
ar
X

iv
:0

80
6.

32
43

v2
 [

cs
.IT

]
30

 J
ul

 2
00

9
1

List-Message Passing Achieves Capacity on the
q-ary Symmetric Channel for Largeq

Fan Zhang and Henry D. Pfister
Department of Electrical and Computer Engineering, Texas A&M University

{fanzhang,hpfister}@tamu.edu

Abstract

We discuss and analyze a list-message-passing decoder withverification for low-density parity-check (LDPC) codes on the
q-ary symmetric channel (q-SC). Rather than passing messages consisting of symbol probabilities, this decoder passes lists of
possible symbols and marks some messages as verified. The density evolution (DE) equations for this decoder are derived and
used to compute decoding thresholds. If the maximum list size is unbounded, then we find that any capacity-achieving LDPC
code for the binary erasure channel can be used to achieve capacity on theq-SC for largeq. The decoding thresholds are also
computed via DE for the case where each list is truncated to satisfy a maximum list size constraint. Simulation results are also
presented to confirm the DE results. During the simulations,we observed differences between two verification-based decoding
algorithms, introduced by Luby and Mitzenmacher, that wereimplicitly assumed to be identical. In this paper, we provide an
analysis of the node-based algorithms from that paper and verify that it matches simulation results.

The probability of false verification (FV) is also considered and techniques are discussed to mitigate the FV. Optimization
of the degree distribution is also used to improve the threshold for a fixed maximum list size. Finally, the proposed algorithm is
compared with a variety of other algorithms using both density evolution thresholds and simulation results.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes are linear codes that were introduced by Gallager in 1962 [2] and re-discovered
by MacKay in 1999 [3]. The ensemble of LDPC codes that we consider (e.g. see [4] and [5]) is defined by the edge degree
distribution (d.d.) functionsλ(x) =

∑

k≥2 λkx
k−1 andρ(x) =

∑

k≥2 ρkx
k−1. The standard encoding and decoding algorithms

are based on the bit-level operations. However, when applied to the transmission of data packets, it is natural to perform the
encoding and decoding algorithm at the packet level rather than the bit level. For example, if we are going to transmit 32 bits
as a packet, then we can use error-correcting codes over the,rather large, alphabet with232 elements.

The q-SC can be described as

p(y|x) =
{

1− p if x = y
p/(q − 1) if x 6= y

wherex (resp.y) is the transmitted (resp. received) symbol andx, y ∈ GF (q). The capacity of theq-SC is1+(1−p) logq(1−
p) + p logq p − p logq(q − 1) which is approximately equal to1 − p for large q. This implies the capacity of theq-SC with
largeq is approximately equal to the capacity of the BEC with erasure probabilityp. Moreover, the behavior of theq-SC with
largeq is similar to the BEC in the sense that: i) incorrectly received symbols from theq-SC provides almost no information
about the transmitted symbol and ii) error detection (e.g.,a CRC) can be added to each symbol with negligible overhead [6].

Binary LDPC codes for theq-SC with moderateq are optimized based on EXIT charts in [7] and [8]. It is known that the
complexity of the standard belief-propagation algorithm for q-ary LDPC codes scales likeq log2 q. Even for moderate sizes of
q, such asq = 256, this renders such algorithms ineffective in practice. However, whenq is large, an interesting effect can be
used to facilitate decoding: if a symbol is received in error, then it is essentially a randomly chosen element of the alphabet,
and the parity-check equations involving this symbol is very unlikely to be valid.

In [1], Luby and Mitzenmacher developed an elegant algorithm for decoding LDPC codes on theq-SC for largeq. However,
their paper did not present simulation results and left capacity achieving ensembles as an interesting open problem. Metzner
presented similar ideas earlier in [9] and [10], but the focus and analysis is quite different. Davey and MacKay develop and
analyze a symbol-level message-passing decoder over smallfinite fields [11]. A number of approaches to theq-SC (for large
q) based on interleaved Reed-Solomon codes are also possible[6] [12]. In [13], Shokrollahi and Wang discuss two ways of
approaching capacity. The first uses a two-stage approach where the first stage uses a Tornado code and verification decoding.
The second is, in fact, equivalent to one of the decoders we discuss in this paper.1 When we discovered this, the authors were
kind enough to send us an extended abstract [14] which contains more details. Still, the authors did not consider the theoretical
performance with a maximum list size constraint, the actualperformance of the decoder via simulation, or false verification
(FV) due to cycles in the decoding graph. In this paper, we describe the algorithm in detail and consider those details.

This research was supported in part by the National Science Foundation under Grant No. 0747470.
1The description of the second method [13] is very brief and webelieve its capacity-achieving nature deserves further attention.

http://arxiv.org/abs/0806.3243v2

2

Inspired by [1], we develop in this paper list-message-passing (LMP) decoding with verification for LDPC codes on the
q-SC. Instead of passing a single value between bit and check nodes, we pass a list of candidates to improve the decoding
threshold. This modification also increases the probability of FV. So, we analyze the causes of FV and discuss techniquesto
mitigate FV. It is worth noting that the LMP decoder we consider is somewhat different than the list extension suggested in
[1]. Their approach uses a peeling-style decoder based on verification rather than erasures. In [1], the algorithms are proposed
in a node-based (NB) style but analyzed using message-based(MB) decoders. It is implicitly assumed that the two approaches
are equivalent. In fact, this is not always true. In this paper, we consider the differences between NB and MB decoders and
derive an asymptotic analysis for NB decoders.

The paper is organized as follows. In Section II, we describethe LMP algorithm for bounded and unbounded list size and
use density evolution (DE) [15] to analyze its performance.The difference between NB and MB decoders for the first (LM1)
and second algorithm (LM2) in [1] is discussed and the NB decoder analysis is derived in Section III and V, respectively.
The problem of FV is considered in Section V. In Section VI, weuse differential evolution to optimize code ensembles. We
describe the simulation of these codes and compare the results with the theoretical thresholds. We also compare our results
with previously published results in this area [1] and [13].In Section VII, simulation results are shown. Applicationsof the
LMP algorithm are discussed and conclusions are given in Section VIII.

II. D ESCRIPTION ANDANALYSIS

A. Description of the Decoding Algorithm

The LMP decoder we discuss is designed mainly for theq-SC and is based on local decoding operations applied to lists
of possible codeword symbols. The messages passed in the graph have three types:verified (V), unverified(U) and erasure
(E). Every V-message has a symbol value associated with it. Every U-message has a list of symbol values associated with it.
Following [1], we will mark messages as verified when they arevery likely to be correct. In particular, we will find that the
probability of FV approaches zero asq goes to infinity.

The LMP decoder works by passing list-messages around the decoding graph. Instead of passing a single code symbol (e.g.,
Gallager A/B algorithm [2]) or a probability distribution over all possible code symbols (e.g., [11]), we pass a list of values
that are more likely to be correct than the other messages. Ata variable node, the output list contains all symbols which could
satisfy the check constraint for the given input lists. At the check node, the output message will be verified if and only ifall the
incoming messages are verified. At a node of degreed, the associativity and commutativity of the node-processing operation
allow it to be decomposed into(d−1) binary2 operations (e.g.,a+b+c+d=(a+b)+(c+d)). In such a scheme, the computational
complexity of each binary-operation is proportional tos2 at the check node ands ln s at the variable node3, wheres is the list
size of the input list. The list size grows rapidly as the number of iterations increases. In order to make the algorithm practical,
we have to truncate the list to keep the list size within some maximum value, denotedSmax. In the algorithm analysis, we
also find that, after the number of iterations exceeds half the girth of the decoding graph, the probability of FV increases very
rapidly. We analyze the reasons of FV and classify the FV’s into two types. We find that the codes described in [1] and [13]
both suffer from type-II FV. In Section V, we analyze these FV’s and propose a scheme to reduce the probability of FV.

The message-passing decoding algorithm using list messages (or LMP) applies the following simple rules to calculate the
output messages for a check node:

• If all the input messages are verified, then the output becomes verified with the value which makes all the incoming
messages sum to zero.

• If any input message is an erasure, then the output message becomes an erasure.
• If there is no erasure on the input lists, then the output listcontains all symbols which could satisfy the check constraint

for the given input lists.
• If the output list size is larger thanSmax, then the output message is an erasure.

It applies the following rules to calculate the output messages of a variable node:

• If all the input messages are erasures or there are multiple verified messages which disagree, then output message is the
channel received value.

• If any of the input messages is verified (and there is no disagreement) or a symbol appears more than once, then the
output message becomes verified with the same value as the verified input message or the symbol which appears more
than once.

