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Abstract

We discuss and analyze a list-message-passing decodewariftcation for low-density parity-check (LDPC) codes dret
g-ary symmetric channelg(SC). Rather than passing messages consisting of symbbalgitities, this decoder passes lists of
possible symbols and marks some messages as verified. Thigydevolution (DE) equations for this decoder are derived a
used to compute decoding thresholds. If the maximum lis @zunbounded, then we find that any capacity-achieving LDPC
code for the binary erasure channel can be used to achieeeitapn theq-SC for largeq. The decoding thresholds are also
computed via DE for the case where each list is truncatedtisfisa maximum list size constraint. Simulation resulte afso
presented to confirm the DE results. During the simulatioves,observed differences between two verification-baseoddieg
algorithms, introduced by Luby and Mitzenmacher, that wienplicitly assumed to be identical. In this paper, we previah
analysis of the node-based algorithms from that paper arify ¥hat it matches simulation results.

The probability of false verification (FV) is also considérand techniques are discussed to mitigate the FV. Optiroizat
of the degree distribution is also used to improve the tholesfor a fixed maximum list size. Finally, the proposed aithon is
compared with a variety of other algorithms using both dgnevolution thresholds and simulation results.

|I. INTRODUCTION

Low-density parity-check (LDPC) codes are linear codes tere introduced by Gallager in 1962 [2] and re-discovered
by MacKay in 1999 [3]. The ensemble of LDPC codes that we atmrsfe.g. see [4] and [5]) is defined by the edge degree
distribution (d.d.) functions\(z) = Y, -, \kz* ! andp(z) = 3, -, prz* 1. The standard encoding and decoding algorithms
are based on the bit-level operations. However, when appli¢he transmission of data packets, it is natural to parftre
encoding and decoding algorithm at the packet level ratiem the bit level. For example, if we are going to transmit 82 b
as a packet, then we can use error-correcting codes overather large, alphabet wit??? elements.

The ¢-SC can be described as

1—p if x =y
p(y|x)_{ p/la—=1) fas#y
wherex (resp.y) is the transmitted (resp. received) symbol ang € GI'(q). The capacity of thg-SC is1+ (1 —p) log, (1 —
p) + plog, p — plog,(¢ — 1) which is approximately equal to — p for large g. This implies the capacity of the-SC with
largeq is approximately equal to the capacity of the BEC with eraquobabilityp. Moreover, the behavior of the SC with
large g is similar to the BEC in the sense that: i) incorrectly reeeiwymbols from the-SC provides almost no information
about the transmitted symbol and ii) error detection (@gCRC) can be added to each symbol with negligible overhelad [6

Binary LDPC codes for the-SC with moderate are optimized based on EXIT charts in [7] and [8]. It is knowattthe
complexity of the standard belief-propagation algorittong-ary LDPC codes scales likglog? ¢. Even for moderate sizes of
q, such asy = 256, this renders such algorithms ineffective in practice. ldeogr, whery is large, an interesting effect can be
used to facilitate decoding: if a symbol is received in ertben it is essentially a randomly chosen element of theadipt)
and the parity-check equations involving this symbol isyvenlikely to be valid.

In [1], Luby and Mitzenmacher developed an elegant algoritbr decoding LDPC codes on tleSC for largeq. However,
their paper did not present simulation results and left ciypachieving ensembles as an interesting open problentzride
presented similar ideas earlier in [9] and [10], but the foemd analysis is quite different. Davey and MacKay develup a
analyze a symbol-level message-passing decoder over Bniilfields [11]. A number of approaches to teSC (for large
q) based on interleaved Reed-Solomon codes are also pof8JHIE?]. In [13], Shokrollahi and Wang discuss two ways of
approaching capacity. The first uses a two-stage approaehevthe first stage uses a Tornado code and verification degodi
The second is, in fact, equivalent to one of the decoders sauds in this pap@rWhen we discovered this, the authors were
kind enough to send us an extended abstract [14] which ecentaore details. Still, the authors did not consider the ribtéazal
performance with a maximum list size constraint, the acheformance of the decoder via simulation, or false vetifice
(FV) due to cycles in the decoding graph. In this paper, weriles the algorithm in detail and consider those details.

This research was supported in part by the National Sciepcadation under Grant No. 0747470.
1The description of the second method [13] is very brief andbetieve its capacity-achieving nature deserves furthenton.
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Inspired by [1], we develop in this paper list-message-pgasd_MP) decoding with verification for LDPC codes on the
q-SC. Instead of passing a single value between bit and chedksn we pass a list of candidates to improve the decoding
threshold. This modification also increases the probghilitFV. So, we analyze the causes of FV and discuss technigues
mitigate FV. It is worth noting that the LMP decoder we coesits somewhat different than the list extension suggested i
[1]. Their approach uses a peeling-style decoder based rificagon rather than erasures. In [1], the algorithms axappsed
in a node-based (NB) style but analyzed using message-ifsddecoders. It is implicitly assumed that the two appiluec
are equivalent. In fact, this is not always true. In this pape consider the differences between NB and MB decoders and
derive an asymptotic analysis for NB decoders.

The paper is organized as follows. In Section Il, we descitigelL MP algorithm for bounded and unbounded list size and
use density evolution (DE) [15] to analyze its performanidee difference between NB and MB decoders for the first (LM1)
and second algorithm (LM2) in [1] is discussed and the NB decanalysis is derived in Section Il and V, respectively.
The problem of FV is considered in Section V. In Section VI, uge differential evolution to optimize code ensembles. We
describe the simulation of these codes and compare thetgesith the theoretical thresholds. We also compare ourltsesu
with previously published results in this area [1] and [18].Section VII, simulation results are shown. Applicaticofsthe
LMP algorithm are discussed and conclusions are given inic@@ev/lIl.

Il. DESCRIPTION ANDANALYSIS
A. Description of the Decoding Algorithm

The LMP decoder we discuss is designed mainly for ¢f@C and is based on local decoding operations applied ® list
of possible codeword symbols. The messages passed in the baae three typewerified (V), unverified(U) and erasure
(E). Every V-message has a symbol value associated withvéryBJ-message has a list of symbol values associated with it
Following [1], we will mark messages as verified when they gy likely to be correct. In particular, we will find that the
probability of FV approaches zero asgoes to infinity.

The LMP decoder works by passing list-messages around ttwdohg graph. Instead of passing a single code symbol (e.g.,
Gallager A/B algorithm [2]) or a probability distributiorver all possible code symbols (e.g., [11]), we pass a listadfies
that are more likely to be correct than the other messagesa.\vatiable node, the output list contains all symbols whichlad
satisfy the check constraint for the given input lists. A¢ ttheck node, the output message will be verified if and ordyl ihe
incoming messages are verified. At a node of degiebe associativity and commutativity of the node-proaggsiperation
allow it to be decomposed int@l —1) binar)E operations (e.gg+b+ct+d= (a+b)+(c+d)). In such a scheme, the computational
complexity of each binary-operation is proportionaktoat the check node andin s at the variable noffe wheres is the list
size of the input list. The list size grows rapidly as the nemdif iterations increases. In order to make the algorithactiral,
we have to truncate the list to keep the list size within sonaimum value, denoted,,,,... In the algorithm analysis, we
also find that, after the number of iterations exceeds helfgiinth of the decoding graph, the probability of FV increasery
rapidly. We analyze the reasons of FV and classify the F\s tao types. We find that the codes described in [1] and [13]
both suffer from type-1l FV. In Section V, we analyze these's=8nd propose a scheme to reduce the probability of FV.

