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Abstract—In this paper, a novel error probability analysis of
orthogonal space-time block coding (OSTBC) over independent
but not necessarily identical Hoyt (Nakagami-q) fading channels
is presented. First, it is shown that for a precise performance
analysis the derivation of the distribution of a quadratic form
in normal random variables is necessary. After representing this
distribution using a chi-squared series expansion a new, tight
upper bound on the series truncation error is obtained. The
proposed bound has a simple form, which allows the derivation
of closed-form truncation error bound expressions for several
performance analysis criteria. Based on the chi-squared series
formulation, closed-form error probability expressions are also
provided. Simulation results show that the proposed bounds are
much tighter compared to previously derived ones and verify our
analytical results.

I. INTRODUCTION

In recent years orthogonal space-time block coding (OS-
TBC) is becoming increasingly popular as an efficient trans-
mit diversity technique to combat fading in wireless com-
munications [1]. This approach offers full spatial diversity
and maximum likelihood performance with linear decoding
complexity. In the past, several performance analysis results
have been reported for OSTBC operating over various classical
fading channels, including Rayleigh, Nakagami-m [2],[3],
and Nakagami-n (Rice) [4]. Another distribution, which has
recently received increased attention in modelling fading chan-
nels is the Hoyt distribution. Several studies have shown that
the Hoyt fading model provides a very accurate fit to experi-
mental channel measurements in various telecommunications
applications. For instance, in [5] this model has been used
in outage analysis of cellular mobile radio systems, while in
[6] a capacity analysis of Hoyt fading is provided. Similarly,
the Hoyt distribution can be considered as an accurate fading
model for satellite links with strong ionospheric scintillation
[7]. However, regarding the performance of OSTBC technol-
ogy over Hoyt fading channels, very few studies have been
published in the open technical literature. These include [8],
where an ergodic capacity analysis is presented, and [9] where
the information outage probability of a OSTBC over Hoyt
fading channels has been studied.

Motivated by the above, in this paper, the performance
of OSTBC operating over independent but not necessarily
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identical Hoyt distributed fading channels is studied. First,
it is shown that for a precise analysis, the distribution of a
positive definite quadratic form in normal random variables
(RVs) must be determined. Among the several approaches
(e.g. [10],[11],[12]) that have been proposed for the probability
density function (PDF) of such a quadratic form we adopt the
chi-squared expansion method, due to its simplicity, mathe-
matical tractability and fast convergence. Then, a novel upper
bound for the series expansion truncation error is derived. It
turns out that this bound is much tighter than other previously
derived bounds [10],[11]. The bound is also presented in a
convenient simple form, which allows the derivation in closed-
form of various performance metrics truncation error bounds
for OSTBC over Hoyt fading channels. Based on the chi-
squared series representation, novel closed-form expressions
are also derived for the bit error probability (BEP) and symbol
error probability (SEP) of various modulation schemes. It
should be emphasized that the derivation of the PDF bound is
quite general and can be applied to any fading model described
by a positive definite quadratic form in normal RVs, as well
as for other relevant applications [12].

The outline of this paper is as follows. In Section II,
OSTBC over Hoyt fading is examined and its connection with
quadratic forms is established. In Section III, the chi-squared
expansion is defined and a new truncation error bound is
derived. In Section IV, closed-form SEP and BEP expressions
are given and error bounds on these expressions are provided.
Simulation results are presented in Section V.