• If there is no verified message on the input lists and no symbolappears more than once, then the output list is the union
of all input lists.

• If the output message has list size larger thanSmax, then the output message is the received value from the channel.

2Here we use “binary“ to emphasize that there are two inputs although the operation is overGF (q).
3The binary-operation at the variable node can be done bys binary searches of lengths and the complexity of a binary search of lengths is O(ln s)

3

B. DE for Unbounded List Size Decoding Algorithm

To apply DE to the LMP decoder with unbounded list sizes, denoted LMP-∞ (i.e.,Smax = ∞), we consider three quantities
which evolve with the iteration numberi. Let xi be the probability that the correct message symbol is not on the list passed
from a variable node to a check node. Letyi be the probability that the message passed from a variable node to a check node
is not verified. Letzi be the average list size passed from a variable node to a checknode. The same variables are “marked”
(x̃i, ỹi, z̃i) to represent the same values for messages passed from the check nodes to the variable nodes (i.e., the half-iteration
value). We also assume all the messages are independent, that is, we assume the code length is infinite and there are no cycles
in the bipartite graph.

First, we consider the probability,xi, that the correct message symbol is not on the list. For any degree-d check node, the
correct message symbol will only be on the edge output list ifall of the otherd − 1 input lists contain their corresponding
correct symbols. This implies that̃xi = 1− ρ(1−xi). For any degree-d variable node, the correct message symbol will not be
on the edge output list only if it is on none of the otherd− 1 edge input lists. This implies thatxi+1 = pλ(x̃i). This behavior
is very similar to erasure decoding of LDPC codes on the BEC and gives the identical update equation

xi+1 = pλ (1− ρ(1− xi)) (1)

wherep is theq-SC error probability. Next, we consider the probability,yi, that the message is not verified. For any degree-d
check node, an edge output message is verified only if all of the otherd−1 edge input messages are verified. For any degree-d
variable node, an edge output message is verified if any symbol on the otherd− 1 edge input lists is verified or occurs twice
which implies ỹi = 1 − ρ(1 − yi). The event that the output message is not verified can be broken into the union of two
disjoint events: (i) the correct symbol is not on any of the input lists, and (ii) the symbol from the channel is incorrect and
the correct symbol is on exactly one of the input lists and notverified. For a degree-d variable node, this implies that

Pr(not verified) = (x̃i)
d−1 + p(d− 1) (ỹi − x̃i) (x̃i)

d−2 . (2)

Summing over the d.d. gives the update equation

yi+1 =λ (1− ρ(1 − xi)) + p (ρ(1− xi)− ρ(1− yi)) λ
′ (1− ρ(1 − xi)) . (3)

It is important to note that (1) and (3) were published first in[13, Thm. 2] (by mappingxi = pi andyi = pi + qi), but were
derived independently by us.

Finally, we consider the average list sizezi. For any degree-d check node, the output list size is equal4 to the product of
the sizes of the otherd− 1 input lists. Since the mean of the product of i.i.d. random variables is equal to the product of the
means, this implies that̃zi = ρ(zi). For any degree-d variable node, the output list size is equal to one5 plus the sum of the
sizes of the otherd− 1 input lists if the output is not verified and one otherwise. Again, the mean of the sum ofd− 1 i.i.d.
random variables is simplyd− 1 times the mean of the distribution, so the average output list size is given by

1 +
(

(x̃i)
d−1

+ p(d− 1) (ỹi − x̃i) (x̃i)
d−2
)

(d− 1)z̃i.

This gives the update equation

zi+1 =1+[x̃iλ
′ (x̃i)+p (ỹi−x̃i) (λ

′ (x̃i)+x̃iλ
′′ (x̃i))] ρ(zi).

For the LMP decoding algorithm, the threshold of an ensemble(λ(x), ρ(x)) is defined to be

p∗ , sup

{

p ∈ (0, 1]

∣

∣

∣

∣

pλ(1 − ρ(1− x)) < x ∀ x ∈ (0, 1]

}

.

Next, we show that some codes can achieve channel capacity using this decoding algorithm.
Theorem 2.1:Let p∗ be the threshold of the d.d. pair(λ(x), ρ(x)) and assume that the channel error ratep is less thanp∗.

In this case, the probabilityyi that a message is not verified in thei-th decoding iteration satisfieslimi→∞ yi → 0. Moreover,
for any ǫ > 0, there exists aq < ∞ such that LMP decoding of a long random(λ, ρ) LDPC code, on aq-SC with error
probabilityp, results in a symbol error rate of less thanǫ.

Proof: See Appendix A.
Remark 2.2:Note that the convergence condition,p∗λ(1 − ρ(1 − x)) < x for x ∈ (0, 1], is identical to the BEC case but

thatx has a different meaning. In the DE equation for theq-SC,x is the probability that correct value is not on the list. In the
DE equation for the BEC,x is the probability that the message is an erasure. This tellsus any capacity-achieving ensemble
for the BEC is capacity-achieving for theq-SC with LMP-∞ algorithm and largeq. This also gives some intuition about the
behavior of theq-SC for largeq. For example, whenq is large, incorrectly received value behaves like an erasure [6].

4It is actually upper bounded because we ignore the possibility of collisions between incorrect entries, but the probability of this occurring is negligible as
q goes to infinity.

5A single symbol is always received from the channel.

4

Corollary 2.3: The code with d.d. pairλ(x) = x and ρ(x) = (1 − ǫ)x + ǫx2 has a threshold of1 − ǫ
1+ǫ and a rate of

r > ǫ
3(1+ǫ) . Therefore, it achieves a rate ofΘ(δ) for a channel error rate ofp = 1− δ.

Proof: Follows from
(

1− ǫ
1+ǫ

)

λ (1− ρ(1− x)) < x for x ∈ (0, 1] and Theorem 2.1.

Remark 2.4:We believe that Corollary 2.3 provides the first linear-timedecodable construction of rateΘ(δ) for a random-
error model with error probability1−δ. A discussion of linear-time encodable/decodable codes, for both random and adversarial
errors, can be found in [16]. The complexity also depends on the required list size which may be quite large (though independent
of block length). Unfortunately, we do not have explicit bounds on the required alphabet size or list size for this construction.

In practice, we cannot implement a list decoder with unbounded list size. Therefore, we also evaluate the LMP decoder
under a bounded list size assumption.

C. DE for the Decoding Algorithm with Bounded List Size

First, we list some definitions and notation for the DE analysis with bounded list size decoding algorithm. Note that in
the bounded list size list decoding algorithm, each list maycontain at mostSmax messages. For convenience, we classify the
messages into four types:

(V) Verified: message is verified and has list size 1.
(E) Erasure: message is an erasure and has list size 0.
(L) Correct on list: message is not verified or erased and the correct message is on the list.
(N) Correct not on list: message is not verified or erased, and the correct message isnot on the list.

For the first two message types, we only need to track the fraction, Vi andEi, of message types in thei-th iteration. For the
third and the fourth types of messages, we also need to track the list sizes. Therefore, we track the characteristic function of
the list size for these messages, given byLi(x) andNi(x). The coefficient ofxj represents the probability that the message
has list sizej. Specifically,Li(x) is defined by

Li(x) =

Smax
∑

j=1

li,jx
j ,

whereli,j is the probability that, in thei-th decoding iteration, the correct message is on the list and the message list has size
j. The functionNi(x) is defined similarly. This implies thatLi(1) is the probability that the list contains the correct message
and that it is not verified. For the same reason,Ni(1) gives the probability that the list does not contain the correct message and
that it is not verified. The same variables are “marked”(Ṽ , Ẽ, L̃, Ñ andP̃) to represent the same values for messages passed
from the check nodes to the variable nodes (i.e., the half-iteration value). For compactness, we denote the overall density as
Pi = [Vi, Ei, Li(x), Ni(x)].

