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Abstract— In this paper, the design of distributed space-
frequency codes (DSFCs) implementing the decode-and-forward
(DAF) protocol for wireless relay channels is considered. The
proposed DSFCs are designed to achieve the frequency and
cooperative diversities of the wireless relay channels. A two-hop
system model, where there is no direct link from the source node
to the destination node, is considered. We propose to use two
stages of coding, namely, source node coding and relay nodes
coding. The proposed DSFCs are proved to achieve full diversity
of order NL where N is the number of relay nodes andL is the
number of paths per channel.

I. I NTRODUCTION

Wireless channels have a lot of impairments such as fad-
ing, shadowing, and multiuser interference which can highly
degrade the system performance. This has increased the thrill
towards the study of wireless channels to overcome their
impairments. Spatial diversity has proved to be an eminent
candidate for combating the wireless channels impairments
and hence, achieving the signal quality and high data rate
promised by the future multimedia services. In wireless ap-
plications, it is affordable to have multiple antennas at the
base station but it is difficult to equip the small mobile units
with more than one antenna due to space constraints of the
small mobile units. Hence, the use of multiple antennas at the
mobile units is limited. This gave rise to what is known as
cooperative diversity, in which the nodes try to form a virtual
multiple element transmit antenna.

The techniques of cooperative diversity have been in-
troduced, for example, by Sendonaris in the context of
CDMA systems [1]. In [2], different protocols were pro-
posed to achieve spatial diversity through node cooperation.
Among those protocols are the decode-and-forward (DAF)
and amplify-and-forward (AAF) protocols. In the decode-and-
forward protocol with one relay node, the relay node decodes
the source symbol before re-transmitting to the destination.
In the amplify-and-forward protocol with one relay node, the
relay normalizes the received signal and then amplifies it
before re-transmission.

The problem with the previous protocols is the loss in the
data rate as the number of relays increases and this leads to
the use of what is known asdistributed space-time coding
(DSTC) [3]. DSTC are designed to achieve diversity over
flat, frequency non-selective, fading channels. For the case

of multipath fading channels, the design of distributed space-
frequency codes (DSFCs) is crucial to exploit the frequency
diversity of the channel. The presence of multipaths provides
another mean for achieving diversity across the frequency axis.
Exploiting the frequency axis diversity can highly improve the
system performance, by achieving higher diversity orders.

The design of DSFCs was considered in [4] in which
DSFCs, based on OFDM modulation, were designed for a
system employing the DAF protocol. The authors assume that
all the relays always decode correctly, which is not always
true especially over wireless fading channels. The presence
of the cyclic prefix in OFDM modulation can mitigate relays
synchronization errors which is also a property of our proposed
OFDM based DSFCs.

In this paper, we consider the design of distributed space-
frequency codes (DSFCs) that can exploit the multipath nature
of the wireless relay channels. By exploiting the frequency di-
versity of the channel higher performance gains are achievable
especially at high signal-to-noise ratio (SNR). We consider the
use of the DAF protocol as the user cooperation protocol. We
derive sufficient conditions for the proposed code structure to
achieve full diversity. We prove that the proposed DSFC can
achieve full diversity of orderNL where N is the number
of cooperating relay nodes andL is the number of paths per
channel.

Notations:bxc denotes the largest integer that is less than
x. diag(y), wherey is aT × 1 vector, is theT ×T diagonal
matrix with the elements ofy on its diagonal.A⊗B denotes
the tensor product of the two matricesA andB. ||A||2F of the
m× n matrix A is the Frobenius norm of the matrix defined
as ||A||2F =

∑m
i=1

∑n
j=1 |A(i, j)|2.