II. PROBLEM FORMULATION

Let us consider an OSTBC multiple-input multiple-output
(MIMO) system with nt transmit and nr receive antennae. It
can be shown that the signal to noise ratio (SNR) per bit, γ,
at the receiving end is expressed as [1]

γ =
‖H‖2

F

Rnt
γt (1)

where R is the rate of the space-time code and γt is the
SNR per bit at the transmitter side, defined as the ratio of the
transmitted energy per bit over the noise power. In addition,

‖H‖2
F =

nr∑
p=1

nt∑
j=1

|hpj |2 (2)

is the square of the Frobenius norm of the channel matrix,
where |hpj | stands for the amplitude of the fading coefficient
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between the pth receive and jth transmit antenna. Assuming
that |hpj | are independent Hoyt distributed RVs1, the PDF of
the RV zpj = |hpj |2 is given by [13]

pzpj
(x) =

(
1 + q2

pj

)
2qpjΩpj

exp

[
−
(
1 + q2

pj

)2
x

4q2
pjΩp,j

]
I0

((
1 − q4

pj

)
x

4q2
pjΩpj

)
(3)

for x ≥ 0, where Ωpj = E[|hpj |2], E [·] being the expectation
operator, I0(·) is the zeroth order modified Bessel function of
the first kind and qpj is the fading parameter of the correspond-
ing Hoyt channel. It is known that a squared Hoyt RV can
be expressed as the sum of squares of two independent zero-
mean normal RVs with different variances [14]. Therefore, for
independent |hpj |, (2) can be expressed as

‖H‖2
F

d=
n∑

i=1

σ2
i y2

i (4)

where n = 2ntnr, yi’s are standard independent normal RVs,
σi’s are related to the parameters of the corresponding Hoyt

RVs and ’
d=’ denotes equality in distribution. Clearly, using

(4), (1) can be written as

γ
d=

n∑
i=1

aiy
2
i (5)

with ai = σ2
i γt/Rnt. Hence, in order to obtain the perfor-

mance criteria of OSTBC over Hoyt fading channels the PDF
of γ, which is a positive definite quadratic form, must be
properly defined. In the following section the required PDF is
expressed based on a chi-squared series expansion and a very
tight upper bound on the series truncation error is derived.

III. TRUNCATION ERROR BOUND FOR THE PDF OF A

QUADRATIC FORM

It is convenient to represent the right hand side (RHS) of
(5) by the following RV

Q =
n∑

i=1

aiy
2
i . (6)

Note that in our case n is even, while yi, i = 1, 2, . . . , n, are
zero mean, unit variance i.i.d. normal RVs, and ai are positive
constants. In general, there is no known analytical expression
for the PDF of Q. Instead, this PDF can be represented by
an appropriate series expansion [12]. Using a chi-squared
expansion, the PDF of Q can be expressed as an infinite series
[12, pp. 115 - 123]

pQ (x) =
∞∑

k=0

ckf (x, 2β, n/2 + k) (7)

where

f (x, b, l) =
xl−1 exp (−x/b)

blΓ (l)
(8)

1It should be mentioned that the proposed analysis can be slightly modified
to deal also with correlated Hoyt fading. However, due to space limitations
this issue will not be further discussed here.

where Γ(·) is the gamma function and β a parameter controling
the convergence of (7). The coefficients ck of the expansion
are given by

ck = c0E
[
Zk
]
/
(
2kk!

)
, with c0 =

n∏
i=1

(β/ai)
1/2 (9)

where E[Zk] is the k-th moment of a quadratic form Z defined
as

Z
∆=

n∑
i=1

ηiy
2
i , with ηi = 1 − β/ai. (10)

Note that the convergence of the series (7) depends on the
spread of the values ai, i.e. on the ratio [max

i
{ai} /min

i
{ai}]

with small spreads leading to faster convergence. Assuming
that the first N +1 terms are retained from the series in (7), in
order to obtain a truncation error bound the following quantity
must be properly bounded

e (x) =
∞∑

k=N+1

|ck| f (x, 2β, n/2 + k). (11)

For this to happen, a bound on |ck| must be determined or
equivalently from (9) the amplitude of the moments of Z
must be properly bounded. In [11], by defining the following
quadratic form

W =
n∑

i=1

|ηi| y2
i (12)

and using the inequality

∣∣E [Zk
]∣∣ ≤ E

[
W k
] ≤ max

i
|ηi|E


( n∑

i=1

y2
i

)k

 (13)

the following bound on |ck| has been obtained

|ck| ≤ c0

(
max

i
{|ηi|}

)k

Γ (n/2 + k) /[k!Γ (n/2)]. (14)