Using these definitions, we find that DE can be computed efficiently by using arithmetic of polynomials. For the convenience
of analysis and implementation, we use a sequence of binary-operations plus a separate truncation operator to represent a
multiple-input multiple-output operation. We use⊞ to denote the check-node operator and⊗ to denote the variable-node
operator. Using this, the DE for the variable-node binary-operationP (3) = P̃ (1) ⊗ P̃ (2) is given by

V (3) =Ṽ (1)+Ṽ (2)−Ṽ (1)Ṽ (2)+L̃(1)(1)L̃(2)(1) (4)

E(3) =Ẽ(1)Ẽ(2) (5)

L(3)(x) =L̃(1)(x)
(

Ẽ(2)+Ñ (2)(x)
)

+L̃(2)(x)
(

Ẽ(1)+Ñ (1)(x)
)

(6)

N (3)(x) =Ñ (1)(x)Ẽ(2)+Ñ (2)(x)Ẽ(1)+Ñ (1)(x)Ñ (2)(x). (7)

Note that Eq. (4) to Eq. (7) do not yet consider the list size truncation and the channel value. For the binary check-node
operationP̃ (3) = P (1) ⊞ P (2), the DE is given by

Ṽ (3) =V (1)V (2) (8)

Ẽ(3) =E(1)+E(2) − E(1)E(2) (9)

L̃(3)(z) =
[

V (1)L(2)(z)+V (2)L(1)(z)+L(1)(x)L(2)(y)
]

xjyk→zjk
(10)

Ñ (3)(z) =
[

N (1)(x)N (2)(y)+N (1)(x)
(

V (2)y+L(2)(y)
)

+

N (2)(x)
(

V (1)y+L(1)(y)
)]

xjyk→zjk
(11)

where the subscriptxjyk → zjk means the replacement of variables. Finally, the truncation of lists to sizeSmax is handled by
truncation operators which map densities to densities. We useT andT ′ to denote the truncation operation at the check and
variable nodes. Specifically, we truncate terms with degreehigher thanSmax in the polynomialsL(x) andN(x). At check
nodes, the truncated probability mass is moved toE.

5

TABLE I

BRIEF DESCRIPTION OFMESSAGE-PASSINGALGORITHMS FORq-SC

Alg. Description
LMP-S LMP as described in Section II-A withSmax=S

LM1-MB MP decoder that passes (value,U /V). [1, III.B]
At VN’s, output isV if any input isV or message matches

channel value, otherwise pass channel value.
At CN’s, output isV if all inputs areV .

LM1-NB Peeling decoder with VN state (value,U /V). [1, III.B]
At CN’s, if all neighbors sum to 0, then all neighbors getV .
At CN’s, if all neighbors but one areV , then last getsV .

LM2-MB The same as LM1-MB with one additional rule. [1, IV.A].
At VN’s, if two input messages match, then outputV .

LM2-NB The same as LM1-NB with one additional rule. [1, IV.A].
At VN’s, if two neighbor values same, then VN getsV .

SW1 Identical to LM2-MB
SW2 Identical to LMP-∞. [13, Thm. 2]

At variable nodes, lists longer thanSmax are replaced by the channel value. To analyze this, we separateL(x) into two terms:
Ã(x) with degree less thanSmax and xSmaxB̃(x) with degree at leastSmax. Likewise, we separatẽN(x) into C̃(x) and
xSmaxD̃(x). The inclusion of the channel symbol and the truncation are combined into a single operation

P (1)=T ′
([

Ṽ , Ẽ, Ã(x) + xSmaxB̃(x), C̃(x) + xSmaxD̃(x)
])

defined by

V (1) = Ṽ +(1− p)
(

Ã(1) + B̃(1)
)

(12)

E(1) =0 (13)

L(1)(x) = (1− p)x
(

Ẽ+C̃(x)+D̃(1)
)

+pxÃ(x) (14)

N (1)(x) = px
(

Ẽ+B̃(1)+C̃(x)+D̃(1)
)

. (15)

Note that in Eq. (12), the term(1− p)
(

Ã(1) + B̃(1)
)

is due to the fact that messages are compared for possible verification
before truncation.

The overall DE recursion is easily written in terms of the forward (bit to check) densityPi and the backward (check to
bit) densityP̃i. The initial density isP0 = [0, 0, (1 − p)x, px], wherep is the error probability of theq-SC channel, and the
recursion is given by

P̃i =

dc
∑

k=2

ρk T
(

P⊞k−1
i

)

(16)

Pi+1 =

dv
∑

k=2

λk T ′
(

P̃⊗k−1
i

)

. (17)

Note that the DE recursion is not one-dimensional. This makes it difficult to optimize the ensemble analytically. It remains an
open problem to find the closed-form expression of the threshold in terms of the maximum list size, d.d. pairs andq. In section
VI, we will fix the maximum variable and check degrees, code rate, q and maximum list size and optimize the threshold over
the d.d. pairs by using a numerical approach.

III. D IFFERENTIAL EQUATION ANALYSIS OF LM1-NB

A. Motivation

We refer to the first and second algorithm in [1] as LM1 and LM2,respectively. Each algorithm can be viewed either as
message-based (MB) or node-based (NB). The first and second algorithm in [13] and [14] are referred to as SW1 and SW2.
These algorithms are summarized in Table I. Note that if there is no verification occurring, the VN sends the (“channel value”,
U) and the CN sends the (“expected correct value”,U). The algorithms SW1, SW2 and LMP are all MB algorithms, but can
be modified to be NB algorithms.

In [1], the algorithms are proposed in the node-based (NB) style [1, Section III-A and IV] but analyzed in the message-based
(MB) style [1, Section III-B and IV]. It is easy to see that theLM1-NB and LM1-MB are identical, but the NB and MB
algorithms for LM2 are different. In this section, we will show the differences between the NB decoder and MB decoder and
derive the correct analysis for LM1-NB.

First, we show the equivalence between LM1-MB and LM1-NB.

6

Theorem 3.1:Any verification that occurs in LM1-NB also occurs in LM1-MB and vice versa. Therefore, LM1-NB and
LM1-MB are equivalent.

Proof: See Appendix B.
Remark 3.2:The theorem shows the equivalence between LM1-NB and LM1-MB. This also implies the error patterns or

stopping sets of LM1-NB and LM1-MB are the same.
In the NB decoder, the verification status is associated withthe node. Once a node is verified, all the outgoing messages

are verified. In the MB decoder, the status is associated withthe edge/message and the outgoing messages may have different
verification status. NB algorithms cannot, in general, be analyzed using DE because the independence assumption between
messages does not hold. Therefore, we develop peeling-style decoders which are equivalent to LM1-NB and LM2-NB and use
differential equations to analyze them.

Following [4], we analyze the peeling-style decoder using differential equations to track the average number of edges
(grouped into types) in the graph as decoding progresses. From the results from [17] and [4], we know that the actual number
of edges (of any type), in any particular decoding realization is tightly concentrated around the average over the lifetime of
the random process. In a peeling-style decoder forGF (q), a variable node and its edges are removed after verification. The
check node keeps track of the new parity constraint (i.e., the value to which the attached variables must sum) by subtracting
values associated with the removed edges.

B. Analysis of Peeling-Style Decoding

First, we introduce some notation and definitions for the analysis. A variable node (VN) whose channel value is correctly
received is called a correct variable node (CVN), otherwiseit is called an incorrect variable node (IVN). A check node (CN)
with i edges connected to the CVN’s andj edges connected to the IVN’s will be said to have C-degreei and I-degreej, or
type (i, j).

We also define some quantities as follows:

• t: decoding time or the fraction of VNs removed from graph
• Li(t): the number of edges connected to CVN’s with degreei at time t.
• Rj(t): the number of edges connected to IVN’s with degreej at time t.
• Ni,j(t): the number of edges connected to CN’s with C-degreei and I-degreej.
• El(t): the remaining number of edges connected to CVN’s at timet.
• Er(t): the remaining number of edges connected to IVN’s at timet.
• a(t): the average degree of CVN’s,

a(t) =
∑

i≥0

Li(t)i/El(t)

• b(t): the average degree of IVN’s,
b(t) =

∑

i≥0

Ri(t)i/Er(t)

• E: number of edges in the original graph,
E = El(0) + Er(0)

Counting edges in three ways gives the following equations:
∑

i≥0

Li(t) +
∑

i≥0

Ri(t) = El(t) + Er(t) =
∑

i≥0

∑

j≥0

Ni,j(t).

These r.v.’s represent a particular realization of the decoder. The differential equations are defined for the normalized
(i.e., divided byE) expected values of these variables. We use lower-case notation (e.g.,li(t), ri(t), ni,j(t), etc.) for these
deterministic trajectories. For a finite system, the decoder removes exactly one variable node in one time step of∆t.

The description of peeling-style decoder is as follows. Thepeeling-style decoder removes one CVN or IVN in each time
step by the following rules:

CER: If any CN has its edges all connected to CVN’s, pick one of the CVN’s and remove it and all its edges.
IER1: If any IVN has at least one edge connected to the CN’s of type(0, 1), the value of the IVN is given by the attached CN

and we remove the IVN and all its outgoing edges.