The message-passing decoding algorithm using list mesgagd MP) applies the following simple rules to calculate th
output messages for a check node:

« If all the input messages are verified, then the output besoveeified with the value which makes all the incoming
messages sum to zero.

« If any input message is an erasure, then the output messagenbs an erasure.

« If there is no erasure on the input lists, then the outputlisttains all symbols which could satisfy the check constrai
for the given input lists.

« If the output list size is larger thaf,,.., then the output message is an erasure.

It applies the following rules to calculate the output mgesaof a variable node:

« If all the input messages are erasures or there are multgiéed messages which disagree, then output message is the
channel received value.

« If any of the input messages is verified (and there is no disagent) or a symbol appears more than once, then the
output message becomes verified with the same value as tlied/énput message or the symbol which appears more
than once.

« If there is no verified message on the input lists and no syrappkars more than once, then the output list is the union
of all input lists.

« If the output message has list size larger tltan,., then the output message is the received value from the ehann

2Here we use “binary" to emphasize that there are two input®agh the operation is oveFF(q).
3The binary-operation at the variable node can be done binary searches of length and the complexity of a binary search of lengttis O(In s)



B. DE for Unbounded List Size Decoding Algorithm

To apply DE to the LMP decoder with unbounded list sizes, tethaMP-co (i.e., S;q = o0), we consider three quantities
which evolve with the iteration number Let x; be the probability that the correct message symbol is noterlist passed
from a variable node to a check node. Lgtbe the probability that the message passed from a varialdle twoa check node
is not verified. Letz; be the average list size passed from a variable node to a ctoeltk The same variables are “marked”
(Z4, i, 2;) to represent the same values for messages passed from tlendues to the variable nodes (i.e., the half-iteration
value). We also assume all the messages are independéris, tiva assume the code length is infinite and there are nesycl
in the bipartite graph.

First, we consider the probability,, that the correct message symbol is not on the list. For agyege check node, the
correct message symbol will only be on the edge output listlibf the otherd — 1 input lists contain their corresponding
correct symbols. This implies that = 1 — p(1 — z;). For any degree-variable node, the correct message symbol will not be
on the edge output list only if it is on none of the otlker 1 edge input lists. This implies that ;; = pA(Z;). This behavior
is very similar to erasure decoding of LDPC codes on the BE€ gives the identical update equation

Tiv1 =pA (1= p(1 — ;) 1)

wherep is the ¢-SC error probability. Next, we consider the probabiliy, that the message is not verified. For any degtee-
check node, an edge output message is verified only if all@btherd — 1 edge input messages are verified. For any dedree-
variable node, an edge output message is verified if any syorbthe otherd — 1 edge input lists is verified or occurs twice
which impliesg; = 1 — p(1 — y;). The event that the output message is not verified can be trioke the union of two
disjoint events: (i) the correct symbol is not on any of thpunlists, and (ii) the symbol from the channel is incorrest a
the correct symbol is on exactly one of the input lists andvaoified. For a degreé-variable node, this implies that

Pr(not verified = (#;)" ' + p(d — 1) (§i — &) (#)* 2. @)

Summing over the d.d. gives the update equation

Yir1 =A (L= p(1 = 23)) + p(p(1 — i) — p(L —y;)) A" (1 = p(1 — ). 3)

It is important to note thaf{1) an@l(3) were published firsfli, Thm. 2] (by mapping:; = p; andy; = p; + ¢;), but were
derived independently by us.

Finally, we consider the average list sizge For any degre@-check node, the output list size is etﬁmj the product of
the sizes of the othet — 1 input lists. Since the mean of the product of i.i.d. randomaldes is equal to the product of the
means, this implies that, = p(z;). For any degree-variable node, the output list size is equal toﬁ)pms the sum of the
sizes of the othed — 1 input lists if the output is not verified and one otherwise akg the mean of the sum af— 1 i.i.d.
random variables is simply — 1 times the mean of the distribution, so the average outpusilie is given by

L (@) p(d = 1) G — ) (20) ) (d = D)z
This gives the update equation
zigr =LH[EN (T0) +p (G —T0) (N (Z0) + 23N (20))] p(23).
For the LMP decoding algorithm, the threshold of an ensemb{e), p(z)) is defined to be

p* £ sup {p € (0,1]

Next, we show that some codes can achieve channel capatity tiss decoding algorithm.

Theorem 2.1:Let p* be the threshold of the d.d. pdik(z), p(z)) and assume that the channel error naie less thamp*.
In this case, the probability; that a message is not verified in th¢h decoding iteration satisfidan; .., y; — 0. Moreover,
for any e > 0, there exists a < co such that LMP decoding of a long randofh, p) LDPC code, on &-SC with error
probability p, results in a symbol error rate of less than

Proof: See Appendix A. [ ]

Remark 2.2:Note that the convergence conditignftA(1 — p(1 — z)) < « for = € (0, 1], is identical to the BEC case but
thatz has a different meaning. In the DE equation for $h8C, = is the probability that correct value is not on the list. le th
DE equation for the BECz is the probability that the message is an erasure. This usllany capacity-achieving ensemble
for the BEC is capacity-achieving for theSC with LMP-co algorithm and large. This also gives some intuition about the
behavior of theg-SC for largeq. For example, wheg is large, incorrectly received value behaves like an esfbir

pMl—p(l—-2z))<zVazxe (O,l]}.

41t is actually upper bounded because we ignore the posgibilicollisions between incorrect entries, but the proligbof this occurring is negligible as
q goes to infinity.
5A single symbol is always received from the channel.



Corollary 2.3: The code with d.d. pain(z) = z and p(z) = (1 — €)x + ez? has a threshold of — - and a rate of

1+e
r > (1+€) Therefore, it achieves a rate 6f(¢) for a channel error rate gf =1 — 0.

Proof: Follows from (1 - 1+e) A1 —-p(l—-2)) <z forze(0,1] and Theoreri 2]1. [ |
Remark 2.4:We believe that Corollarl 2.3 provides the first linear-tidecodable construction of rae(s) for a random-
error model with error probability — 4. A discussion of linear-time encodable/decodable coaedydth random and adversarial
errors, can be found in [16]. The complexity also depend$enéquired list size which may be quite large (though inddpat
of block length). Unfortunately, we do not have explicit Inoig on the required alphabet size or list size for this canson.
In practice, we cannot implement a list decoder with unbegnlist size. Therefore, we also evaluate the LMP decoder

under a bounded list size assumption.

C. DE for the Decoding Algorithm with Bounded List Size

First, we list some definitions and notation for the DE analygith bounded list size decoding algorithm. Note that in
the bounded list size list decoding algorithm, each list mmagtain at mosiS,,, ., messages. For convenience, we classify the
messages into four types:

(V) \Verified message is verified and has list size 1.

(E) Erasure message is an erasure and has list size 0.