However, performance evaluation results have shown that the
bound obtained by the above inequality is rather loose (see
Fig. 1). In order to derive a much tighter bound, it is noted
that the number of terms n is even, while W can be written
as follows

W =
n∑

i=1

λiu
2
i (15)

where λi and ui are proper permutations of |ηi| and yi respec-
tively, such that λi are in decreasing order, for i = 1, 2, . . . , n.
The basic idea here is to formulate a new quadratic form which
results from W by grouping in pairs successive squared normal
RVs u2

i , i.e.,

V =
n/2∑
i=1

λ2i−1

(
u2

2i−1 + u2
2i

)
. (16)

Comparing (15) and (16), clearly W ≤ V and thus E
[
W k
] ≤

E
[
V k
] ∀k. Furthemore and most importantly the moments

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



of V can be now easily obtained using its moment generating
function (MGF)

MV (t) =
n/2∏
i=1

1
(1 − 2λ2i−1t)

. (17)

By employing partial fractions and assuming that all λ2i−1 are
distinct2, (17), is expressed as:

MV (t) =
n/2∑
i=1

Ai
1

(1 − 2λ2i−1t)
(18)

where

Ai = λ
n/2−1
2i−1

n/2∏
l=1
l �=i

1
λ2i−1 − λ2l−1

. (19)

Noting that (18) corresponds to the MGF of a RV that is a
mixture of gamma distributed RVs, it can be shown that the
moments of V can be found as:

E
[
V k
]

=
n/2∑
i=1

Aik! (2λ2i−1)
k
. (20)

Since
∣∣E [Zk

]∣∣ ≤ E
[
W k
] ≤ E

[
V k
]
, from (9),(19), and (20)

the following very simple bound for |ck| can be obtained

|ck| ≤ c0

n/2∑
i=1

∆iλ
n/2+k−1
2i−1 , with ∆i =

n/2∏
l=1
l �=i

1
λ2i−1 − λ2l−1

.

(21)
A tight truncation error bound, eb (x), can now be obtained
by substituting (21) in the RHS of (11), i.e.,

eb (x) =
∞∑

k=N+1

n/2∑
i=1

∆ic0λ
n/2+k−1
2i−1 f (x, 2β, n/2 + k). (22)

Defining the series

d (x, a, β)
∆=

∞∑
k=0

akf (x, 2β, k + 1) (23)

it is easily observed from (8) that (23) can be expressed as

d (x, a, β) = exp [− (1 − a) x/2β] /2β. (24)

Furthermore, it can be proved that the series in (23) converges
uniformly for a > 0, as long as a < 1. Hence, by selecting β
such that λ2i−1 < 1 for all i, the uniform convergence of (7)
can be ensured and the truncation error bound is expressed in
closed-form as

eb (x) = c0

n/2∑
i=1

∆ig (x, λ2i−1, β,N + n/2 − 1) (25)

where

g (x, a, β,m) = d (x, a, β) −
m∑

k=0

akf (x, 2β, k + 1). (26)

2This is a reasonable assumption since we have considered non-identically
distributed Hoyt fading.

Notice that the expression of the truncation error comprises
simple elementary functions only. It will become clear in the
next section that this form of eb (x) dramatically simplifies the
error probability performance analysis.