If both CER and IER1 can be applied, then one is chosen randomly as described below.
Since both rules remove exactly one VN, the decoding processeither finishes in exactlyN steps or stops early and cannot

continue. The first case occurs only when either the IER1 or CER condition is satisfied in every time step. When the decoder
stops early, the pattern of CVNs and IVNs remaining is known as a stopping set. We also note that the rules above, though
described differently, are equivalent to the first node-based algorithm (LM1-NB) introduced in [1].

7

Fig. 1. Tanner graph for differential equation analysis.

C. Analysis

Recall that in the node-based algorithm for LM1 we have two verification rules. The first rule is that if all messages but
one are verified at a CN, then all messages are verified. We callthis type-1 incorrect-edge-removal (IER1) and this needs
n0,1(t) > 0 to be satisfied. The second rule is: if all messages sum to zeroat a CN, all messages are verified. We call this as
correct-edge-removal (CER) in the peeling-style decoder and this requiresni,0 > 0 for somei ≥ 1. The peeling-style decoder
performs one operation in time step. The operation is randomand can be either CER or IER1. When both operations are
possible, we choose smoothly between these two rules by picking CER with probabilityc1(t) and IER1 with probabilityc2(t),
where

c1(t) =

∑

i≥0 ni,0(t)
∑

i≥0 ni,0(t) + n0,1(t)

c2(t) =
n0,1(t)

∑

i≥0 ni,0(t) + n0,1(t)
.

Therefore, the differential equations can be written as

dli(t)
dt

= c1(t)
dl(1)i (t)

dt
+ c2(t)

dl(2)i (t)

dt
dri(t)

dt
= c1(t)

dr(1)i (t)

dt
+ c2(t)

dr(2)i (t)

dt

dni,j(t)

dt
= c1(t)

dn(1)
i,j (t)

dt
+ c2(t)

dn(2)
i,j (t)

dt
,

where(1) and (2) denote, respectively, the effects of CER and IER1.
1) CER Analysis:If the CER operation is picked, then we choose randomly an edge attached to a CN of type(i, 0) with

i ≥ 1. This VN endpoint of this edge is distributed uniformly across the CVN edge sockets. Therefore, it will be attached to
a CVN of degreek with probability lk(t)

el(t)
. Therefore, one has the following differential equations for lk andrk

dl(1)k (t)

dt
=

lk(t)

el(t)
(−k), for k ≥ 1

and
dr(1)k (t)

dt
= 0.

For the effect on check edges, we can think of removing a CVN with degreek as first randomly picking an edge of type
(k, 0) connected to that CVN and then removing all the otherk− 1 edges (called reflected edges) attached to the same CVN.
The k − 1 reflected edges are uniformly distributed over theEl(t) correct sockets of the CN’s. Averaging over all graphs,
the k − 1 reflected edges hitni,j(t)i(k−1)

(i+j)el(t)
CN’s of type (i, j). Averaging over the degreek shows that the reflected edges hit

ni,j(t)i(a(t)−1)
(i+j)el(t)

CN’s of type (i, j).
If a CN of type(i, j) is hit by a reflected edge, we losei+ j edges of type(i, j) and gaini− 1+ j edges of type(i− 1, j).

Hence, one has the following differential equations forj > 0 and i+ j ≤ dc

dn(1)
i,j (t)

dt
=
(

p
(1)
i+1,j(t)− p

(1)
i,j (t)

)

(i + j)

where

p
(1)
i,j (t) =

ni,j(t)i(a(t)− 1)

(i + j)el(t)
.

One should keep in mind thatni,j(t) = 0 for i+ j > dc.

8

For n(1)
i,j (t) with j = 0, the effect from above must be combined with effect of the type-(i, 0) initial edge that was chosen.

So the differential equation becomes

dn(1)
i,0 (t)

dt
=
(

p
(1)
i+1,0(t)− p

(1)
i,0 (t)

)

i+
(

q
(1)
i+1(t)− q

(1)
i (t)

)

i

where

q
(1)
i (t) =

ni,0(t)
∑

m≥0 nm,0(t)
.

2) IER1 Analysis:If the IER1 operation is picked, then we choose a random CN of type (0, 1) and follow its only edge to
set of IVNs. This edge is attached uniformly to this set, so the differential equations for IER1 can be written as

dl(2)k (t)

dt
= 0,

dr(2)k (t)

dt
=

rk(t)

er(t)
(−k), for k ≥ 1

and
dn(2)

i,j (t)

dt
=
(

p
(2)
i,j+1(t)− p

(2)
i,j (t)

)

(i + j), for (i, j) 6= (0, 1)

where

p
(2)
i,j (t) =

ni,j(t)j(b(t)− 1)

(i+ j)er(t)
.

For ni,j(t) with (i, j) = (0, 1), the differential equation must also account for the initial edge and becomes

dn(2)
0,1(t)

dt
=
(

p
(2)
0,2(t)− p

(2)
0,1(t)

)

− 1.

Notice that even for (3,6) codes, there are 30 differential equations6 to solve. So we solve the differential equations numerically
and the threshold for (3,6) code with LM1 isp∗ = 0.169. This coincides with the result from density evolution analysis for
LM1-MB in [1] and hints at the equivalence between LM1-NB andLM1-MB. In the proof of Theorem 3.1 we make this
equivalence precise by showing that the stopping sets of LM1-NB and LM1-MB are the same.

IV. D IFFERENTIAL EQUATION ANALYSIS OF LM2-NB

We will first show the LM2-NB is equivalent to the following peeling-style decoder and then use differential equation to
analysis the LM2-NB algorithm. The peeling-style decoder removes one CVN or IVN in each time unit by the following rules:

CER: If any CN has its edges all connected to CVN’s, pick one of the CVN’s and remove it.
IER1: If any IVN has messages from CN’s with type(0, 1), the IVN and all its outgoing edges can be removed and we track

the correct value by subtracting the value from the check node.
IER2: If any IVN is attached to more than one CN with I-degree 1, thenit will be verified and all its outgoing edges can be

removed.

If more than one of above are satisfied, then one is chosen randomly as described below.
Notice that if either CER, IER1, or IER2 is satisfied in each time unit, decoding finishes in at mostN time units, where

N is the total number of variable nodes. For the same reason with LM1 case, the peeling-style decoder above is equivalent to
the second node-based algorithm (LM2-NB) introduced in [1](Section IV).

The difference between LM2-NB and LM1-NB is that LM2-NB includes another verification rule: if two messages match
at the same VN, the VN is verified and all messages connected toit are verified. In the peeling-style decoder, this can be
interpreted as follows. If the VN is a CVN, then the case is covered in CER. If it is a IVN, this means that the IVN has more
than 1 correct incoming message and IER2 applies. Since IVN only receives a correct message from type(i, 1) edges, this
requiresni,1 > 0 for somei > 0. Since the unexposed edges in the graph are uniformly distributed over their respective VNs,
the conditionni,1 > 0 for somei is sufficient to guarantee that a IVN satisfies IER2 with high probability.

6There are 28 forni,j (i, j ∈ [0, · · · , 6] such thati+ j ≤ 6), 1 for rk(t), and 1 forlk(t).

9

To smooth the choice between IER1, CER and IER2, we choose CERwith probability c1(t), IER1 with probabilityc2(t)
and IER2 with probabilityc3(t) where

c1(t) =

∑

i≥0 ni,0(t)
∑

i≥0 ni,0(t) +
∑

i≥0 ni,1(t)

c2(t) =
n0,1(t)

∑

i≥0 ni,0(t) +
∑

i≥0 ni,1(t)

c3(t) =

∑

i≥0 ni,1(t)
∑

i≥0 ni,0(t) +
∑

i≥0 ni,1(t)
.

We use superscript(3) to denote the differential equations implied by IER2. The IER2 operation depends heavily on edges
that connect IVNs to CNs of type(i, 1) with i ≥ 1. For convenience, we refer to such edges as “IER2 edges”.

The main complication in the analysis of the IER2 operation is that the IER2 rule can only apply to IVNs which have
at least two IER2 edges. Therefore, choosing such a VN uniforly skews the variable degree distribution. So, we letη(t) =
1

i+1

∑

i≥1 ni,1(t) be the fraction of IVN edges that are IER2 edges and find thatη(t)
er(t)

is the probability that a randomly chosen
IVN edge is an IER2 edge. For a randomly chosen IVN at timet, let the r.v.K be its degree and the r.v.L be the number of
IER2 edges attached to it. Given thatL ≥ 2, the joint distribution ofK,L is given by

Wk,l(t) , Pr (K = k, L = l|L ≥ 2) =

rk(t)
k

(

k
l

)

(

η(t)
er(t)

)l (

1− η(t)
er(t)

)k−l

∑k
l=2

rk(t)
k

(

k
l

)

(

η(t)
er(t)

)l (

1− η(t)
er(t)

)k−l
.