(L) Correct on list message is not verified or erased and the correct messagethe dist.

(N) Correct not on list message is not verified or erased, and the correct message @ the list.

For the first two message types, we only need to track theidrady; and E;, of message types in theth iteration. For the
third and the fourth types of messages, we also need to theckst sizes. Therefore, we track the characteristic foncbf

the list size for these messages, givenlhyr) and N;(z). The coefficient ofr? represents the probability that the message
has list sizej. Specifically,L;(«) is defined by

Smax

Zl”ar

wherel; ; is the probability that, in thé-th decoding |terat|on, the correct message is on the lidtthe message list has size

j. The functionN;(z) is defined similarly. This implies thak;(1) is the probability that the list contains the correct messag

and that it is not verified. For the same reasdi(1) gives the probability that the list does not contain the ecrmessage and

that it is not verified. The same variables are “markeYzf"E L,N and P) to represent the same values for messages passed

from the check nodes to the variable nodes (i.e., the haiéfiion value). For compactness, we denote the overalitgieas
Using these definitions, we find that DE can be computed efifigidy using arithmetic of polynomials. For the convenienc

of analysis and implementation, we use a sequence of bieyations plus a separate truncation operator to regrasen

multiple-input multiple-output operation. We uge to denote the check-node operator andto denote the variable-node

operator. Using this, the DE for the variable-node bingpgrationP® = P(1) @ P(2) is given by

VO O y@ Oy L FO 1) [@(1) ®

E® —EO @ ©
3 (z) :E(l)(:c) (E(2)+N(2)(:c)) +1~;(2)(a:) (E(1)+N(1)($)) (©)
NO®(2) =N O (2)E® + N (2) EO 4+ N O (2) N (2). )

Note that Eq.[(#) to Eq[{7) do not yet consider the list sizen¢ation and the channel value. For the binary check-node
operationP®) = P(1) @ P(), the DE is given by

e _yOy@ (8)

B3 _p0) L@ _ g ) ©)

L®() = {V<1>L<2>(z)+v<2>L<1>(z)+L<1>(a:)L<2>(y)} - (10)
xiyk—2ik

N®(z) = [NO@N )+ NO(@) (VP y+ L)) +

NO(z) (V<1>y+L<1>(y))} o (11)

xiyk—2ik

where the subscript’y* — 27% means the replacement of variables. Finally, the trunoatifdists to sizeS,,.. is handled by
truncation operators which map densities to densities. ¥é7uand 7’ to denote the truncation operation at the check and
variable nodes. Specifically, we truncate terms with dedpigher thans,,,... in the polynomialsZ(xz) and N(z). At check
nodes, the truncated probability mass is movedto



TABLE |
BRIEF DESCRIPTION OFMESSAGEPASSINGALGORITHMS FORg-SC

Alg. Description
LMP-S LMP as described in Sectidn THA wit®,q0 =S
LM1-MB | MP decoder that passes (valuéjV). [1, IIl.B]
At VN's, output is V' if any input isV' or message matches

channel value, otherwise pass channel value.

At CN's, output isV if all inputs areV.
LM1-NB | Peeling decoder with VN state (valug/V). [1, IIl.B]
At CN's, if all neighbors sum to 0, then all neighbors gét
At CN's, if all neighbors but one ar&’, then last getd/.
LM2-MB | The same as LM1-MB with one additional rule. [1, IV.A].
At VN’s, if two input messages match, then outgut
LM2-NB | The same as LM1-NB with one additional rule. [1, IV.A].
At VN's, if two neighbor values same, then VN gets
SW1 Identical to LM2-MB
SW2 Identical to LMPec. [13, Thm. 2]

At variable nodes, lists longer théf,.. are replaced by the channel value. To analyze this, we sepafa) into two terms:
A(x) with degree less tha®,,,, and 2=+ B(z) with degree at leasf,,... Likewise, we separat&/(z) into C(z) and
xSmae= D(z). The inclusion of the channel symbol and the truncation aralined into a single operation

PO =7 ([V, B, A(w) + 257 B(), C(x) + 25 D(x) )

defined by
V) =V 4+(1-p) (A(n +B(1)) (12)
EMD —q (13)
LW () = (1 - p)a (E+é(x)+b(1))+px21(x) (14)
NO(z) = pa (E+B(1)+é(x)+b(1)) . (15)

Note that in Eq.[(IR), the terrfl — p) (/1(1) + B(l)) is due to the fact that messages are compared for possibfieation
before truncation.

The overall DE recursion is easily written in terms of theward (bit to check) density?; and the backward (check to
bit) density P;. The initial density isP, = [0,0, (1 — p)x, px], wherep is the error probability of thg-SC channel, and the
recursion is given by

p, :ika(PiEHk—l) (16)
k=2

Pip1 = i: Ae T’ (13?’“*1) : 17)
k=2

Note that the DE recursion is not one-dimensional. This matkdifficult to optimize the ensemble analytically. It reimsan
open problem to find the closed-form expression of the thoiesin terms of the maximum list size, d.d. pairs andn section

VI, we will fix the maximum variable and check degrees, code,r@and maximum list size and optimize the threshold over
the d.d. pairs by using a numerical approach.

IIl. DIFFERENTIAL EQUATION ANALYSIS OFLM1-NB
A. Motivation

We refer to the first and second algorithm in [1] as LM1 and LM&spectively. Each algorithm can be viewed either as
message-based (MB) or node-based (NB). The first and sedgaontlam in [13] and [14] are referred to as SW1 and SW2.
These algorithms are summarized in Tdble I. Note that ife¢h&no verification occurring, the VN sends the (“‘channeligd|
U) and the CN sends the (“expected correct value”,U). Therdlgns SW1, SW2 and LMP are all MB algorithms, but can
be modified to be NB algorithms.

In [1], the algorithms are proposed in the node-based (N $1, Section IlI-A and 1V] but analyzed in the messagedths
(MB) style [1, Section IlI-B and IV]. It is easy to see that th&11-NB and LM1-MB are identical, but the NB and MB
algorithms for LM2 are different. In this section, we will@h the differences between the NB decoder and MB decoder and
derive the correct analysis for LM1-NB.

First, we show the equivalence between LM1-MB and LM1-NB.



Theorem 3.1:Any verification that occurs in LM1-NB also occurs in LM1-MBa vice versa. Therefore, LM1-NB and
LM1-MB are equivalent.

Proof: See Appendix B. ]

Remark 3.2:The theorem shows the equivalence between LM1-NB and LM1-WMBs also implies the error patterns or
stopping sets of LM1-NB and LM1-MB are the same.

In the NB decoder, the verification status is associated thighnode. Once a node is verified, all the outgoing messages
are verified. In the MB decoder, the status is associated tvélredge/message and the outgoing messages may havendiffere
verification status. NB algorithms cannot, in general, balyred using DE because the independence assumption lmetwee
messages does not hold. Therefore, we develop peeling-etgloders which are equivalent to LM1-NB and LM2-NB and use
differential equations to analyze them.

