. Inthe
second phase, a set of collaborating nodes, acting as a distributed
antenna system, beamform the received analog waveform to one
or more faraway destinations. This step requires multiplication
of the received analog waveform by a complex weight, which is
independently computed by each cooperating node, and which
allows packets bound to the same destination to add coherently
at the destination node. Assuming that each node has access
to location information, the proposed scheme can achieve high
throughput, which in certain cases exceeds one. An analysisof the
symbol error probability corresponding to the proposed scheme
is provided.

I. I NTRODUCTION

Transmission over long distances often requires significant
amounts of energy in order to overcome attenuation. Energy
is usually a scarce commodity in wireless ad hoc networks,
as nodes typically operate on batteries, which in many cases
are difficult to replace or recharge. Thus, energy-efficient
schemes for long-distance transmission in wireless networks
have recently been of much interest. In some such situations,
multihop may be a preferred solution. However, there are sev-
eral challenges in transmitting real-time services over multiple
hops. For example, the traditional CSMA/CA based medium
access control (MAC) for avoiding collisions does not work
well in a multihop scenario because transmitters are often
out of reach of other nodes’ sensing ranges. Thus, packets
traveling across the network experience interference and a
large number of collisions, which introduce long delays. Also,
multihop networks require a high node density which makes
routing difficult and affects the reliability of links [1].

Recently, a collaborative beamforming technique was pro-
posed in [3], in which randomly distributed nodes in a network
cluster form an antenna array and beamform data to a faraway
destination without each node exceeding its power constraint.
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The destination receives data with high signal power. Beam-
forming with antenna arrays is a well studied technology; it
provides space-division multiple access (SDMA) which en-
ables significant increases in communication rate. A challenge
with implementing beamforming in ad hoc networks is that the
geometry of the network may change dynamically. In [3], it
was shown that randomly distributed nodes can achieve a nice
average beampattern with a narrow main lobe and low side
lobes. The directivity of the pattern increases as the number of
collaborating nodes increases. Such an approach, when applied
in the context of a multihop network reduces the number of
hops needed, thereby reducing packet delays and improving
throughput. However, to study network performance, one
must take into account the information-sharing time that is
required for node collaboration. If a time-division multiple-
access (TDMA) scheme were to be employed, the information-
sharing time would increase proportionally to the number of
source nodes (i.e., the nodes having packets to transmit).

In this paper we propose a scheme that is based on the idea
of collaborative beamforming, and reduces the time required
for information sharing. A preliminary version of the proposed
scheme appeared in [4]. The work in this paper contains error
analysis that provides insight into the performance of the pro-
posed approach. The main idea is as follows. Different source
nodes in the network are allowed to transmit simultaneously.
Collaborating nodes receive linear mixtures of the transmitted
packets. Subsequently, each collaborating node transmitsa
weighted version of its received signal. The weights are such
that one or multiple beams are formed, each focusing on one
destination node, and reinforcing the signal intended for a
particular destination as compared to the other signals. Each
collaborating node computes its weight based on the estimated
channel coefficients between sources and itself. This scheme
achieves higher throughput and lower delay with the cost of
lower SINR as compared to [3]. In the preliminary version of
this work [4], the analysis of interference at the receivingnode
was done asymptotically, i.e., as the number of collaborating
nodes tends to infinity. Here we provide analytical expressions
for symbol error probability (SEP) that directly depend on
the number of collaborating nodes. The analysis shows how
SEP is affected by transmission power, signal-to-noise ratio,
number of simultaneously transmitting nodes and number of
collaborating nodes.
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II. BACKGROUND ON COLLABORATIVE BEAMFORMING

For simplicity, let us assume that sources and destinations
are coplanar. We index source nodes using a subscripti, with ti
denoting thei-th node. At slotn, one source nodetm needs
to transmit the signalsm(n) to a faraway destination node
qm. Suppose that set ofN nodes, designated as collaborating
nodesc1, . . . , cN , have access tosm(n). The locations of these
collaborating nodes follow a uniform distribution over a disk
of radiusR. We denote the location ofci in polar coordinates
with respect to the origin of the disk by(ri, ψi). Let dim(φm),
or simply dim, represent the distance betweenci and the
destinationqm, whereφm is the azimuthal angle ofqm with
respect to the origin of the disk.d0m(φm) or d0m denotes the
distance between the origin of the disk andqm, so the polar
coordinates ofqm are (d0m, φm). Moreover, letdi(φ) denote
the distance betweenci and some receiving point with polar
coordinate(d0m, φ). The initial phases at the collaborating
nodes are set to

Ψi(φm) = −
2π

λ
dim(φm), i = 1, ..., N . (1)

This requires knowledge of distances (relative to wavelength
λ) between nodes and destination, and applies to the closed-
loop case [3]. Alternatively, the initial phase of nodei can
be

Ψi(φm) =
2π

λ
ri cos(φm − ψi) (2)

which requires knowledge of the node’s position relative to
some common reference point, and corresponds to the open-
loop case [3]. In both cases synchronization is needed, which
can be achieved via the use of the Global Positioning System
(GPS).