II. SYSTEM MODEL

In this section, the system model for the DSFCs with
the DAF protocol is presented. A two-hop relay channel
model, where there is no direct link from the source node
to the destination node, is used. A simplified system model is
depicted in Fig. 1. The system is based on OFDM modulation
with K subcarriers. The channel between the source node and
the n-th relay node is modeled as a multipath fading channel
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Fig. 1. Simplified system model for the distributed space-frequency codes.

with L paths as

hs,rn
(τ) =

L∑

l=1

αs,rn
(l)δ(τ − τl), (1)

whereτl is the delay of thel-th path,δ(·) is the Dirac delta
function, andαs,rn(l) is the complex amplitude of thel-
th path. Theαs,rn

(l)’s are modeled as zero-mean complex
Gaussian random variables with varianceE

[|αs,rn(l)|2] =
σ2(l), where we assume symmetry between the relay nodes for
simplicity of presentation. The analysis can be easily extended
to the asymmetric case. The channels are normalized such that
the channel variance

∑L
l=1 σ2(l) = 1.

The channel frequency response is given by

Hs,rn(f) =
L∑

l=1

αs,rn(l)e−j2πfτl . (2)

A cyclic prefix is introduced to convert the multipath
frequency-selective fading channels to flat fading subchannels
on the subcarriers.

The system has two phases, as follows. In phase 1, ifN
relays are assigned for helping the source node, the source
node broadcasts the information to theN relays. The received
signal in the frequency domain on thek-th subcarrier at the
n-th relay node is given by

ys,rn(k) =
√

PsHs,rn(k)s(k) + ηs,rn(k), k = 1, · · · ,K,
(3)

wherePs is the transmitted source node power,Hs,rn(k) is the
channel attenuation of the source node to then-th relay node
channel on thek-th subcarrier,s(k) is the transmitted source
node symbol on thek-th subcarrier withE

{|s(k)|2} = 1,
and ηs,rn(k) is the n-th relay node additive white Gaussian
noise on thek-th subcarrier.ηs,rn(k) is modeled as zero-mean
circularly symmetric complex Gaussian random variable with
varianceN0/2 per dimension. The subcarrier noise terms are
statistically independent assuming that the time domain noise
samples are statistically independent1. Hs,rn(k) is given by

Hs,rn(k) =
L∑

l=1

αs,rn(l)e−j2π(k−1)∆fτl , k = 1, · · · ,K, (4)

1FFT, which is used to transform the received data from the time domain to
the frequency domain, can be represented by a unitary matrix multiplication.
Unitary transformations of a Gaussian random vector, whose components are
statistically independent, results in a Gaussian random vector with statistically
independent components.

where ∆f = 1/T is the subcarrier frequency separation
and T is the OFDM symbol duration. We assume perfect
channel state information at any receiving node but no channel
information at transmitting nodes.

In phase 2, relays that have decoded correctly in phase 1 will
forward the source node information. Each relay is assumed
to be able to decide whether it has decoded correctly or not.
This can be achieved through the use of either error detecting
codes or the use of SNR thresholds at the relay nodes. Relays
will only forward the source node information if the received
SNR is larger than the threshold [5].

The transmittedK × N space-frequency (SF) codeword
from the relay nodes is given by

Cr =




Cr(1, 1) Cr(1, 2) · · · Cr(1, N)
Cr(2, 1) Cr(2, 2) · · · Cr(2, N)

...
...

.. .
...

Cr(K, 1) Cr(K, 2) · · · Cr(K,N)


 , (5)

where Cr(k, n) is the symbol transmitted by then-th relay
node on thek-th subcarrier. The SF is assumed to satisfy the
power constraint||Cr||2F ≤ K.

The received signal at the destination node on thek-th
subcarrier is given by

yd(k) =
√

Pr

N∑
n=1

Hrn,d(k)Cr(k, n)In + ηrn,d(k), (6)

wherePr is the relay node power,Hrn,d(k) is the attenuation
of the channel between then-th relay node and the destination
node on thek-th subcarrier,ηrn,d(k) is the destination additive
white Gaussian noise on thek-th subcarrier, andIn is the state
of then-th relay.In will equal 1 if then-th relay has decoded
correctly in phase 1, otherwise,In will equal 0.