Following [4], we analyze the peeling-style decoder usinfleential equations to track the average number of edges
(grouped into types) in the graph as decoding progressem Ere results from [17] and [4], we know that the actual numbe
of edges (of any type), in any particular decoding realarais tightly concentrated around the average over thdnigetf
the random process. In a peeling-style decoderdét(q), a variable node and its edges are removed after verificafioa
check node keeps track of the new parity constraint (i.e véidue to which the attached variables must sum) by subtract
values associated with the removed edges.

B. Analysis of Peeling-Style Decoding

First, we introduce some notation and definitions for thelyamim A variable node (VN) whose channel value is correctly
received is called a correct variable node (CVN), othenitise called an incorrect variable node (IVN). A check nodeNjC
with ¢ edges connected to the CVN's aficedges connected to the IVN's will be said to have C-degraed |-degreg, or
type (i, j).

We also define some quantities as follows:

« t: decoding time or the fraction of VNs removed from graph

o L;(t): the number of edges connected to CVN's with degre¢ timet.

« R;(t): the number of edges connected to IVN'’s with degfes timet.

o N, ;(t): the number of edges connected to CN’s with C-degraad I-degregj.
e E(t): the remaining number of edges connected to CVN's at time
« E.(t): the remaining number of edges connected to IVN’s at time
« a(t): the average degree of CVN’s,
a(t) =Y Li(t)i/Ei(t)

i>0
« b(t): the average degree of IVN’s,
b(t) =Y Ri(t)i/Ex(t)
i>0
« FE: number of edges in the original graph,
E = EZ(O) + ET(O)

Counting edges in three ways gives the following equations:

STLit)+ Y Ri(t) = Ei(t) + Eo(t) = > > Nij(t).
>0 >0 1>0 520

These r.v.s represent a particular realization of the decoThe differential equations are defined for the norredliz
(i.e., divided byE) expected values of these variables. We use lower-caséiao(@.g.,/;(t), r;(t), n; ;(t), etc.) for these
deterministic trajectories. For a finite system, the decodmoves exactly one variable node in one time stepbf

The description of peeling-style decoder is as follows. Peeling-style decoder removes one CVN or IVN in each time
step by the following rules:

CER: If any CN has its edges all connected to CVN's, pick one of tMNG and remove it and all its edges.
IER1: If any IVN has at least one edge connected to the CN’s of fype), the value of the IVN is given by the attached CN
and we remove the IVN and all its outgoing edges.
If both CER and IER1 can be applied, then one is chosen randastlescribed below.

Since both rules remove exactly one VN, the decoding proeiissr finishes in exacti\ steps or stops early and cannot
continue. The first case occurs only when either the IER1 dR €&ndition is satisfied in every time step. When the decoder
stops early, the pattern of CVNs and IVNs remaining is knowraastopping set. We also note that the rules above, though
described differently, are equivalent to the first nodeedaslgorithm (LM1-NB) introduced in [1].
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Fig. 1. Tanner graph for differential equation analysis.

C. Analysis

Recall that in the node-based algorithm for LM1 we have twadfieation rules. The first rule is that if all messages but
one are verified at a CN, then all messages are verified. Wethialtype-1 incorrect-edge-removal (IER1) and this needs
no,1(t) > 0 to be satisfied. The second rule is: if all messages sum toatemcCN, all messages are verified. We call this as
correct-edge-removal (CER) in the peeling-style decoddrthis requires:; o > 0 for some: > 1. The peeling-style decoder
performs one operation in time step. The operation is randach can be either CER or IER1. When both operations are
possible, we choose smoothly between these two rules byngi€kER with probabilityc; (¢) and IER1 with probabilitys(t),
where

- > is0Mio(t)
ci(t) = Y isomi0(t) + 10,1 (t)
oa(®) = no,1(t)

Y isoMio(t) +mo1(t)
Therefore, the differential equations can be written as

dit) , diM@) di?(t)
a O —g ) =g
dri(t) . drV(h) dr® (1)

@ - (t) o + ca(t) —q
(1) @)
dn; ;(t) dn; ; (t) dn; ; ()
R T

where(® and () denote, respectively, the effects of CER and IER1.
1) CER Analysis:If the CER operation is picked, then we choose randomly are edi;iched to a CN of typg, 0) with
1 > 1. This VN endpoint of this edge is distributed uniformly assadhe CVN edge sockets. Therefore, it will be attached to

a CVN of degreée: with probability le’jgg Therefore, one has the following differential equatioos/f, andry,

and

For the effect on check edges, we can think of removing a CVi wegree: as first randomly picking an edge of type
(k,0) connected to that CVN and then removing all the other1 edges (called reflected edges) attached to the same CVN.
The k — 1 reflected edges are uniformly distributed over thigt) correct sockets of the CN's. Averaging over all graphs,
the k — 1 reflected edges h niWith—1) oNyg of type (i, 7). Averaging over the degréee shows that the reflected edges hit

_ (i+)e(®
% CN’s of type (i, 7).

If a CN of type (i, 5) is hit by a reflected edge, we lose- j edges of typdi, j) and gaini — 1+ j edges of typdi — 1, j).
Hence, one has the following differential equations fas 0 andi + j < d,.
dn ) (1) L
—u— = (o, 0 —p®) (+)
where )

(1)p) = M Bilal) = 1)
v (i + g)e(t)
One should keep in mind that; ;(¢) = 0 for i 4+ j > d_.



For nS} (t) with j = 0, the effect from above must be combined with effect of theet{ip0) initial edge that was chosen.
So the differential equation becomes

dn{ (t)
G = (o0 —2l0w) i+ (a0 — o )

where
nw (t)
EmZO Tmn,0 (t)

2) IER1 Analysis:If the IER1 operation is picked, then we choose a random CNé (0, 1) and follow its only edge to
set of IVNs. This edge is attached uniformly to this set, o differential equations for IER1 can be written as

¢ (1) =

A
a7
dr” (1) _ rult)
= - >
pm er(t)( k), fork>1
and @
dn;’; (1) S .
— = () =2 ®) 1+ 4), for (i,5) # (0,1)
where ]
p(Q) (t) = N, j (t)] (b(t) = 1)
" (i+jen(t)
Forn; ;(t) with (4, 5) = (0, 1), the differential equation must also account for the ihitidge and becomes
dng) ()

= (s -2 m) — 1.

Notice that even for (3,6) codes, there are 30 differentiabeion to solve. So we solve the differential equations numencall
and the threshold for (3,6) code with LM1 j8 = 0.169. This coincides with the result from density evolution as& for
LM1-MB in [1] and hints at the equivalence between LM1-NB dod1-MB. In the proof of Theoreni 3]1 we make this
equivalence precise by showing that the stopping sets of-NBland LM1-MB are the same.

IV. DIFFERENTIAL EQUATION ANALYSIS OF LM2-NB

We will first show the LM2-NB is equivalent to the following ekng-style decoder and then use differential equation to
analysis the LM2-NB algorithm. The peeling-style decodanoves one CVN or IVN in each time unit by the following rules:
CER: If any CN has its edges all connected to CVN's, pick one of tMNG and remove it.
IER1: If any IVN has messages from CN's with tyge, 1), the IVN and all its outgoing edges can be removed and we track
the correct value by subtracting the value from the checkenod
IER2: If any IVN is attached to more than one CN with I-degree 1, thewill be verified and all its outgoing edges can be
removed.

If more than one of above are satisfied, then one is chosemmagdchs described below.