The path losses between collaborating nodes and destination
are assumed to be identical for all nodes. The corresponding
array factor given the collaborating nodes at radial coordinates
r = [r1, ..., rN ] and azimuthal coordinatesψ = [ψ1, ..., ψN ]
at location with polar coordinate(d0m, φ) is

F (φ;m|r,ψ) =
1

N

N
∑

i=1

ejΨi(φm)ej
2π
λ

di(φ) . (3)

Under far-field assumptions, the array factor becomes [3]

F (φ;m|r,ψ) =
1

N

N
∑

i=1

ejα(φ;φm)zi (4)

where α(φ;φm) = 4π(R/λ) sin(12 (φm − φ)), and zi =
(ri/R) sin(ψi −

1
2 (φm + φ)). The random variablezi has the

following probability density function (pdf):

fzi(z) =
2

π

√

1− z2, −1 ≤ z ≤ 1 . (5)

Finally, the average beampattern can be expressed as [3]

Pav(φ) = Ez{|F (φ|z)|
2}

=
1

N
+

(

1−
1

N

) ∣

∣

∣

∣

2
J1(α(φ;φm))

α(φ;φm)

∣

∣

∣

∣

2

(6)

whereJ1(.) is the first-order Bessel function of the first kind.
When plotted as a function ofφ, Pav(φ) exhibits a main lobe
aroundφm, and side lobes away fromφm. It equals one in
the target direction, and the sidelobe level approaches1/N as
the angle moves away from the target direction. The statistical
properties of the beampattern were analyzed in [3], where it
was shown that under ideal channel and system assumptions,
directivity of orderN can be achieved asymptotically withN
sparsely distributed nodes.

As we have noted, all of the collaborating nodes must
have the same information to implement beamforming. Thus,
the source nodes need to share their information symbols
with all collaborating nodes in advance. If a TDMA scheme
were to be employed, the information-sharing time would
increase proportionally to the number of source nodes. In
the following, we propose a novel scheme to reduce the
information-sharing time and also allow nodes in the network
to transmit simultaneously.

III. T HE PROPOSED SCHEME

Here we refine the model of [3], focusing more directly on
the physical model for the signal, fading channel and noise.
In addition to the above assumptions, we will further assume
the following:

1) The network is divided into clusters, so that nodes in
a cluster can hear each other. In each cluster there is a
node designated as the cluster-head (CH). Nodes in a
cluster do not need to transmit their packets through the
CH.

2) A slotted packet system is considered, in which each
packet requires one slot for its transmission. Perfect
synchronization is assumed between nodes in the same
cluster.

3) Nodes transmit packets consisting of phase-shift keying
(PSK) symbols each having the same powerσ2

s . Also,
nodes operate under half-duplex mode, i.e., they cannot
receive while they are transmitting.

4) Communication takes place over flat fading channels.
The channel gain during slotn between sourceti and
collaborating nodecj is denoted byaij(n). It does
not change within one slot, but can change between
slots. The channel gains are independent and identically
distributed (i.i.d.) complex Gaussian random variables
with zero means and variancesσ2

a across both time and
space, i.e.,aij(n) ∼ CN (0, σ2

a).
5) The complex baseband-equivalent channel gain between

nodesci and qm is bime
j 2π

λ
dim [6], where bim is the

path loss. The distances between collaborating nodes
and destinations are much greater than the maximum
distance between source and collaborating nodes. Thus,
bim is assumed to be identical for all collaborating nodes
and equals the path loss between the origin of the disk
and the destination, denoted bybm.

Suppose that clusterC containsJ nodes. During slotn,
source nodest1, . . . , tK need to communicate with nodes
q1, . . . , qK that belong to clustersC1, . . . , CK , respectively.