IV. ERROR PROBABILITY ANALYSIS

In this section SEP and BEP closed-form expressions and
error bounds are provided for PAM and QAM schemes em-
ploying OSTBC over Hoyt fading channels. For this purpose,
integrals of the following form must be evaluated

PE =
∞∑

k=0

ck

∞∫
0

f (γ, 2β, n/2 + k) P (γ) dγ (27)

where f (·, ·, ·) is defined in (8), and P (·) is a function related
to the modulation scheme. Additionally, using (25) bounds on
the truncation error of the SEP and BEP series can be obtained
by evaluating the integral

E =

∞∫
0

eb (γ) P (γ) dγ (28)

A. SEP Expressions

Having obtained the PDF of γ the SEP for several modu-
lation schemes can be easily obtained, as follows:

1) M-PAM SEP: For an M -PAM modulation scheme,
P (γ) is given by [13]

P (γ) = CQ (A
√

γ) (29)

where Q (·) is the Gaussian Q-function and A, C are
modulation-specific constants given in [13, pp. 224-225, 252
]. For integer m, it is shown that [13, pp. 127 ]

L (A, b,m) =

∞∫
0

f (γ, b,m) Q (A
√

γ)dγ =

1
2

[
1 − µ

m−1∑
l=0

(
2l
l

)(
1 − µ2

4

)l
] (30)

where
µ =

(
A2 (b/2) /

(
1 + A2 (b/2)

))1/2
. (31)

Then, using (27) and (30), the SEP for M -PAM can be
expressed as

PEs =
2 (M − 1)

M

∞∑
k=0

ckL (A, 2β, n/2 + k). (32)

Additionally, from (25) and (30), after some manipulations,
the truncation error bound of PEs

can be expressed in closed-
form as

EPAMs =Cc0

n/2∑
i=1

∆iL (A, 2β/ (1 − λ2i−1) , 1)/(1 − λ2i−1)

− Cc0

n/2∑
i=1

∆i

N+n/2−1∑
l=0

λl
2i−1L (A, 2β, l + 1)

(33)

which can be very easily evaluated.
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2) M-QAM SEP: For square M -QAM , P (γ) is [13]

P (γ) = 1 − [1 − 2FQ (A
√

γ)]2 (34)

with F and A defined in [13, pp. 225-227,254 ]. Thus, taking
into consideration the following relation ([13, pp. 130 ])

H (A, b,m) =

∞∫
0

f(γ, b,m)Q2 (a
√

γ) dγ =

1
4
− 1

π
ρ

{(π

2
− ν
)m−1∑

l=0

(
2l
l

)
1

(4 (1 + c))l

− sin (ν)
m−1∑
l=1

l∑
j=1

Tjl

(1 + c)l
[cos (ν)]2(l−j)+1

}

(35)

with c, ρ, Tj,l defined in [13, pp. 130 - 131] and ν = tan−1 ρ
after some manipulations, the SEP for an M -QAM is ex-
pressed in a compact form as

PEs =4

(√
M − 1√

M

) ∞∑
k=0

ck

{
L (A, 2β, n/2 + k)−

(√
M − 1√

M

)
H (A, 2β, n/2 + k)

} . (36)

Similar to the PAM case, the equivalent truncation error bound
in (36) can be expressed in closed-form as

EQAMs =4c0F

{
n/2∑
i=1

∆i
L (A, 2β/ (1 − λ2i−1) , 1)

(1 − λ2i−1)

−
n/2∑
i=1

∆i

N+n/2−1∑
l=0

λl
2i−1L (A, 2β, l + 1)

− F

n/2∑
i=1

∆i
H (A, 2β/ (1 − λ2i−1) , 1)

(1 − λ2i−1)

+ F

n/2∑
i=1

∆i

N+n/2−1∑
l=0

λl
2i−1H (A, 2β, l + 1)

(37)

B. BEP Expressions

In the following, BEP expressions and truncation error
bounds for PAM and square QAM are derived.