Notice that if either CER, IER1, or IER2 is satisfied in eaghdiunit, decoding finishes in at moAt time units, where
N is the total number of variable nodes. For the same reasdnlitl case, the peeling-style decoder above is equivalent to
the second node-based algorithm (LM2-NB) introduced in(Bdction 1V).

The difference between LM2-NB and LM1-NB is that LM2-NB indes another verification rule: if two messages match
at the same VN, the VN is verified and all messages connecté@dai@ verified. In the peeling-style decoder, this can be
interpreted as follows. If the VN is a CVN, then the case isered in CER. If it is a IVN, this means that the IVN has more
than 1 correct incoming message and IER2 applies. Since INM @ceives a correct message from typel) edges, this
requiresn; ; > 0 for some: > 0. Since the unexposed edges in the graph are uniformlyluliséd over their respective VNs,
the conditionn; ; > 0 for somei is sufficient to guarantee that a IVN satisfies IER2 with higbb@bility.

5There are 28 fon; ; (i,5 € [0,--- , 6] such thati + j < 6), 1 for ry(¢), and 1 forly(t).



To smooth the choice between IER1, CER and IER2, we choose v@ERprobability ¢; (¢), IER1 with probabilitycs ()
and IER2 with probabilityes(t) where

er(§) = s mz0 ol

D is0Mi0(t) + 250 mi1(2)
er(t) = no.1(f)

D is0Mi0(t) + 250 i1 (2)
() = gz )

Y isoMi0o(t) + 5o min(t)

We use superscript) to denote the differential equations implied by IER2. Th&®2Eoperation depends heavily on edges
that connect IVNs to CNs of typ€, 1) with : > 1. For convenience, we refer to such edges as “IER2 edges”.

The main complication in the analysis of the IER2 operati®rihiat the IER2 rule can only apply to IVNs which have
at least two IER2 edges. Therefore, choosing such a VN uypiskews the variable degree distribution. So, we/jgt) =
z+1 Zz>1 n,1(t) be the fraction of IVN edges that are IER2 edges and fmdﬂ% is the probability that a randomly chosen
IVN edge is an IER2 edge. For a randomly chosen IVN at timlet the r.v.K be its degree and the r.% be the number of
IER2 edges attached to it. Given that> 2, the joint distribution ofK, L is given by

l k—1
ri(t) (k) n(t) 1 _ )
Wia(t) 2 Pr(K =k L=1L>2) = — " (25) (l ) _

ko re(®) (k) [ n@®) 1 1@

=2 "k (l) (eT(t)) ( T e (t)
Therefore, the differential equations fiy andr, are

a0 _
dt
and - .
dr;” (t)
kdt = (—k) Wia(t), for k> 1.
=2

The K — L edges, which are not IER2 edges, are called reflected edgetharaverage number of reflected edges that hit
a check node of degreg, j) is given by

Fornf’j) (t) with j > 1 or (4,4) = (0, 1), the differential equation is therefore

d”z@‘)(t) 3 3 C

—— = (P (O =) i+ ),
We must also account for each of tlielER2 edges that, when removed, convert(an) CN into an(i,0) CN for some
i>1. Fornz(.,?’l) (t) with i > 0, this gives

a0t ()
&= (t() ZZZW’”

N k>21=2

Likewise, forn!% with i > 0, this gives

Aol () i nga
, _ 1, l
dt 1+ 1 77 Z Z Wk l
k>2 1=2
Averaging over the CER, IER1 and IER2 operations gives tfferéntial equations
di(t) ( )dz§1>(t)
a dt
dri(t) _ 97 (0) dri® (1)
G el —g tall—g
(1) (2) 3)
dni,(t)  dng;(t) dn{? (t) dn®) (¢)
b c1(t) it + ca(t) G tos t) T
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Solving the differential equations numerically, for theGBcode, gives the LM2-NB threshofgd = 0.259. This is somewhat
larger than the thresholg" = 0.21 given by the message-based analysis in [1].

V. ERRORFLOOR ANALYSIS OF LMP ALGORITHMS
A. The Union Bound for ML Decoding

During the simulation of the optimized ensembles of Tablevk observed that there is an error floor that can be explained
First, we derive the union bound on the probability of erréthwML decoding for theg-SC. To match our simulations with
the union bounds, we expurgate (i.e., ignore) all codewagdjlats that have an expected multiplicity less than 1.

First, we summarize a few results from [18, p. 497] that cttaréize the low-weight codewords of LDPC codes with dedtee-
variable nodes. When the block lengthis large, all of these low-weight codewords are caused, high probability, by short
cycles of degree-2 nodes. For binary codes, the number awads with weightt is a random variable which converges

to a Poisson distribution with mea&#. When the channel quality is high (i.e., high SNR, low emoasure rate), the
probability of ML decoding error is mainly caused by low-gkt codewords.

For non-binaryGF(q) codes, a codeword is supported on a cycle of degree-2 nodie§ time product of the edge weights
is 1. This occurs with probability /(¢ — 1) if we choose the i.i.d. uniform random edge weights for thdecdHence, the
number of GF(q) codewords of weight is a random variable, denotd8);, which converges to a Poisson distribution with

/ k
A 1
meanb; = %. After expurgating weights that have an expected muliiglitess than 1%, = argming> b,(cn) >1

becomes the minimum codeword weight.

The pairwise error probability (PEP) of theSC with error probabilityp is given by the following lemma.

Lemma 5.1:Let y be the received symbol sequence assuming the all-zero codevas transmitted. Let be any codeword
with exactly k non-zero symbols. Then, the probability that the ML decortesosesu over the all-zero codeword is upper

bounded by
-2 4p(1 —
P2k < <pq + il p))
q—1 q—1

Proof: See Appendix C.
Remark 5.2:Notice thatby is exponential ink and the PEP is also exponential4n The union bound for the frame error
rate, due to low-weight codewords, can be written as

Pp <) bipak.
k=k1
It is easy to seé; = O(logq) and the sum is dominated by the first tebmps 1, which has the smallest exponent. When
q is large, the PEP upper bound is on the ordeO((fpk). Therefore. the order of the union bound on frame error rate w
ML decoding is

, log q

(Agp(l)p)
PE=0| >—F—

qlogq

and the expected number of symbols in error is
/ log ¢
(Azp>(1)p)
q

B. Error Analysis for LMP Algorithms

The error of LMP algorithm comes from two types of decodiritufa. The first type of decoding failure is due to unverified
symbols. The second one is caused by the false verificatdh {l® understand the performance of LMP algorithms, we yrel
these types of failure separately. Note that when we andhgerror caused by one reason, we do not consider the other fo
the simplicity of analysis.