III. PERFORMANCEANALYSIS

It is now necessary to develop sufficient code design criteria
for the DSFC to achieve full diversity of orderNL. The
proposed DSFCs will have two stages of coding: the first stage
is coding at the source node and the second stage is coding at
the relay nodes.

A. Source Node Coding

The transmitted source node code will be designed to
guarantee a diversity of orderL at the relay nodes, and this
will in turn cause the proposed DSFC to achieve full diversity
of order NL as will be shown later. Due to the symmetry
assumption, the pairwise error probability (PEP) is the same
at any relay node. For two distinct transmitted source node
symbols,s and s̃, the PEP can be tightly upper bounded as
[6], [7]

PEP (s → s̃) ≤
(

2ν − 1
ν

) (
ν∏

i=1

λi

)−1 (
Ps

N0

)−ν

(7)

andν is the rank of the matrixC ◦R where

C = (s− s̃)(s− s̃)H,



R = E
{
Hs,rn

HH
s,rn

}
,

and Hs,rn = [Hs,rn(1), · · · ,Hs,rn(K)]T . λi’s are the non-
zero eigenvalues of the matrixC ◦ R, where◦ denotes the
Hadamard product2.

The correlation matrix,R, of the channel impulse response
can be found as

R = E
{
Hs,rn

HH
s,rn

}

= WE
{
αs,rnαHs,rn

}
WH

= Wdiag{σ2(1), σ2(2), · · · , σ2(L)}WH,

(8)

where

αs,rn
= [αs,rn

(1), αs,rn
(2), · · · , αs,rn

(L)]T ,

W =




1 1 · · · 1
wτ1 wτ2 · · · wτL

...
...

. ..
...

w(K−1)τ1 w(K−1)τ2 · · · w(K−1)τL


 ,

andw = e−j2π∆f .
The coding at the source node is implemented to guarantee

a diversity of orderL, which is the maximum achievable
diversity order at the relay nodes. The transmittedK × 1
source node code is partitioned into subblocks of lengthL. Let
M = bK/Lc denote the number of subblocks in the source
node transmitted OFDM block. The transmittedK× 1 source
node code is given as

s = [s(1), s(2), · · · , s(K)]T = [FT
1 ,FT

2 , · · · ,FT
M ,0T

K−ML]T ,
(9)

where Fi = [Fi(1), · · · , Fi(L)]T is the i-th subblock of
dimensionL × 1. Zeros are padded ifK is not an integer
multiple of L. For any two distinct source codewords,s and
s̃ = [F̃T

1 , F̃T
2 , · · · , F̃T

M ,0T
K−ML]T , at least one indexp0 exists

for which Fp0 is not equal toF̃p0 .
Based on the proposed structure of the transmitted code

from the source node, sufficient conditions for the code to
achieve a diversity of orderL at the relay nodes are derived.
We assume fors ands̃ thatFp = F̃p for all p 6= p0. This does
not decrease the rank of the matrixC◦R [7]. Define theL×L
matrix Q = {qi,j} as qi,j =

∑L
l=1 σ2(l)w(i−j)τ(l), 1 ≤

i, j ≤ L. Note that the non-zero eigenvalues of the matrix
C ◦R are the same as those of the matrix

(
Fp0 − F̃p0

)
(
Fp0 − F̃p0

)H
◦Q. Hence, we have

(
Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q

=
[
diag

(
Fp0 − F̃p0

)
1L×Ldiag

(
Fp0 − F̃p0

)H]
◦Q

= diag
(
Fp0 − F̃p0

)
Q diag

(
Fp0 − F̃p0

)H

(10)

2If A = {ai,j} andB = {bi,j} are twom× n matrices, the Hadamard
product is defined asD = A ◦B = {di,j}, wheredi,j = ai,jbi,j .

where1L×L is theL×L matrix whose all elements are ones.
The last equality follows from a property of the Hadamard
product ([8], p.304).