Therefore, the differential equations forlk andrk are

dl(3)k (t)

dt
= 0

and
dr(3)k (t)

dt
=

k
∑

l=2

(−k)Wk,l(t), for k ≥ 1.

TheK − L edges, which are not IER2 edges, are called reflected edges and the average number of reflected edges that hit
a check node of degree(i, j) is given by

p
(3)
i,j (t) =

ni,j(t)j

(i+ j)(er(t)− η(t))

∑

k≥2

k
∑

l=2

(k − l)Wk,l(t).

For n(3)
i,j (t) with j ≥ 1 or (i, j) = (0, 1), the differential equation is therefore

dn(3)
i,j (t)

dt
=
(

p
(3)
i,j+1(t)− p

(3)
i,j (t)

)

(i+ j),

We must also account for each of theL IER2 edges that, when removed, convert an(i, 1) CN into an (i, 0) CN for some
i ≥ 1. For n(3)

i,1 (t) with i > 0, this gives

dn(3)
i,1 (t)

dt
= −ni,1(t)

η(t)

∑

k≥2

k
∑

l=2

lWk,l(t).

Likewise, forn(3)
i,0 with i > 0, this gives

dn(3)
i,0 (t)

dt
=

i

i+ 1

ni,1(t)

η(t)

∑

k≥2

k
∑

l=2

l Wk,l(t).

Averaging over the CER, IER1 and IER2 operations gives the differential equations

dli(t)
dt

= c1(t)
dl(1)i (t)

dt
dri(t)

dt
= c2(t)

dr(2)i (t)

dt
+ c3(t)

dr(3)i (t)

dt

dni,j(t)

dt
= c1(t)

dn(1)
i,j (t)

dt
+ c2(t)

dn(2)
i,j (t)

dt
+ c3(t)

dn(3)
i,j (t)

dt
.

10

Solving the differential equations numerically, for the (3,6) code, gives the LM2-NB thresholdp∗ = 0.259. This is somewhat
larger than the thresholdp∗ = 0.21 given by the message-based analysis in [1].

V. ERROR FLOOR ANALYSIS OF LMP ALGORITHMS

A. The Union Bound for ML Decoding

During the simulation of the optimized ensembles of Table II, we observed that there is an error floor that can be explained.
First, we derive the union bound on the probability of error with ML decoding for theq-SC. To match our simulations with
the union bounds, we expurgate (i.e., ignore) all codeword weights that have an expected multiplicity less than 1.

First, we summarize a few results from [18, p. 497] that characterize the low-weight codewords of LDPC codes with degree-2
variable nodes. When the block lengthn is large, all of these low-weight codewords are caused, withhigh probability, by short
cycles of degree-2 nodes. For binary codes, the number of codewords with weightk is a random variable which converges

to a Poisson distribution with mean

“

λ2ρ
′

(1)
”k

2k . When the channel quality is high (i.e., high SNR, low error/erasure rate), the
probability of ML decoding error is mainly caused by low-weight codewords.

For non-binaryGF (q) codes, a codeword is supported on a cycle of degree-2 nodes only if the product of the edge weights
is 1. This occurs with probability1/(q − 1) if we choose the i.i.d. uniform random edge weights for the code. Hence, the
number ofGF (q) codewords of weightk is a random variable, denotedBk, which converges to a Poisson distribution with

meanbk =

“

λ2ρ
′

(1)
”k

2k(q−1) . After expurgating weights that have an expected multiplicity less than 1,k1 = argmink≥1 b
(n)
k ≥ 1

becomes the minimum codeword weight.
The pairwise error probability (PEP) of theq-SC with error probabilityp is given by the following lemma.
Lemma 5.1:Let y be the received symbol sequence assuming the all-zero codeword was transmitted. Letu be any codeword

with exactlyk non-zero symbols. Then, the probability that the ML decoderchoosesu over the all-zero codeword is upper
bounded by

p2,k ≤
(

p
q − 2

q − 1
+

√

4p(1− p)

q − 1

)k

.

Proof: See Appendix C.
Remark 5.2:Notice thatbk is exponential ink and the PEP is also exponential ink. The union bound for the frame error

rate, due to low-weight codewords, can be written as

PB ≤
∞
∑

k=k1

bkp2,k.

It is easy to seek1 = O(log q) and the sum is dominated by the first termbk1p2,k1 which has the smallest exponent. When
q is large, the PEP upper bound is on the order ofO

(

pk
)

. Therefore. the order of the union bound on frame error rate with
ML decoding is

PB = O

(

λ2ρ
′

(1)p
)log q

q log q

and the expected number of symbols in error is

O

(

λ2ρ
′

(1)p
)log q

q

.

B. Error Analysis for LMP Algorithms

The error of LMP algorithm comes from two types of decoding failure. The first type of decoding failure is due to unverified
symbols. The second one is caused by the false verification (FV). To understand the performance of LMP algorithms, we analyze
these types of failure separately. Note that when we analyzethe error caused by one reason, we do not consider the other for
the simplicity of analysis.

The FV’s can be classified into two types. The first type is, as [1] mentions, when the error magnitudes in a single check
sum to zero; we call this type-I FV. For single-element lists, it occurs with probability roughly1/q (i.e., the chance that
two uniform random symbols are equal). For multiple lists with multiple entries, we analyze the FV probability under the
assumption that no list contains the correct value. In this case, each list is uniform on theq− 1 incorrect values. Form lists of
sizes1, . . . , sm, the type-I FV probability is given by1−

(

q−1
s1,s2,··· ,sm

)/
∏m

i=1

(

q−1
si

)

. In general, the Birthday paradox applies
and the FV probability is roughlys2

(

m
2

)

/q for largeq and equal size lists.

11

The second type of FV is that messages become more and more correlated as the number of iterations grows, so that an
incorrect message may go through different paths and returnto the same node. We denote this kind of FV as a type-II FV.

Note that these are two different types of FV and one does not affect another. We cannot avoid type-II FV by increasingq
and we cannot avoid type-I FV by constraining the number of decoding iterations to be within half of the girth (or increasing
the girth). Fig. 2 shows an example of type-II FV. In Fig. 2, there is an 8-cycle in the graph and we assume the variable
node on the right has an incorrect incoming message “a”. Assume that the all-zero codeword is transmitted, all theincoming
messages at each variable node are not verified, the list sizeis less thansmax, and each incoming message at each check node
contains the correct message. In this case, the incorrect message will travel along the cycle and cause FV’s at all variable nodes
along the cycle. If the characteristic of the field is 2, thereare a total ofc/2 FV’s occurring along the cycle, wherec is the
length of the cycle. This type of FV can be reduced significantly by choosing each non-zero entry in the parity-check matrix
randomly from the non-zero elements of Galois field. In this case, a cycle causes a type-II FV only if the the product of the
edge-weights along that cycle is 1. Therefore, we suggest choosing the non-zero entries of the parity-check matrix randomly
to mitigate type-II FV. Recall that the idea to use non-binary elements in the parity-check matrix appears in the early works
on the LDPC codes overGF (q) [11].

C. An Upper Bound on the Probability of Type-II FV on Cycles

In this subsection, we analyze the probability of error caused by type-II FV. Note that type-II FV occurs only when the
depth-2k direct neighborhood of an edge (or a node) has cycles. But type-I FV occurs at every edge (or node). The order of
the probability that type-I FV occurs is approximatelyO(1/q) [1]. The probability of type-II FV is hard to analyze because
it depends onq, smax andk in a complicated way. But an upper bound of the probability ofthe type-II FV is derived in this
section.

Since the probability of type-II FV is dominated by short cycles of degree-2 nodes, we only analyze type-II FV along cycles
of degree-2 nodes. As we will soon see, the probability of type-II FV is exponential in the length of the cycle. So, the error
caused by type-II FV on cycles is dominated by short cycles. We also assumesmax to be large enough such that an incorrectly
received value can pass around a cycle without being truncated. This assumption makes our analysis an upper bound. Another
condition required for an incorrectly received value to participate in a type-II FV is that the product of the edge weights along
the cycle is 1. If we assume that almost all edges not on the cycle are verified, then once any edge on the cycle is verified,
all edges will be verified in the nextk iterations. So we also assume that nodes along a cycle are either all verified or all
unverified.