The FV’s can be classified into two types. The first type is,dsjentions, when the error magnitudes in a single check
sum to zero; we call this type-1 FV. For single-element Jistsoccurs with probability roughlyi /¢ (i.e., the chance that
two uniform random symbols are equal). For multiple listshwinultiple entries, we analyze the FV probability under the
assumption that no list contains the correct value. In thgeceach list is uniform on the— 1 incorrect values. Fom lists of
sizesi, ..., sm, the type-1 FV probability is given by — (, 7' Sm)/ 1, (‘1;1). In general, the Birthday paradox applies

51,82,

and the FV probability is roughly? (’;)/q for large ¢ and equal size lists.
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The second type of FV is that messages become more and mosdated as the number of iterations grows, so that an
incorrect message may go through different paths and rétutine same node. We denote this kind of FV as a type-Il FV.
Note that these are two different types of FV and one does ffettanother. We cannot avoid type-Il FV by increasing
and we cannot avoid type-l FV by constraining the number @bdég iterations to be within half of the girth (or increagi
the girth). Fig.[2 shows an example of type-Il FV. In Hig. 2erd is an 8-cycle in the graph and we assume the variable
node on the right has an incorrect incoming messageAssume that the all-zero codeword is transmitted, allitreoming
messages at each variable node are not verified, the listssiess thars,, ..., and each incoming message at each check node
contains the correct message. In this case, the incorresgage will travel along the cycle and cause FV’s at all végialbdes
along the cycle. If the characteristic of the field is 2, thare a total ofc/2 FV’s occurring along the cycle, whekeis the
length of the cycle. This type of FV can be reduced signifigaby choosing each non-zero entry in the parity-check matri
randomly from the non-zero elements of Galois field. In thise; a cycle causes a type-1l FV only if the the product of the
edge-weights along that cycle is 1. Therefore, we suggeasisthg the non-zero entries of the parity-check matrix cemnig
to mitigate type-1l FV. Recall that the idea to use non-bynalements in the parity-check matrix appears in the earlyka/o
on the LDPC codes overF'(q) [11].

C. An Upper Bound on the Probability of Type-Il FV on Cycles

In this subsection, we analyze the probability of error eauby type-Il FV. Note that type-Il FV occurs only when the
depth2k direct neighborhood of an edge (or a node) has cycles. Betltyf)/ occurs at every edge (or node). The order of
the probability that type-1 FV occurs is approximatél1/q) [1]. The probability of type-ll FV is hard to analyze because
it depends ony, s, andk in a complicated way. But an upper bound of the probabilityhef type-11 FV is derived in this
section.

Since the probability of type-Il FV is dominated by short liggcof degree-2 nodes, we only analyze type-1l FV along cycle
of degree-2 nodes. As we will soon see, the probability obHipgFV is exponential in the length of the cycle. So, the erro
caused by type-Il FV on cycles is dominated by short cycles.al§o assume,, ... to be large enough such that an incorrectly
received value can pass around a cycle without being tradcahis assumption makes our analysis an upper bound. &noth
condition required for an incorrectly received value totjggpate in a type-1l FV is that the product of the edge wesghlong
the cycle is 1. If we assume that almost all edges not on thke @re verified, then once any edge on the cycle is verified,
all edges will be verified in the next iterations. So we also assume that nodes along a cycle &er aill verified or all
unverified.

We note that there are three possible patterns of verificaiio a cycle, depending on the received values. The first case
is that all the nodes are received incorrectly. As mentioaleolve, the incorrect value passes around the cycle witheingb
truncated, comes back the node again and falsely verifiesutgming messages of the node. So all messages will beyfalsel
verified if they are all received incorrectly afterterations. Note that this happens with probabitqit}ﬁp’“. The second case is
that all messages are verified correctly, say, no false watifin. Note that this does not require all the nodes to hamwectly
received values. For example, if any pair of adjacent nodesezeived correctly, it is easy to see all messages willdoectly
verified. The last case is, there is at least 1 incorrectlgived node in any pair of adjacent nodes and there is at least 1
node with correctly received value on the cycle. In this cadlemessages will be verified aftér iterations, i.e., messages
from correct nodes are verified correctly and those from riremd nodes are falsely verified. Then the verified messagies w
propagate and half of the messages will be verified correatty the other half will be falsely verified. Note that this paps
W|th probablhty L 2( k/2 —pk) =] 25%/12 and this approximation gives an upper bound even if we coenbiie previous

1p term.

, k
Recall that the number of cycles with lengthconverges to a Poisson with meéﬁf’;é—l)). Using the union bound, we
can upper bound on the ensemble average probability of gerltyFV event with

/ k / F
o (A2p (1) k > (A2p (1)
Pr(any type-ll FV) < Z %2@ - Z %.

k=k1 k=k1
The ensemble average number of nodes involved in type-ll Vanhts is given by

’ k , k
i )\2 [e’e] AQ 1
E [symbols in type-Il FY < %2@% =3 M.

ke=k1 k=, (¢-1)
)\ 1)/p
The upper bound on the frame error rate of type-1l FV is on thgepof O 22 (1)logq ) and the upper bound on the

2P WP

ensemble average number of nodes in type-1l FV symbol is enotider ofO < D

) Notice that both bounds are
decreasing functions af.
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Fig. 2.  An example of type-Il FV's.

D. An Upper Bound on the Probability of Unverification on &gl

In this subsection, We derive the union bound for the prdiatuf decoder failure caused by the symbols on short cycles
which never become verified. We call this eventuawwerification As described above, we can always pickarge enough to
have arbitrarily small probability of both type-l and tyflé=V. In this case, the error is dominated by the unverifiedssages
because the following analysis shows that the union bountherprobability of unverification is independent @f

In contrast to type-ll FV, unverification event does not riegeycles, i.e., unverification occurs even on subgrapltsoui
cycles. But in the low error-rate regime, the dominant uifimation events occur on short cycles of degree-2 nodes.eftie,
we only analyze the probability of unverification caused hgrs cycles of degree-2 nodes.

Consider a degree-2 cycle of lengthand assume that no FV occurs in the neighborhood of this cyadeuming the
maximum list size iss,,q., the condition, which is denoted as UV, for unverificationthiat there is at most one correctly
received value along,,... + 1 adjacent variable nodes. Note that we don’t consider typé/Isince type-Il FV occurs with
probability %1 and we can chooseg to be arbitrarily large. On the other hand, unverificatiorslmot require the product
of the edge weights on a cycle to be 1, so we cannot mitigatg ihtreasingg. So the union bound on the probability of
unverification on a cycle with length is

N
> (A2p (1)
Py < Z %@ﬁ(&nazvpa k)
E>ko

wherek, = arg ming>1 A27k) > 1 and ¢(smaz, p, k) is the UV probability which is given by the following lemma.