1) M-PAM BEP: For the calculation of BEP for an M -PAM
system with Gray coding, P (γ) is defined as [15]

P (γ) =
1

log2 M

log2 M∑
j=1

Pb (j, γ) (38)

where

Pb (j, γ) =
2
M

(1−2−j)M−1∑
i=0

{
(−1)�i2j−1/M� ×

(
2j−1 −

⌊
i2j−1

M
+

1
2

⌋)
×

Q

(
(2i + 1)

√
6 log2 Mγ

(M2 − 1)

)}
(39)

Consequently, using (30) the BEP can be written as

PEb =
∞∑

k=0

ck

log2 M

log2 M∑
j=1

Pbj (2β, n/2 + k) (40)

with

Pbj (2β,m) =
2
M

(1−2−j)M−1∑
i=0

{(−1)�i2j−1/M� ×
(

2j−1 −
⌊

i2j−1

M
+

1
2

⌋)
×

L (Di, 2β,m)

(41)

and

Di = (2i + 1)

√
6 log2 M

M2 − 1
. (42)

Its truncation error bound becomes

EPAMb =
n/2∑
i=1

c0∆i

log2 M

log2 M∑
j=1

Pbj (2β/ (1 − λ2i−1) , 1)
(1 − λ2i−1)

−

n/2∑
i=1

c0∆i

log2 M

N+n/2−1∑
l=0

λl
2i−1

log2 M∑
j=1

Pbj (2β, l + 1)

(43)

2) M -QAM BEP: It is well known that the BEP of a square
M -QAM with Gray coding, is equal to the BEP of an

√
M

PAM [15]. Therefore, by substituting M by
√

M in (40) and
(41) expressions for the BEP of M -QAM over Hoyt fading
channels can be obtained, while similarly an expression for
the truncation error can be found.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, performance evaluation results will be pre-
sented comparing the previously derived theoretical analysis
with computer simulations. In our computer simulation ex-
periments, we have considered a 2 × 2 MIMO system with
Alamouti space-time coding [1]. In Fig. 1, truncation error
bounds of the chi-squared series PDF for two Hoyt fading
scenarios are depicted. In the first scenario, the channel fading
coefficients are quite similar, i.e., (Ω1,1, q1,1) = (0.25, 0.9),
(Ω1,2, q1,2) = (0.25, 0.8) (Ω2,1, q2,1) = (0.25, 0.75),
(Ω2,2, q2,2) = (0.25, 0.7), resulting in a small spread of the
quadratic form parameters ai in (5). In the second scenario,
a large spread is obtained by selecting the Hoyt parame-
ters as (Ω1,1, q1,1) = (0.4, 0.4), (Ω1,2, q1,2) = (0.3, 0.5)
(Ω2,1, q2,1) = (0.2, 0.6), (Ω2,2, q2,2) = (0.1, 0.8). The value
of the parameter β has been chosen to maximize the conver-
gence of the chi-squared series in (7) according to the relation
[10],[11]

β =
2max

i
{ai}min

i
{ai}

max
i

{ai} + min
i

{ai} . (44)

Moreover, for the first scenario N = 15 and for the second
N = 20. It can be observed from Fig. 1 that in both fading
scenarios the proposed bound is meaningful and much tighter
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Fig. 1. Comparison of chi-squared series PDF truncation error bounds
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Fig. 2. BEP for OSTBC over Hoyt fading

than the bound derived in [11], with the latter appearing to be
impractical for large spreads of the quadratic form parameters.

Theoretical and experimental evaluation of the BEP for 8-
PAM and 16-QAM for the second fading scenario is shown
in Fig. 2. The theoretical curves have been obtained by
retaining 21 terms from the BEP series expression in (40). It is
noted that theoretical and experimental results almost coincide,
thus veryfing the fast convergence of the chi-squared series
expansion and the validity of proposed theoretical analysis.

In Fig. 3, the corresponding BEP truncation error bounds
given by (43), for N = 15 and N = 20 are depicted. By
comparing Figs. 2 and 3, it can be seen that for N = 20 a
very reliable bound is obtained, which is at least one order of
magnitute lower than the BEP itself for all SNRs. Moreover,
as shown in Fig. 3, a slight increase in the number of series
terms that are retained leads to a significant improvement of
the proposed bounds.

Similar performance evaluation results have been obtained
using (32) and (36). However due to space limitations, these
results are not presented here.
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