We note that there are three possible patterns of verification on a cycle, depending on the received values. The first case
is that all the nodes are received incorrectly. As mentionedabove, the incorrect value passes around the cycle without being
truncated, comes back the node again and falsely verifies theoutgoing messages of the node. So all messages will be falsely
verified if they are all received incorrectly afterk iterations. Note that this happens with probability1q−1p

k. The second case is
that all messages are verified correctly, say, no false verification. Note that this does not require all the nodes to have correctly
received values. For example, if any pair of adjacent nodes are received correctly, it is easy to see all messages will be correctly
verified. The last case is, there is at least 1 incorrectly received node in any pair of adjacent nodes and there is at least 1
node with correctly received value on the cycle. In this case, all messages will be verified afterk iterations, i.e., messages
from correct nodes are verified correctly and those from incorrect nodes are falsely verified. Then the verified messages will
propagate and half of the messages will be verified correctlyand the other half will be falsely verified. Note that this happens
with probability 1

q−12
(

pk/2 − pk
)

≈ 2pk/2

q−1 and this approximation gives an upper bound even if we combine the previous
1

q−1p
k term.

Recall that the number of cycles with lengthk converges to a Poisson with mean(
λ2ρ

′(1))
k

2k . Using the union bound, we
can upper bound on the ensemble average probability of any type-II FV event with

Pr(any type-II FV) ≤
∞
∑

k=k1

(

λ2ρ
′

(1)
)k

2k(q − 1)
2p

k
2 =

∞
∑

k=k1

(

λ2ρ
′

(1)
√
p
)k

k(q − 1)
.

The ensemble average number of nodes involved in type-II FV events is given by

E [symbols in type-II FV] ≤
∞
∑

k=k1

(

λ2ρ
′

(1)
)k

2k(q − 1)
2kp

k
2 =

∞
∑

k=k1

(

λ2ρ
′

(1)
√
p
)k

(q − 1)
.

The upper bound on the frame error rate of type-II FV is on the order ofO

(

“

λ2ρ
′

(1)
√
p

”log q

(q−1) log q

)

and the upper bound on the

ensemble average number of nodes in type-II FV symbol is on the order ofO

(

“

λ2ρ
′

(1)
√
p

”

(q−1)

)

. Notice that both bounds are

decreasing functions ofq.

12

Fig. 2. An example of type-II FV’s.

D. An Upper Bound on the Probability of Unverification on Cycles

In this subsection, We derive the union bound for the probability of decoder failure caused by the symbols on short cycles
which never become verified. We call this event asunverification. As described above, we can always pickq large enough to
have arbitrarily small probability of both type-I and type-II FV. In this case, the error is dominated by the unverified messages
because the following analysis shows that the union bound onthe probability of unverification is independent ofq.

In contrast to type-II FV, unverification event does not require cycles, i.e., unverification occurs even on subgraphs without
cycles. But in the low error-rate regime, the dominant unverification events occur on short cycles of degree-2 nodes. Therefore,
we only analyze the probability of unverification caused by short cycles of degree-2 nodes.

Consider a degree-2 cycle of lengthk and assume that no FV occurs in the neighborhood of this cycle. Assuming the
maximum list size issmax, the condition, which is denoted as UV, for unverification isthat there is at most one correctly
received value alongsmax + 1 adjacent variable nodes. Note that we don’t consider type-II FV since type-II FV occurs with
probability 1

q−1 and we can chooseq to be arbitrarily large. On the other hand, unverification does not require the product
of the edge weights on a cycle to be 1, so we cannot mitigate it by increasingq. So the union bound on the probability of
unverification on a cycle with lengthk is

PU ≤
∞
∑

k≥k2

(

λ2ρ
′

(1)
)k

2k
φ(smax, p, k)

wherek2 = argmink≥1

“

λ2ρ
′

(1)
”k

2k ≥ 1 andφ(smax, p, k) is the UV probability which is given by the following lemma.
Lemma 5.3:Let the cycle have lengthk, the maximum list size bes, and the channel error probability bep. Then, the

probability of an unverification event on a degree-2 cycle oflength-k is φ(s, p, k) = Tr
(

Bk(p)
)

whereB(p) is the(s+1) by
(s+ 1) matrix

B(p) =

p 1− p 0 0 · · · 0
0 0 p 0 · · · 0
0 0 0 p · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · p
p 0 0 0 · · · 0

. (18)

Proof: See Appendix D.
Finally, the union bound on the average number of symbols involved in unverification events is

E [unverified symbols] ≤
∞
∑

k≥k2

(

λ2ρ
′

(1)
)k

2
φ(smax, p, k). (19)

VI. COMPARISON AND OPTIMIZATION

In this section, we compare the proposed algorithm with maximum list sizeS (LMP-S) with other message-passing decoding
algorithms for theq-SC. We note that the LM2-MB algorithm is identical to SW1 forany code ensemble because the decoding

TABLE II

OPTIMIZATION RESULTS FORLMP ALGORITHMS (RATE 1/2)

Alg. λ(x) ρ(x) p
∗

LMP-1 .1200x+.3500x2+.0400x4+.4900x14 x8 .2591
LMP-1 .1650x+.3145x2+.0085x4+.2111x14+.0265x24+.0070x34+.2674x49 .0030x2+.9970x10 .2593
LMP-8 .32x+.24x2+.26x8+.19x14 .02x4+.82x6+.16x8 .288
LMP-32 .40x+.20x3+.13x5+.04x8+.23x14 .04x4+.96x6 .303
LMP-∞ .34x+.16x2+.21x4+.29x14 x7 .480
LM2-MB .2x+.3x3+.05x5+.45x11 x8 .289

13

TABLE III

THRESHOLD VS. ALGORITHM FOR THE (3,6) REGULAR LDPC ENSEMBLE

LMP-1 LMP-8 LMP-32 LMP-∞ LM1 LM2-MB LM2-NB
.210 .217 .232 .429 .169 .210 .259

rules are the same. LM2-MB, SW1 and LMP-1 are identical for (3,6) regular LDPC codes because the list size is always 1
and erasure never happens in LMP-1 for (3,6) regular LDPC codes. and the LMP-∞ algorithm is identical to SW2.

There are two important differences between the LMP algorithm and previous algorithms: (i) erasures and (ii) FV recovery.
The LMP algorithm passes erasures because, with a limited list size, it is better to pass an erasure than to keep unlikely
symbols on the list. The LMP algorithm also detects FV eventsand passes an erasure if they cause disagreement between
verified symbols later in decoding, and can sometimes recover from a FV event. LM1-NB and LM2-NB fix the status of a
variable node once it is verified and pass the verified value inall following iterations.

The results in [1] and [14] also do not consider the effects oftype-II FV. These FV events degrade the performance in
practical systems with moderate block lengths, and therefore we use random entries in the parity-check matrix to mitigate
these effects.

Using the DE analysis of the LMP-S algorithm, we can improve the threshold by optimizing the degree distribution pair
(λ, ρ). Since the DE recursion is not one-dimensional, we use differential evolution to optimize the code ensembles [19]. In
Table II, we show the results of optimizing rate-1

2 ensembles for LMP with a maximum list size of 1, 8, 32, and∞. Thresholds
for LM1 and LM2-NB/MB with rate 1/2 are also shown. In all but one case, the maximum variable-node degree is 15 and the
maximum check-node degree is 9. From Table II, one can see that the resulting code ensembles have concentrated check-node
degrees. The second table entry allowed for larger degrees (in order to improve performance) but very little gain was observed.
We can also see that there is a gain of between 0.05 and 0.07 over the thresholds of (3,6) regular ensemble with the same
decoder.

VII. S IMULATION RESULTS

In this part, we show the simulation results for (3,6) regular LDPC codes using various decoding algorithms as well as
the simulation results for the optimized ensembles shown inTable II with LMP algorithms in Fig. VIII. In the simulation of
optimized ensembles, we try different maximum list sizes and different finite fields. We use notation “LMPs,q,ensemble” to
denote the simulation result of LMP algorithm with maximum list sizes, finite field GF (q) and the simulated ensemble. We
choose block length to be 100000. The parity-check matricesare chosen randomly without 4-cycles. Each non-zero entry in the
parity-check matrix is chosen uniformly from GF(q)\0. This allows us to keep the FV probability low. The maximum number
of decoding iterations is fixed to be 200 and more than 1000 blocks are run for each point. These results are compared with
the theoretical thresholds. Table III shows the theoretical thresholds of(3, 6) regular codes on theq-SC for different algorithms
and Table II shows the thresholds for the optimized ensembles. The numerical results match the theoretical thresholds very
well.