Lemma 5.3:Let the cycle have lengtl, the maximum list size be, and the channel error probability ke Then, the
probability of an unverification event on a degree-2 cycléeafyth4 is ¢(s, p, k) = Tr (B*(p)) whereB(p) is the (s + 1) by
(s + 1) matrix

p 1—p 0 0 --- 0
0 0 p 0 -~ 0
0o 0 0 p -~ 0
Bp)=|. . . . . . (18)
0 0 00 - p
L» O 0 0 -+ 0]
Proof: See Appendix D. [ ]

Finally, the union bound on the average number of symbolsived in unverification events is

, k
E [unverified symbols< i ()
unveriried sympo _—
g  ish, 2

O (Smaz, D, k). (19)

VI. COMPARISON AND OPTIMIZATION

In this section, we compare the proposed algorithm with mamn list sizeS (LMP-S) with other message-passing decoding
algorithms for the;-SC. We note that the LM2-MB algorithm is identical to SW1 oy code ensemble because the decoding

TABLE I
OPTIMIZATION RESULTS FORLMP ALGORITHMS (RATE 1/2)

AT X Z263) P
LMP-1 .1200x+.350022 +.04002%* +.4900 ™% 28 .2591
LMP-1 1650z +.314522 4.00852% +.21112 1% +.026522% 4.007023% 4 .26 742 .003022 +.99702 10 .2593
LMP-8 320+ .24x°% 4+ 2628 +.192 12 0227 +.82254.1628 .288
LMP-32 40z +.2023 +.132° +.0428 + 23214 .04x% 49625 .303
LMP-0c0 34x+.162% 4+ 212+ .29z 17 x’ .480

LM2-MB 2z +.3x5 +.052° + .45 T 28 .289
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TABLE Il
THRESHOLD VS ALGORITHM FOR THE (3,6) REGULAR LDPC ENSEMBLE

LMP-1 | LMP-8 | LMP-32 | LMP-co | LM1 | LM2-MB | LM2-NB
.210 217 .232 429 .169 .210 .259

rules are the same. LM2-MB, SW1 and LMP-1 are identical fo6)X3egular LDPC codes because the list size is always 1
and erasure never happens in LMP-1 for (3,6) regular LDP@soand the LMPx algorithm is identical to SW2.

There are two important differences between the LMP algoriand previous algorithms: (i) erasures and (ii) FV recpver
The LMP algorithm passes erasures because, with a limigedsilie, it is better to pass an erasure than to keep unlikely
symbols on the list. The LMP algorithm also detects FV evemtd passes an erasure if they cause disagreement between
verified symbols later in decoding, and can sometimes redogm a FV event. LM1-NB and LM2-NB fix the status of a
variable node once it is verified and pass the verified valualifollowing iterations.

The results in [1] and [14] also do not consider the effectdypke-Il FV. These FV events degrade the performance in
practical systems with moderate block lengths, and thezefte use random entries in the parity-check matrix to miéiga
these effects.

Using the DE analysis of the LMB-algorithm, we can improve the threshold by optimizing thgrde distribution pair
(A, p). Since the DE recursion is not one-dimensional, we userdifital evolution to optimize the code ensembles [19]. In
Table[l, we show the results of optimizing ra%eensembles for LMP with a maximum list size of 1, 8, 32, andThresholds
for LM1 and LM2-NB/MB with rate 1/2 are also shown. In all but@ case, the maximum variable-node degree is 15 and the
maximum check-node degree is 9. From Table Il, one can s¢¢hthaesulting code ensembles have concentrated cheak-nod
degrees. The second table entry allowed for larger degmeesder to improve performance) but very little gain waseted.

We can also see that there is a gain of between 0.05 and 0.0#hevéhresholds of (3,6) regular ensemble with the same
decoder.

VII. SIMULATION RESULTS

In this part, we show the simulation results for (3,6) regWl®PC codes using various decoding algorithms as well as
the simulation results for the optimized ensembles showTainle 11 with LMP algorithms in FigL V. In the simulationfo
optimized ensembles, we try different maximum list sized different finite fields. We use notation “LMR;,ensemble” to
denote the simulation result of LMP algorithm with maximuist kize s, finite field GF'(¢) and the simulated ensemble. We
choose block length to be 100000. The parity-check mataceshosen randomly without 4-cycles. Each non-zero enttlya
parity-check matrix is chosen uniformly from GJ \ 0. This allows us to keep the FV probability low. The maximurmrer
of decoding iterations is fixed to be 200 and more than 1006kslare run for each point. These results are compared with
the theoretical thresholds. Talhlel Il shows the theorktia@sholds of(3, 6) regular codes on the SC for different algorithms
and Table Il shows the thresholds for the optimized ensesnfilee numerical results match the theoretical threshoddg v
well.

In the results of (3,6) regular codes simulation, we caneetamny error floor because there is almost no FV in the sinoulati
The LM2-NB performs much better than other algorithms witht size 1 for (3,6) regular ensemble. But in the results of
the optimized ensembles, the error floors occur becauseumber of degree-2 variable nodes the maximum variablekchec
degrees are significantly larger than the (3,6) regularrabie By evaluating Eq[(19), the predicted error floor cdulsg
unverification is1.6 x 10~° for the optimizeds,,., = 1 ensembleg.3 x 10~7 for the optimizeds,,., = 8 ensemble, and
1.5 x 10~ for the optimizeds,,... = 32 ensemble. From the results, we see the analysis of unvédficavents matches the
numerical results very well.

VIII. CONCLUSIONS

In this paper, we discuss list-message-passing (LMP) degaalgorithms for theg-ary symmetric channelg(SC). It is
shown that capacity-achieving ensembles for the BEC aetiapacity on the-SC when the list size is unbounded. Decoding
thresholds are also calculated by density evolution (DE.&f80 derive a new analysis for the node-based algorithswibded
in [1]. The causes of false verification (FV) are analyzed eartdom entries in the parity-check matrix are used to ntiiga
avoid type-Il FV. Degree profiles are optimized for the LMRcdder and reasonable gains are obtained. Finally, simuakti
show that, with list size larger than 8, the proposed LMP @digm outperforms previously proposed algorithms.

While we focus on the;-SC in this work, there are a number of other applications MPLdecoding that are also quite
interesting. For example, the iterative decoding algarittiescribed in [20] for compressed sensing is actually therak
extension of LM1 to continuous alphabets. For this reados,LtMP decoder may also be used to improve the threshold of
compressed sensing. This is, in some sense, more valuatdedsethere are a number of good coding schemes faor-8@,
but few low-complexity near-optimal decoders for compegssensing.
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Fig. 3. Simulation results for (3,6) regular codes with Bldength 100000.

APPENDIX |
PROOF OF THEOREMZ ]

Proof: Given pA(1 — p(1 — z)) < z for z € (0,1], we start by showing that both; andy; go to zero as goes to
infinity. To do this, we let = sup, ¢ 1) 1pA(1 — p(1 — z)) and note thaty < 1 becausey < p*. It is also easy to see that,
starting fromzy = 1, we havex; < o andz; — 0. Next, we rewrite Eq.[{3) as

1
Yirr = xipn +p (1 —2i) = p(1 =y ) X(1 = p(1 — 1))
(@) 1

< Eai“ +p (1= (Da’ = p(1 —yi)) (A2 +O(a?))
< LAt AL = (1= ) (14 O(a)
(e) 1

< ]—?oz”l + ay; (1 + O(ai)) ,

where (a) follows from p(1 — z) <1 — p/(1)z, (b) follows from A2(1 — p(1 —y)) < A(1 — p(1 —y)), and(c) follows from
pA(1 — p(1 —y)) < ay. It is easy to verify that; 1 < y; as long agy; > Wfo(mm' Therefore, we find thag;, — 0
because the recursion does not have any positive fixed padrits> co. Moreover, one can show thgt eventually decreases
exponentially at a rate arbitrarily close to

Note that the decoding error comes from two reasons, oneeigvtknt that message is not verified and the other one is
the event that the message is falsely verified. Next, we airgggo show that the actual performance of a code converges to
the ensemble average exponentially which means almosy eeele in a capacity-achieving ensemble has capacity-@olie
performance. Note that the concentration effect and thayde€ FV probability hold regardless the error probabilifytioe
decoder converges to zero or not.