If all of the eignenvalues of the matrix(
Fp0 − F̃p0

) (
Fp0 − F̃p0

)H
◦ Q are non-zero, then

their product can be calculated as

det
((

Fp0 − F̃p0

)(
Fp0 − F̃p0

)H
◦Q

)

= det
(
diag

(
Fp0 − F̃p0

))
det (Q) det

(
diag

(
Fp0 − F̃p0

)H
)

=
L∏

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

(det(Q)) .

(11)

The matrix Q is non-singular. Hence, if the product∏L
l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

is non-zero over all possible pairs of
distinct transmitted source codewords,s ands̃, then a diversity
of orderL will be achieved at each relay node.

In phase 2, relays that have decoded correctly in phase 1
will forward the source node information. The received signal
at the destination node on thek-th subcarrier is as given in
(6). The state of then-th relay nodeIn is a Bernoulli random
variable with a probability mass function (pmf) given by

In =

{
0 with probability= SER

1 with probability= 1− SER,
(12)

where SER is the symbol error rate at then-th relay
node. Note thatSER is the same for any relay node
due to the symmetry assumption. If the transmitted code
from the source node is designed such that the product∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣
2

is non-zero, for at least one index
p0, over all the possible pairs of distinct transmitted source
codewords,s and s̃, then theSER at then-th relay node can
be upper bounded as

SER =
∑

s∈S
Pr{s}Pr{error given thats was transmitted}

≤
∑

s∈S
Pr{s}

∑

s̃∈S ,̃s6=s

PEP (s → s̃)

≤ c× SNR−L,
(13)

whereS is the set of all possible transmitted source codewords
and c is a constant that does not depend on theSNR. The
first inequality follows from the union upper bound and the
second inequality follows from (7), whereSNR is defined as
SNR = Ps/N0.

B. Relay Nodes Coding

Next, the design of the SF code at the relay nodes to
achieve a diversity of orderNL is considered. We propose to
design SF codes constructed from the concatenation of block
diagonal matrices, which is similar to the structure used in [7]
to design full-rate, full-diversity space-frequency codes. The



only difference between our system and the SF coding done in
[7] comes from the fact that in our system not all of the relay
nodes will always transmit their parts of the SF code, while
in [7], all of the antennas will always transmit their codes.

Let P = bK/NLc denote the number of subblocks in
the transmitted OFDM block from the relay nodes. The
transmittedK ×N SF codeword from the relay nodes, if all
relays decoded correctly, is given by

Cr = [GT
1 ,GT

2 , · · · ,GT
P ,0T

K−PLN ]T , (14)

whereGi is the i-th subblock of dimensionNL ×N . Zeros
are padded ifK is not an integer multiple ofNL. EachGi

is a block diagonal matrix that has the structure

Gi =




X1L×1 0L×1 · · · 0L×1

0L×1 X2L×1 · · · 0L×1

...
...

. . .
...

0L×1 0L×1 · · · XNL×1


 (15)

and letX = [XT
1 ,XT

2 , · · · ,XT
N ] = [x(1), x(2), · · · , x(NL)].

For two distinct transmitted source codwords,s and s̃, and
a given realization of the relays statesI = [I1, I2, · · · , In]T ,
the conditional PEP can be tightly upper bounded as

PEP (s → s̃/I) ≤
(

2κ− 1
κ

) (
κ∏

i=1

ηi

)−1 (
Pr

N0

)−κ

,

(16)
andκ is the rank of the matrixC(I) ◦R where

C(I) = (Cr − C̃r)diag(I)(C− C̃r)H.

For two source codewords,s ands̃, at least one indexp0 exists
for which Gp0 6= G̃p0 . We assume fors and s̃ thatGp = G̃p

for all p 6= p0. As for the source node coding case, this does
not decrease the rank of the matrixC(I)◦R that corresponds
to any realizationI of the relays states.