The azimuthal angle of destinationqi is denoted byφi.
The packet transmitted by nodetj consists ofL symbols
sj(n) , [sj(n; 0), . . . , sj(n;L − 1)]. Due to the broadcast
nature of the wireless channel, non-source nodes in clusterC
hear a collision, i.e., a linear combination of the transmitted
symbols. More specifically, nodeci hears the signal

xi(n) =

K
∑

j=1

aji(n)sj(n) +wi(n) (7)

wherewi(n) = [wi(n; 0), . . . , wi(n;L − 1)] represents noise
at the receiving nodeci. The noise is assumed to be of zero
mean and with covariance matrixσ2

wIL, whereIL is anL×L
identity matrix.

Once the CH establishes that there has been a transmission,
it initiates a collaborative transmission period (CTP), bysend-
ing a control bit to all nodes, e.g.,1, via an error-free control
channel. The CH will continue sending a1 in the beginning
of each subsequent slot until the CTP has been completed.
The cluster nodes cannot transmit new packets until the CTP
is over.

Let qm denote the destination ofsm(n). In slotn+m, m =
1, . . . ,K, each collaborating nodeci transmits the signal

x̃i(n+m) = xi(n)µma
∗

mi(n)e
Ψi(φm) (8)

whereµm is a scalar used to adjust the transmit power and
is the same for all collaborating nodes.µm is of the order of
1/N .

Collaborating nodes need to know which are source nodes
and then estimate the channel between all source nodes and
themselves. One possible way to implement this is to use
orthogonal IDs, as discussed in [4], [2].

Also, collaborating nodes require the knowledge of their
initial phases. In closed-loop mode, each collaborating node
can independently synchronize itself to a beacon sent from
the destination and adjusts its initial phase to it [3]. In open-
loop mode, each collaborating node needs to know its relative
position from a predetermined reference point (e.g. the origin
of the disk) within the cluster, which can be achieved by the
use of GPS. To obtain initial phases, collaborating nodes also
require knowledge of the azimuths of the destinations so that
the beams can be steered toward desired directions, which may
be broadcast by the CH via a control channel.

Given the collaborating nodes at radial coordinatesr =
[r1, ..., rN ] and azimuthal coordinatesψ = [ψ1, ..., ψN ], the
received signal at an arbitrary location with polar coordinates
(d0m, φ), is

y(φ;m|r,ψ) =

N
∑

i=1

bmx̃i(n+m)ej
2π
λ

di(φ) + v(n+m) (9)

wherev(n +m) represents noise at the receiver during slot
n+m. The covariance matrix ofv(n+m) equalsσ2

vIL.
It was shown in [4] that, asN → ∞ and omitting the noise,

y(φm;m|r,ψ) → Nµmbmσ
2
asm(n). Thus, the destination

nodeqm receives a scaled version ofsm(n). The beamforming

step is completed inK slots, reinforcing one source signal at
a time.

Assuming that all of theK source packets have distinct
destinations at different resolvable directions, multiple beams
can be formed in one slot, each beam focusing on one direction
and reinforcing one source signal. In the rest of the paper, for
simplicity we will consider only the case in which a single
beam is formed during slotn + m, focusing on destination
qm. The results obtained under this assumption can be readily
extended to multiple simultaneous beams.

Taking into account the assumptions on channels and noise,
the average beampattern was derived in [4]. Defining the
throughput,T , as the average number of packets that are
successfully transmitted in a time slot, we showed in [4] that
K/(1 + K) ≤ T ≤ K/2, which could be greater than 1.
Also, in [4], we showed that under a fixed transmit power,
the average signal-to-interference plus noise ratio (SINR) is
asymptoticallyβ′ times less than that of [3], whereβ′ =

K + 1 +
σ2
w

σ2
sσ

2
a
.

IV. SYMBOL ERROR PROBABILITY (SEP)

In the following, for simplicity we omit the time index, and
replacey, x̃i, xi, si, wi andv in the above equations byy, x̃i,
xi, si, wi andv (i.e., with one of their samples) respectively.

Our analysis will be conditioned onK, the number of
simultaneously transmitting nodes. In general,K is a random
variable, whose distribution is a function of the traffic char-
acteristics, e.g, traffic load, traffic distribution, transmission
control scheme, etc. In the simple case in which each node
transmits with identical probabilityPt, K has a binomial
distribution. Once the distribution ofK is given then we can
determine the SEP asPs =

∑J
K=1 P (K)Ps(K).