We can prove that the performance of a particular code cgesgeio the threshold which is the average performance of a
tree-like ensemble in a similar way in [15], where the averi&gover the graph ensembl&(z), p(z)) and all the channel
inputs. There are two difference between our scenario abl [.&, our algorithm passes a list of values with unbouniisd
size, the second difference is the graph may be irregulauircase. Here we only mention the brief procedure of the proof
We can letZ()/E denote the fraction ofinverifiedmessages at theth iteration, whereF is the number of edges in the
graph. Note thaZ (") denotes the number aficorrect and erasuremessages in [15]. Following [15], we can break failure the
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probability into a tree-like neighborhood term and a Magéile concentration term to get

(5] )
Pr< ze/2>+
(25

wheres is an arbitrary codeword chosen from ensemplep), Z()(s) is the random variable that denotes the number of
erroneous variable-to-check messages dftdecoding iterationsE is the number of edges in the graph. This means the
concentration theorem can be think of consisting of two gaftconcentration, i.e., concentration from a particuladec to

the ensemble with cycles and concentration from a ensemitieaycles to the tree-like ensemble. Notice that the prdof o
the later concentration and the proof of the probability dfee-like neighborhood are not limited to the specific déngd
algorithm and the definition oZ ("), the proof is omitted here. By forming a Doob’s martingaletha edge-exposure and
applying Azuma'’s inequality, we can prove the concentrafiom a particular code to the ensemble in the same manner as
[15]. In our scenario, the proof of bounded differeznce of thartingale, the right hand side of in [15, Eq. (16)] should be

- . . N3D . . . (21
the cardinality of deptt2! directed neighbor o, % The right hand side of in [15, Eq. (17)] should be#y\/e( )‘. The

Z0(s) E[20(s)]

E E

E[Z0(s)]

E — U

_ _ . B 21|\ 2 n #2012 :
£ in applying Azuma’s inequality i$ ", , (4 Ne D +> o1 (ZLJJ\/e D . So far, we prove that, for an arbitrary small
constant/2, there exist positive numbeysand-y, such that ifn > =X, then

€

VAU
(5o 2

E

Note that the similar proof can be found in [15] (the proof dfebrem 2) and [21] (the proof of Theorem 1). Note that [15]
proves for the regular code ensemble and [21] extends thef ppathe irregular code ensemble. So, for an arbitrary code
and an arbitrary small quantity the fraction of unverified message is less than asn goes to infinity.
In [15] and [21], it is proved that, when a code graph is chaseifiormly at random from all possible graphs with degree
distribution pair(A(z), p(z)),
Pr (neighborhood of depthids not tree-likg¢ < %

where~ is a constant independent af So, givene, we can choose large enough such that the number of variable nodes
which are involved in cycles of length less thahis less thame/2 with probability arbitrarily close to one as goes to
infinity. So the probability of error caused by type-ll FVs upper bounded by/2 (for the notation of type-I and type-Il FV,
please refer to Sectidn_VIB). Here, we don’t consider theetyFV’s because the probability of type-l FV's can be forced
arbitrarily close to zero by choosing a large enoygh ]

APPENDIXII
PROOF OFTHEOREM[3]]

The verification occurs in LM1-NB also occurs in LM1-MB ancteiversa. So LM1-NB and LM1-MB are equivalent.
Proof: The operations of LM1-MB and LM1-NB are different becauseytinave different verification rules (see Table.
[). We can prove they are equivalent by showing the verificaticcurs in LM1-MB also occurs in LM1-NB and vice versa,
but in different decoding steps. Let's first look at the chaokle when the summation of all messages equals to zero bat the
are more than 1 messages are unverified. In this case, LM1iNBesify all the messages. In LM1-MB none of them will be
verified but all the values will be correct. In the followinigiation, all these messages will be verified on their végialbdes.
Notice that this is the only case verification occurs in LMB-Rut not in LM1-MB. So verification in LM1-NB also occurs
in LM1-MB. Let’s then look at the variable node when any indngimessage is correct and the channel value is correct. In
LM1-MB, the outgoing message will be verified. In LM1-NB theessage will be correct but not verified. Notice that the
incoming is correct means all the other messages are catdbe check node, so the unverified correct message will be
verified in the next step on check node. Notice that this isathlg case verification occurs in LM1-MB but not in LM1-NB.
So verification in LM1-MB also occurs in LM1-NB. [ |
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Fig. 4. Finite-state machine for Lemrhbap.3.

APPENDIXIII
PrRoOF oFLEMMA 5.1

Let y be the received symbol sequence assuming the all-zero codevas transmitted. Let be any codeword with exactly
k non-zero symbols. It is easy to verify that the probabilitgttML decoder choosasover the all-zero codeword is given by

pa-2 3 (i,j,kﬁi—j)(l_p)i (qfl)j (p(qq—_f))k”'

§=0 i=0

Using the multinomial theorem, it is also easy to verify that

T) = D q—lx =1 x
k—j . i
_ NS k o p Y (pla=2)\" k—i+j
=2 iik—iog) TP g 1 .
im0 im0 \LJ; J q q
k
4 Alacl,

where 4; is the coefficient ofe! in A(x). Finally, we observe that, , = Zfﬁk Ay is simply an unweighted sum of a subset
of terms in A(x) (namely, those wherkg —i + j > k).

This implies that
2k

Ikp27k = ZAl:rk < A(x)
=k
for any x > 1. Therefore, we can compute the Chernoff-type bound

< inf 2 % A(2).
P2 < inf o (z)

By taking derivative ofr—* A(x) overz and setting it to zero, we arrive at the bound

k
q—2 4p(1 —p)
<
pz,k_<Pq_1+ -1

APPENDIX IV
PROOF OFLEMMA

Proof: An unverification event occurs on a degree-2 cycle of lerigtlhen there is at most one correct variable node
in any adjacent set of + 1 nodes. Let the set of all error patterns (i.e., 0 means coared 1 means error) of lengthwhich
satisfy the UV condition beb(s, p, k) C {0,1}*. Using the Hamming weightv(z), of an error pattern as, to count the
number of errors, we can write the probability of UV as

S(s,p, k)= > pUP A —p)FTre.
z€®(s,p,k)

This expression can be evaluated using the transfer matihad to enumerate all weighted walks through a particular
digraph. If we walk through the nodes along the cycle by pigkan arbitrary node as the starting node, the UV constraint
can be seen as-steps of a particular finite-state machine. Since we ar&imglon a cycle, the initial state must equal to the
final state.

The finite-state machine, which is shown in Hig. 4, kas 1 states{0,1,...,s}. Let state 0 be the state where we are
free to choose either a correct or incorrect symbol (i.ee, gheviouss symbols are all incorrect). This state has a self-loop
associated with the next symbol also being incorrect. lagest> 0 be the state where the pastalues consist of one correct
symbol followed byi — 1 incorrect symbols. Notice that only state 0 may generateecbsymbols. By defining the transfer
matrix with (I8), the probability that the UV condition halds thereforep(s, p, k) = Tr (B*(p)). [
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