Define theNL×NL matrix S = {si,j} as

si,j =
L∑

l=1

σ2(l)w(i−j)τ(l), 1 ≤ i, j ≤ NL.

Note that the non-zero eigenvalues of the matrixC(I) ◦ R
are the same as the non-zero eigenvalues of the matrix(
Gp0(I)− G̃p0(I)

)(
Gp0(I)− G̃p0(I)

)H
◦S whereGp0(I)

is formed fromGp0 by setting the columns corresponding to
the relays that have decoded erroneously to zeros. Hence,
(
Gp0(I)− G̃p0(I)

)(
Gp0(I)− G̃p0(I)

)H
◦ S

=
(
diag(X− X̃) (diag(I)⊗ 1L×1) (diag(I)⊗ 1L×1)

H

× diag(X− X̃)H
)
◦ S

=
(
diag(X− X̃) (diag(I)⊗ 1L×L)diag(X− X̃)H

)
◦ S

= diag(X− X̃) [(diag(I)⊗ 1L×L) ◦ S]diag(X− X̃)H,
(17)

where the second and the third equalities follow from the
properties of the tensor and Hadamard products [7], [8].

Let nI =
∑N

n=1 In denote the number of relays that have
decoded correctly corresponding to a realizationI of the relays
states. Using (17), the product of the non-zero eigenvalues of
the matrixC(I) ◦R can be found as

κ∏

i=1

ηi =




NL∏

i=1, i∈I
|x(i)− x̃(i)|2


 · (det(S0))

nI (18)

whereI is the index set of symbols that are transmitted from
the relays that have decoded correctly corresponding to the
realizationI andS0 = {si,j}, 1 ≤ i, j ≤ L. The result in (18)
is based on the assumption that the product

∏NL
i=1, i∈I} |x(i)−

x̃(i)|2 is non-zero. The first product in (18) is overnIL terms.
The matrixS0 is always full rank of orderL. Hence, designing
the product

∏NL
i=1, i∈I} |x(i) − x̃(i)|2 to be non-zero will

guarantee a rate of decay, at high SNR, of the conditional PEP
asSNR−nIL, where SNR is now defined asSNR = Pr/N0.
To guarantee that this rate of decay,SNR−nIL, is always
achieved irrespective of the state realizationI of the relay
nodes then the product

∏NL
i=1 |x(i)−x̃(i)|2 should be non-zero.

Hence, designing the product
∏NL

i=1 |x(i) − x̃(i)|2 to be non-
zero for any pair of distinct source codewords is a sufficient
condition for the conditional PEP to decay asSNR−nIL for
any realizationI, wherenI is the number of relays that have
decoded correctly corresponding toI.

Now, we calculate the PEP at the destination node for
our proposed DSFC structure. Letcr denote the number of
relays that have decoded correctly. Thencr follows a Binomial
distribution as3

Pr{cr = k} =
(

N
k

)
(1− SER)kSERN−k, (19)

whereSER is the symbol error rate at the relay nodes. The
destination PEP is given by

PEP (s → s̃)

=
∑

I

Pr{I}PEP (s → s̃/I)

=
N∑

k=0

Pr{cr = k}
∑

{I:nI=k}
PEP (s → s̃/I)

=
N∑

k=0

(
N
k

)
(1− SER)kSERN−k

∑

{I:nI=k}
PEP (s → s̃/I),

(20)

Using the upper bound on theSER at the relay nodes given
in (13) and the expression for the conditional PEP at the
destination node in (16), and upper bounding(1− SER) by
1, we can easily show that

PEP (s → s̃) ≤ constant× SNR−NL. (21)

3cr is a Binomial random variable as it is the sum of independent identically
distributed Bernoulli random variables.