From (9), the received signal at the destinationqm is

y(φm;m) = µmbm

N
∑

i=1

|ami|
2sm

+µmbm

N
∑

i=1

a∗mi(

K
∑

j=1
j 6=m

ajisj + wi) + v (10)

where the first term is the desired signal and the remaining
terms represent interference and noise. Recall thataji ∼
CN

(

0, σ2
a

)

. Sincesj is a PSK symbol, the magnitude ofajisj
is σ2

s |aji| and its phase is still uniformly distributed in[0, 2π].
Thus,ajisj ∼ CN

(

0, σ2
aσ

2
s

)

. Therefore,

ηi ,

K
∑

j=1
j 6=m

ajisj + wi ∼ CN
(

0, σ2
η

)

(11)

whereσ2
η , (K − 1)σ2

aσ
2
s + σ2

w.
Given ami, the instantaneous SINR,γ, equals

γ =
µ2
mb

2
m(
∑N

i=1 |ami|2)2σ2
s

µ2
mb

2
m

∑N
i=1 |ami|2σ2

η + σ2
v

=
µ2
mb

2
mξ

2σ2
s

µ2
mb

2
mξσ

2
η + σ2

v

(12)

whereξ
△
=
∑N

i=1 |ami|2.



Note thatµm is of order1/N . AsN → ∞, µ2
mb

2
mξσ

2
η → 0,

and γ reduces toµ2
mb

2
mξ

2σ2
s/σ

2
v, which corresponds to the

scenario of additive white Gaussian noise (AWGN). Thus,
under certain transmit powers, no matter how largeN is, the
SEP of the proposed scheme is always lower bounded by the
SEP under AWGN.

Since |ami| is Rayleigh distributed,ξ ∼ Erlang(N, σ2
a).

The pdf of the Erlang distribution is

Erlang(k, θ) : f(x; k, θ) = xk−1e−
x
θ

θk(k−1)!
, x ≥ 0 . (13)

The moment generating function (MGF) ofγ is

Mγ(s) =

∫ ∞

−∞

exp(sγ)fξ(ξ)dξ

=

∫ ∞

0

exp(
sµ2

mb
2
mξ

2σ2
s

µ2
mb

2
mξσ

2
η + σ2

v

)
ξN−1e

−
ξ

σ2
a

σ2N
a (N − 1)!

dξ

(14)

based on which, the average SEP for M-PSK symbols is [5]

Ps(K) =
1

π

∫
(M−1)π

M

0

Mγ

(

−
sin2(π/M)

sin2 ϕ

)

dϕ

=
1

π

∫

(M−1)π
M

0

∫ ∞

0

exp

(

−
sin2(π/M)

sin2 ϕ
·

µ2
mb

2
mξ

2σ2
s

µ2
mb

2
mξσ

2
η + σ2

v

)

×
ξN−1e

−
ξ

σ2
a

σ2N
a (N − 1)!

dξdϕ . (15)

Since there is no closed-form expression forMγ(s) or
Ps(K), in the following we will make some approximations
to simplify the above expressions.

A. A Simple Bound for SEP

Let us fix anǫ > 0, and defineξ0 such thatP (ξ ≤ ξ0) = ǫ.
Also, let us define

γ̃ ,
µ2
mb

2
mξ

2σ2
s

µ2
mb

2
mξσ

2
η + σ2

vξ/ξ0
=

µ2
mb

2
mσ

2
s

µ2
mb

2
mσ

2
η + σ2

v/ξ0
· ξ , cγ̃ξ .

(16)
Whenǫ is small, it holds with probability≥ 1− ǫ that γ̃ ≤ γ.
Since cγ̃ > 0 and s is negative in the range of interest, we
can always find a small enoughǫ so thatMγ̃(s) ≥ Mγ(s).

Note thatγ̃ ∼ Erlang(N, σ2
acγ̃) and thus the MGF of̃γ is

of the following simple form:

Mγ̃(s) = (1 − sσ2
acγ̃)

−N . (17)

From (15), the SEP for M-PSK symbols based onγ̃ is

P̃s(K) =
1

π

∫ (M−1)π/M

0

(1 +
sin2( π

M )σ2
acγ̃

sin2 ϕ
)−Ndϕ . (18)

Definingc , sin2( π
M )σ2

acγ̃ , and using the result of Eq. (5A.