In the results of (3,6) regular codes simulation, we cannot see any error floor because there is almost no FV in the simulation.
The LM2-NB performs much better than other algorithms with list size 1 for (3,6) regular ensemble. But in the results of
the optimized ensembles, the error floors occur because the number of degree-2 variable nodes the maximum variable/check
degrees are significantly larger than the (3,6) regular ensemble. By evaluating Eq. (19), the predicted error floor caused by
unverification is1.6 × 10−5 for the optimizedsmax = 1 ensemble,8.3 × 10−7 for the optimizedsmax = 8 ensemble, and
1.5× 10−6 for the optimizedsmax = 32 ensemble. From the results, we see the analysis of unverification events matches the
numerical results very well.

VIII. C ONCLUSIONS

In this paper, we discuss list-message-passing (LMP) decoding algorithms for theq-ary symmetric channel (q-SC). It is
shown that capacity-achieving ensembles for the BEC achieve capacity on theq-SC when the list size is unbounded. Decoding
thresholds are also calculated by density evolution (DE). We also derive a new analysis for the node-based algorithms described
in [1]. The causes of false verification (FV) are analyzed andrandom entries in the parity-check matrix are used to mitigate
avoid type-II FV. Degree profiles are optimized for the LMP decoder and reasonable gains are obtained. Finally, simulations
show that, with list size larger than 8, the proposed LMP algorithm outperforms previously proposed algorithms.

While we focus on theq-SC in this work, there are a number of other applications of LMP decoding that are also quite
interesting. For example, the iterative decoding algorithm described in [20] for compressed sensing is actually the natural
extension of LM1 to continuous alphabets. For this reason, the LMP decoder may also be used to improve the threshold of
compressed sensing. This is, in some sense, more valuable because there are a number of good coding schemes for theq-SC,
but few low-complexity near-optimal decoders for compressed sensing.

14

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Probability p

F
ra

ct
io

n
of

 u
nv

er
ifi

ed
 b

its

LMP1/SW1/LM2−MB,232,(3,6)

LMP8,232,(3,6)

LMP32,232,(3,6)

LM1,232,(3,6)

LMP1,232,OPT

LMP8,248,OPT

LMP32,232,OPT

LMP1,248,OPT

LMP8,232,OPT

LMP32,248,OPT

LM2−NB,232,(3,6)

Fig. 3. Simulation results for (3,6) regular codes with block length 100000.

APPENDIX I
PROOF OF THEOREM2.1

Proof: Given pλ(1 − ρ(1 − x)) < x for x ∈ (0, 1], we start by showing that bothxi and yi go to zero asi goes to
infinity. To do this, we letα = supx∈(0,1)

1
xpλ(1 − ρ(1− x)) and note thatα < 1 becausep < p∗. It is also easy to see that,

starting fromx0 = 1, we havexi ≤ αi andxi → 0. Next, we rewrite Eq. (3) as

yi+1 =
1

p
xi+1 + p (ρ(1− xi)− ρ(1− yi))λ

′(1− ρ(1− xi))

(a)

≤ 1

p
αi+1 + p

(

1− ρ′(1)αi − ρ(1− yi)
) (

λ2 +O(αi)
)

(b)

≤ 1

p
αi+1 + pλ(1− ρ(1− yi))

(

1 +O(αi)
)

(c)

≤ 1

p
αi+1 + αyi

(

1 +O(αi)
)

,

where(a) follows from ρ(1 − x) ≤ 1− ρ′(1)x, (b) follows from λ2(1 − ρ(1− y)) ≤ λ(1 − ρ(1 − y)), and(c) follows from
pλ(1 − ρ(1 − y)) ≤ αy. It is easy to verify thatyi+1 < yi as long asyi > αi+1

p(1−α(1+O(αi))) . Therefore, we find thatyi → 0
because the recursion does not have any positive fixed pointsasi → ∞. Moreover, one can show thatyi eventually decreases
exponentially at a rate arbitrarily close toα.

Note that the decoding error comes from two reasons, one is the event that message is not verified and the other one is
the event that the message is falsely verified. Next, we are going to show that the actual performance of a code converges to
the ensemble average exponentially which means almost every code in a capacity-achieving ensemble has capacity-achieving
performance. Note that the concentration effect and the decay of FV probability hold regardless the error probability of the
decoder converges to zero or not.

We can prove that the performance of a particular code converges to the threshold which is the average performance of a
tree-like ensemble in a similar way in [15], where the average is over the graph ensemble(λ(x), ρ(x)) and all the channel
inputs. There are two difference between our scenario and [15], i.e, our algorithm passes a list of values with unboundedlist
size, the second difference is the graph may be irregular in our case. Here we only mention the brief procedure of the proof.
We can letZ(l)/E denote the fraction ofunverifiedmessages at thel-th iteration, whereE is the number of edges in the
graph. Note thatZ(l) denotes the number ofincorrect anderasuremessages in [15]. Following [15], we can break failure the

15

probability into a tree-like neighborhood term and a Martingale concentration term to get

Pr

(∣

∣

∣

∣

Z(l)(s)

E
− yl

∣

∣

∣

∣

≥ ǫ

)

≤

Pr

(∣

∣

∣

∣

∣

Z(l)(s)

E
− E

[

Z(l)(s)
]

E

∣

∣

∣

∣

∣

≥ ǫ/2

)

+

Pr

(∣

∣

∣

∣

∣

E
[

Z(l)(s)
]

E
− yl

∣

∣

∣

∣

∣

≥ ǫ/2

)

wheres is an arbitrary codeword chosen from ensemble(λ, ρ), Z(l)(s) is the random variable that denotes the number of
erroneous variable-to-check messages afterl decoding iterations.E is the number of edges in the graph. This means the
concentration theorem can be think of consisting of two parts of concentration, i.e., concentration from a particular code to
the ensemble with cycles and concentration from a ensemble with cycles to the tree-like ensemble. Notice that the proof of
the later concentration and the proof of the probability of atree-like neighborhood are not limited to the specific decoding
algorithm and the definition ofZ(l), the proof is omitted here. By forming a Doob’s martingale onthe edge-exposure and
applying Azuma’s inequality, we can prove the concentration from a particular code to the ensemble in the same manner as
[15]. In our scenario, the proof of bounded difference of themartingale, the right hand side of in [15, Eq. (16)] should be

the cardinality of depth2l directed neighbor ofe,
| ~N (2l)

e |
2 . The right hand side of in [15, Eq. (17)] should be4

∣

∣

∣

~N (2l)
e

∣

∣

∣. The

β in applying Azuma’s inequality is
∑E

k=1

(

4
∣

∣

∣

~N (2l)
e

∣

∣

∣

)2

+
∑n

k=1

(

4
∣

∣

∣

~N (2l)
e

∣

∣

∣

)2

. So far, we prove that, for an arbitrary small

constantǫ/2, there exist positive numbersβ andγ, such that ifn > 2γ
ǫ , then

Pr

(∣

∣

∣

∣

Z(l)(s)

E
− yl

∣

∣

∣

∣

≥ ǫ

)

≤ e−βǫ2n

Note that the similar proof can be found in [15] (the proof of Theorem 2) and [21] (the proof of Theorem 1). Note that [15]
proves for the regular code ensemble and [21] extends the proof to the irregular code ensemble. So, for an arbitrary codes

and an arbitrary small quantityǫ, the fraction of unverified message is less thanǫ/2 asn goes to infinity.
In [15] and [21], it is proved that, when a code graph is chosenuniformly at random from all possible graphs with degree

distribution pair(λ(x), ρ(x)),
Pr (neighborhood of depth 2l is not tree-like) ≤ γ

n

whereγ is a constant independent ofn. So, givenǫ, we can choosen large enough such that the number of variable nodes
which are involved in cycles of length less than2l is less thannǫ/2 with probability arbitrarily close to one asn goes to
infinity. So the probability of error caused by type-II FV’s is upper bounded byǫ/2 (for the notation of type-I and type-II FV,
please refer to Section V-B). Here, we don’t consider the type-I FV’s because the probability of type-I FV’s can be forced
arbitrarily close to zero by choosing a large enoughq.

APPENDIX II
PROOF OFTHEOREM 3.1

The verification occurs in LM1-NB also occurs in LM1-MB and vice versa. So LM1-NB and LM1-MB are equivalent.
Proof: The operations of LM1-MB and LM1-NB are different because they have different verification rules (see Table.