Hence, our proposed structure for DSFCs with two-stage
coding at the source node and the relay nodes achieves a
diversity of orderNL, which is the rate of decay of the PEP
at high SNR.

For coding at the source and relay nodes we will use a linear
mapping to form the transmitted subblocks,D = VT×T sG,
where sG is a T × 1 source symbols vector.sG is carved
from QAM or PSK constellations. The goal is to maximize

the productmins6=s̃

∏T
m=1

∣∣∣D(m) − D̃(m)
∣∣∣
2

, wheres and s̃
are two distinct source symbols vectors. It was proposed in [9]
and [10] to use both Hadamard transforms and Vandermonde
matrices to design theVT×T matrix. The transforms based
on the Vandermonde matrices proved to give larger minimum
product distance than the Hadamard based transforms. Two
classes of optimum transforms were proposed in [9] as follows.

1) If T = 2k (k ≥ 1), the optimum transform is given by
Vopt = 1√

T
vander(θ1, θ2, ..., θT ), where θ1, θ2, ..., θT

areθn = ej 4n−3
2T π, n = 1, 2, ..., T.

2) If T = 3.2k (k ≥ 0), the optimum transform is given by
Vopt = 1√

T
vander(θ1, θ2, ..., θT ), where θ1, θ2, ..., θT

areθn = ej 6n−1
3T π, n = 1, 2, ..., T.

IV. SIMULATION RESULTS

In this section, we present some simulation results for the
proposed DSFCs. In all simulations, the source is assumed to
have two relay nodes helping in forwarding its information.
Fig. 2 shows the case of a simple two-rayL = 2 with a delay
τ = 5µsec between the two rays and the case ofL = 4
with a delay profile given as[0, 5µsec, 10µsec, 15µsec]. For
the case ofL = 2, the two rays have equal variances, i.e.,
σ2(1) = σ2(2). For the case ofL = 4, the rays are modeled
to have equal powers, i.e.,σ2(l) = σ2, l = 1, · · · , 4. The
number of subcarriers isK = 128 with a system bandwidth
of 1 MHz. We use BPSK modulation and Vandermonde based
linear transformations. Fig. 2 shows the SER of the proposed
DSFCs versus the SNR defined asSNR = Ps+Pr

N0
, and we use

Ps = Pr. We simulated three cases: all channel variances are
ones, relays close to source, and relays close to destination.
For the case of relays close to source, the variance of any
source-relay channel is taken to be 10 and the variance of any
relay-destination channel is taken to be 1. For the case of relays
close to destination, the variance of any source-relay channel is
taken to be 1 and the variance of any relay-destination channel
is taken to be 10. For the case ofL = 2, the proposed DSFC
achieves a diversity of orderNL = 4 and for the case of
L = 4, it achieves a diversity of orderNL = 8.

V. CONCLUSION

In this paper, the design of distributed space-frequency
codes (DSFCs) was considered for the wireless multipath
relay channels. The use of DSFCs can highly improve the
system performance by achieving higher order diversities by
exploiting the multipath diversity of the channel as well as
the cooperative diversity. For DSFCs with the DAF protocol,
we have proposed a two stages coding scheme: source node
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Fig. 2. SER for DSFCs, for BPSK modulation with Vandermonde based
linear transformations, versus SNR.

coding and relay nodes coding. We have derived sufficient
conditions for the proposed code structure to achieve full
diversity of orderNL whereN is the number of relay nodes
andL is the number of multipaths per channel.

The proposed DSFCs are robust against the synchronization
errors caused by the relays’ timings mismatches and propaga-
tion delays due to the presence of the cyclic prefix in the
OFDM transmission. Also, the proposed DSFCs are robust
against the relays’ carrier offset errors since only one relay
is transmitting on any subcarrier at any given instance. These
properties of the proposed DSFCs greatly simplifies the system
design since it is very difficult to synchronize randomly located
relay nodes.
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