17) in [5] we obtain

P̃s(K) =
1

π

∫ (M−1)π/M

0

(1 +
c

sin2 ϕ
)−Ndϕ

=
M − 1

M
−

1

π

√

c

1 + c
{(
π

2
+ tan−1 ζ)

N−1
∑

n=0

(

2n

n

)

1

[4(1 + c)]n

+sin(tan−1 ζ)

N−1
∑

n=1

n
∑

j=1

Tjn
(1 + c)n

[cos(tan−1 ζ)]2(n−j)+1}

(19)

where

ζ ,

√

c

1 + c
cot
( π

M

)

(20)

and

Tjn ,

(

2n
n

)

(

2(n−j)
n−j

)

4j [2(n− j) + 1]
. (21)

Recalling thatMγ̃(s) ≥ Mγ(s) ≥ 0, we haveP̃s(K) ≥
Ps(K). The result of (19) is an upper bound of the exact SEP
of (15).

An even simpler upper bound for̃Ps(K) can be obtained
based on Eq. (5A.76) of [5]:

P̃s(K) ≤
M − 1

M

(

1 +
c

sin2( (M−1)π
M )

)−N

(22)

which for BPSK becomes

P̃s(K) ≤
1

2

(

1 + σ2
acγ̃
)−N

. (23)

Remark: As µm → ∞, cγ̃ reduces toσ2
s/σ

2
η, in which

case the corresponding result of (19) can be viewed as a
lower bound when the transmit power of collaborating nodes
approaches infinity. It shows that no matter how large the
transmit power is, the SEP can never be smaller than this
bound. The SEP floor is a result of the interference from other
source nodes. To achieve lower SEP for a givenK, one must
increaseN . Based on (22), this bound decreases approximately
in a power-law fashion asN increases.

V. SIMULATIONS

In this section, we study the SEP performance of the
proposed method via simulations, and also via the proposed
analytical expressions.

We assume the channels among nodes in a cluster are
selected from zero-mean complex Gaussian processes, which
are constant within one slot, but vary between slots. Let us
define γ1 , σ2

sσ
2
a/σ

2
w, which represents the average SNR

in the process of information sharing, and defineγ2 ,

N2µ2
mb

2
mσ

2
sσ

4
a/σ

2
v to represent the asymptotic average SNR

(whenN → ∞) at the receiver. Note thatγ2 is independent of
N sinceµm is of the order of1/N . Eq. (12) can be rewritten
by

γ =
ξ̃2/N2

K−1+γ−1
1

N2 ξ̃ + γ−1
2

(24)



where ξ̃ = ξ/σ2
a ∼ Erlang(N, 1). Then, the SINR is deter-

mined only byγ1, γ2, K andN . Each packet contains BPSK
symbols, so SEP is equivalent to BER. We takeǫ = 0.01.
Also, we assume perfect knowledge of channels, number of
source nodes and destination information. Only one beampat-
tern is formed in each slot. For simulation-based BER, we
perform a Monte-Carlo experiment consisting of106 repeated
independent trials.

Fig. 1 shows the BER versusγ2 estimated from the network
simulation (◦ line) whenK = 4 nodes transmit all the time.
The parameterγ1 is fixed at 20 dB. The estimated BER is in
perfect agreement with the analytical result for the exact SEP
of (15)(“∗” line); in fact the two lines are indistinguishable.
The upper bound on the exact SEP, computed by (19), is shown
as the solid line. One can see thatǫ = 0.01 can guarantee a
tight bound under various parameters and SNR ranges. The
simple upper bound computed via (23) is also shown (dashed
lines).

Extensive simulations confirm that the simulation-based
BER and analytical SEP match well under a wide variety
of scenarios. Thus, in the following we will simply use the
analytical result of (15) to study the performance of the
proposed method.

Fig. 2 shows how the BER depends on the number of
collaborating nodes forγ1 = 20 dB and different values of
γ2. Fig. 3 shows howK affects BER, whereγ1 = γ2 = 20
dB. AsK increases, the SEP increases. Fig. 4 shows how BER
changes withγ1, whereγ2 = 20 dB andK = 4. Recall that
σ2
η = σ2

aσ
2
s (K − 1 + γ−1

1 ). K plays a dominant role in the
interference (whenK > 1). As observed in Fig. 4, the SEP
decreases only slightly with the increase ofγ1.

VI. CONCLUSIONS

We have proposed a scheme for wireless ad hoc networks
that uses the idea of collaborative beamforming and at the
same time reduces the time needed for information sharing
during the collaborative phase. We have provided an analysis
of the SEP, which shows how the performance depends on the
number of collaborating nodes, the number of simultaneously
source users and noise levels at collaborating nodes and the
final destination node.
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