I). We can prove they are equivalent by showing the verification occurs in LM1-MB also occurs in LM1-NB and vice versa,
but in different decoding steps. Let’s first look at the checknode when the summation of all messages equals to zero but there
are more than 1 messages are unverified. In this case, LM1-NB will verify all the messages. In LM1-MB none of them will be
verified but all the values will be correct. In the following iteration, all these messages will be verified on their variable nodes.
Notice that this is the only case verification occurs in LM1-NB but not in LM1-MB. So verification in LM1-NB also occurs
in LM1-MB. Let’s then look at the variable node when any incoming message is correct and the channel value is correct. In
LM1-MB, the outgoing message will be verified. In LM1-NB the message will be correct but not verified. Notice that the
incoming is correct means all the other messages are correctat the check node, so the unverified correct message will be
verified in the next step on check node. Notice that this is theonly case verification occurs in LM1-MB but not in LM1-NB.
So verification in LM1-MB also occurs in LM1-NB.

16

1− pp

0

p

1

p

2 ...

p

p

s

Fig. 4. Finite-state machine for Lemma 5.3.

APPENDIX III
PROOF OFLEMMA 5.1

Let y be the received symbol sequence assuming the all-zero codeword was transmitted. Letu be any codeword with exactly
k non-zero symbols. It is easy to verify that the probability that ML decoder choosesu over the all-zero codeword is given by

p2,k =
k
∑

j=0

j
∑

i=0

(

k

i, j, k − i− j

)

(1 − p)i
(

p

q − 1

)j (
p(q − 2)

q − 1

)k−i−j

.

Using the multinomial theorem, it is also easy to verify that

A(x) =

(

(1− p) +
p

q − 1
x2 +

p(q − 2)

q − 1
x

)k

=

k
∑

j=0

k−j
∑

i=0

(

k

i, j, k − i− j

)

(1− p)i
(

p

q − 1

)j (
p(q − 2)

q − 1

)k−i−j

xk−i+j

,

2k
∑

l=0

Alx
l,

whereAl is the coefficient ofxl in A(x). Finally, we observe thatp2,k =
∑2k

l=k Al is simply an unweighted sum of a subset
of terms inA(x) (namely, those wherek − i+ j ≥ k).

This implies that

xkp2,k =

2k
∑

l=k

Alx
k ≤ A(x)

for any x ≥ 1. Therefore, we can compute the Chernoff-type bound

p2,k ≤ inf
x≥1

x−kA(x).

By taking derivative ofx−kA(x) overx and setting it to zero, we arrive at the bound

p2,k ≤
(

p
q − 2

q − 1
+

√

4p(1− p)

q − 1

)k

.

APPENDIX IV
PROOF OFLEMMA 5.3

Proof: An unverification event occurs on a degree-2 cycle of length-k when there is at most one correct variable node
in any adjacent set ofs+1 nodes. Let the set of all error patterns (i.e., 0 means correct and 1 means error) of length-k which
satisfy the UV condition beΦ(s, p, k) ⊆ {0, 1}k. Using the Hamming weightw(z), of an error pattern asz, to count the
number of errors, we can write the probability of UV as

φ(s, p, k) =
∑

z∈Φ(s,p,k)

pw(z)(1− p)k−w(z).

This expression can be evaluated using the transfer matrix method to enumerate all weighted walks through a particular
digraph. If we walk through the nodes along the cycle by picking an arbitrary node as the starting node, the UV constraint
can be seen ask-steps of a particular finite-state machine. Since we are walking on a cycle, the initial state must equal to the
final state.

The finite-state machine, which is shown in Fig. 4, hass + 1 states{0, 1, . . . , s}. Let state 0 be the state where we are
free to choose either a correct or incorrect symbol (i.e., the previouss symbols are all incorrect). This state has a self-loop
associated with the next symbol also being incorrect. Let statei > 0 be the state where the pasti values consist of one correct
symbol followed byi− 1 incorrect symbols. Notice that only state 0 may generate correct symbols. By defining the transfer
matrix with (18), the probability that the UV condition holds is thereforeφ(s, p, k) = Tr

(

Bk(p)
)

.

17

REFERENCES

[1] M. Luby and M. Mitzenmacher, “Verification-based decoding for packet-based low-density parity-check codes,”IEEE Trans. Inform. Theory, vol. 51,
pp. 120–127, Jan. 2005.

[2] R. G. Gallager, “Low-density parity-check codes,”IRE Trans. Inform. Theory, vol. 18, pp. 21–28, Jan. 1962.
[3] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.
[4] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient erasure correcting codes,”IEEE Trans. Inform. Theory, vol. 47, pp. 569–584,

Feb. 2001.
[5] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,”IEEE Trans. Inform. Theory,

vol. 47, pp. 619–637, Feb. 2001.
[6] A. Shokrollahi, “Capacity-approaching codes on theq-ary symmetric channel for largeq,” in Proc. IEEE Inform. Theory Workshop, (San Antonio, TX),

pp. 204–208, Oct. 2004.
[7] G. Lechner and C. Weidmann, “Optimization of binary LDPCcodes for theq-ary symmetric channel with moderateq,” in Proc. IEEE Int. Symp.

Information Theory, (Lausanne, Switzerland), Aug. 2008.
[8] G. Lechner and C. Weidmann, “Optimization of binary ldpccodes for theq-ary symmetric channel with moderateq,” in Proc. 5th International

Symposium on Turbo Codes and Related Topics, pp. Lausanne, Switzerland, 2008.
[9] J. Metzner, “Majority-logic-like decoding of vector symbols,” IEEE Trans. Commun., vol. 44, pp. 1227–1230, Oct. 1996.

[10] J. Metzner, “Majority-logic-like vector symbol decoding with alternative symbol value lists,”IEEE Trans. Commun., vol. 48, pp. 2005–2013, Dec. 2000.
[11] M. Davey and D. MacKay, “Low density parity check codes over GF(q),” IEEE Commun. Lett., vol. 2, pp. 58–60, 1998.
[12] D. Bleichenbacher, A. Kiyayias, and M. Yung, “Decodingof interleaved Reed-Solomon codes over noisy data,” inProc. of ICALP, pp. 97–108, 2003.
[13] A. Shokrollahi and W. Wang, “Low-density parity-checkcodes with rates very close to the capacity of theq-ary symmetric channel for largeq,” in

Proc. IEEE Int. Symp. Information Theory, (Chicago, IL), p. 275, June 2004.
[14] A. Shokrollahi and W. Wang, “Low-density parity-checkcodes with rates very close to the capacity of theq-ary symmetric channel for largeq.”

Unpublished extended abstract, 2004.
[15] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,”IEEE Trans. Inform. Theory, vol. 47,

pp. 599–618, Feb. 2001.
[16] V. Guruswami and P. Indyk, “Linear time encodable and list decodable codes,” inProc. of the 35th Annual ACM Symp. on Theory of Comp., pp. 126–135,

2003.
[17] N. Wormald, “Differential equations for random processes and random graphs,”Annals of Applied Probability, vol. 5, pp. 1217–1235, 1995.
[18] T. J. Richardson and R. L. Urbanke,Modern Coding Theory. Cambridge, 2008.
[19] R. Storn and K. Price, “Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces,”J. Global Optim., vol. 11,

no. 4, pp. 341–359, 1997.
[20] S. Sarvotham, D. Baron, and R. Baraniuk, “Sudocodes–Fast measurement and reconstruction of sparse signals,” inProc. IEEE Int. Symp. Information

Theory, (Seattle, WA), pp. 2804–2808, July 2006.
[21] A. Kavcic, X. Ma, and M. Mitzenmacher, “Binary intersymbol interference channels: Gallager codes, density evolution, and code performance bounds,”

IEEE Trans. Inform. Theory, vol. 49, pp. 1636–1652, July 2003.

	Introduction
	Description and Analysis
	Description of the Decoding Algorithm
	DE for Unbounded List Size Decoding Algorithm
	DE for the Decoding Algorithm with Bounded List Size

	Differential Equation Analysis of LM1-NB
	Motivation
	Analysis of Peeling-Style Decoding
	Analysis
	CER Analysis
	IER1 Analysis

	Differential Equation Analysis of LM2-NB
	Error Floor Analysis of LMP Algorithms
	The Union Bound for ML Decoding
	Error Analysis for LMP Algorithms
	An Upper Bound on the Probability of Type-II FV on Cycles
	An Upper Bound on the Probability of Unverification on Cycles

	Comparison and Optimization
	Simulation Results
	Conclusions
	Appendix I: Proof of theorem ??
	Appendix II: Proof of Theorem ??
	Appendix III: Proof of Lemma ??
	Appendix IV: Proof of Lemma ??
	References

