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Abstract— A low complexity transmit diversity scheme is
derived in this paper in order to overcome the prohibitive
complexity imposed by the maximum likelihood detection for
the systems with space-time block code (STBC) over frequency
selective channels. By taking advantage of multipath propagation
and exploiting temporal diversity gain, the proposed turbo equal-
ization algorithm significantly improves the system performance
compared to the original Alamouti algorithm as well as the
conventional minimum mean square error (MMSE) detection
scheme.

I. INTRODUCTION

In recent years, space-time coding has emerged as one of the
most promising technologies for meeting the high data rate and
high service quality requirements. There are two main types of
space-time codes, namely, space-time trellis codes (STTC) [1]
and space-time block codes (STBC) [2]. The advantage of
STTCs over STBCs is the provision of coding gain. However,
this is achieved at the cost of high complexity encoders and
decoders. For the purpose of this work, we consider the use
of STBC, in particular, the two-antenna transmit diversity
scheme [2] proposed by Alamouti.

At high data rates, the intersymbol interference (ISI) intro-
duced by frequency-selective fading channels becomes a severe
problem. The Alamouti algorithm was originally developed for
flat fading channels and so does not take into consideration
the ISI introduced by frequency-selective fading channels. The
key building block in combating ISI is the equalizer, or more
effectively, the turbo equalizer that performs equalization and
channel decoding jointly in an iterative manner. In [3], [4], the
linear MMSE-filter based turbo equalization is proposed for
single-input, single-output (SISO) channels, and is extended to
multiple-input, multiple-output (MIMO) systems, e.g., in [5]–
[7]. However, the MMSE equalizers introduced in [5], [6]
are applied to the MIMO systems without STBC or STTC.
Moreover, only a single-input, multiple-output system (for a
single user) is considered in [6]. The turbo multiuser detection
technique previously proposed in [3] is extended to STBC and
STTC coded systems in [7]. However, the studied case is only
confined to the flat-fading channels. The main contribution of
this paper is the proposal of a turbo equalization scheme based
on a different approach, which is well suited for combating
ISI introduced by the frequency selective MIMO channels and
in the meantime, achieving spatial and temporal diversities.
First, we derive the maximum likelihood detection algorithm
for the systems under question. Its unaffordable computational
complexity calls for suboptimum solutions. To this end, we
introduce a low complexity scheme which is shown to achieve
significant performance gain compared to the original Alam-

outi algorihtm and the conventional MMSE filter based turbo
equalization for the STBC coded systems.

II. SYSTEM MODEL

Fig. 1 shows the baseband representation of the two branch
transmit diversity scheme under study. The information se-
quence {bn} is convolutionally encoded into coded bits {un},
which are subsequently interleaved and each block of two
coded and interleaved bits u′

n[0], u′
n[1] is mapped into one of

the four QPSK symbols sn. The interleaver and deinterleaver
are denoted as Π and Π−1, in Fig. 1 and 2, respectively.
We use the space-time coding scheme proposed in [2]. The
transmitted symbols are grouped into blocks of 2 symbols at
each antenna. At a given time, two symbols are simultaneously
transmitted from two antennas. At time instance t, the symbol
transmitted from the first antenna is denoted as s0

n, and the
symbol transmitted from the second antenna is denoted as
s1

n. During the next symbol period t + T , symbol −s1∗
n is

transmitted from the first antenna, and s0∗
n is transmitted from

the second antenna, where ∗ denotes the conjugate transpose
operation when applied to vectors and matrices, and simply
the complex conjugate when applied to scalars.

For simplicity, we assume two transmit antennas, one receive
antenna and each channel has 3 taps in the derivation of the
proposed turbo equalization algorithm. However, its extension
to systems with multiple receive antennas and generic ISI
channels is straightforward. Each complex channel coefficient
is denoted as hl

ij where the first (second) subscript i(j) is
the index of the transmit (receive) antenna, the superscript l
refers to the number of the channel tap. The received signals
at antenna rx0 during the two symbol periods t and t + T can
be formed as
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where w0
n, w1

n are the complex additive white Gaussian noise
with zero mean and variance N0. The desired symbols in
the previous equations are underlined so that they can be
distinguished from the interference symbols and the noise.

III. A LOW COMPLEXITY TURBO EQUALIZER

The task of the receiver is to detect the transmitted infor-
mation bits {bn} given the received observations {r0

n, r1
n}.

To this end, we need first to detect the transmitted QPSK
symbols {s0

n, s1
n} which are corrupted with ISI and AWGN.

The estimated symbols are then converted to coded bits,
which are subsequently deinterleaved and decoded to obtain an
estimate of the information sequence. For the received signals
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Fig. 1. Diagram for the STBC coded system with 2TX-1RX antennas.

expressed by (1), a direct implementation of the Alamouti
algorithm yields
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where ĥl
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The Alamouti algorithm achieves maximum likelihood (ML)

detection for flat fading channels. However, it does not take
into consideration the ISI introduced by frequency-selective
fading channels. It is apparent to see from (2) that a large
number of ISI terms would inevitably lead to an error floor
in the BER performance. In order to derive an optimum
detection algorithm (in the sense of maximum likelihood) for
the system under question, we need to reform the received
signal expressed in (1) in vector form as

rn = Snh + wn, (3)

where

rn =
[
r0
n r1

n r0
n+1 r1

n+1

]T
;

wn =
[
w0

n w1
n w0

n+1 w1
n+1

]T
;

h =
[
h0

00 h1
00 h2

00 h0
10 h1

10 h2
10

]T
;

Sn =




s0
n −s1∗

n−1 s0
n−1 s1

n s0∗
n−1 s1

n−1

−s1∗
n s0

n −s1∗
n−1 s0∗

n s1
n s0∗

n−1

s0
n+1 −s1∗

n s0
n s1

n+1 s0∗
n s1

n

−s1∗
n+1 s0

n+1 −s1∗
n s0∗

n+1 s1
n+1 s0∗

n


 ,

where T denotes the transpose operation. For generic channels,
the channel vector h is a 2L-element vector, and the matrix
Sn is a 4×2L matrix, where L is the number of channel taps.
Since the noise vector wn is complex Gaussian, the likelihood
function and log-likelihood function of the received vector
rn conditioned on a realization of the fading channels and
transmitted data can be expressed as

p(rn) =
1

(πN0)4
exp

(
−‖rn − Snh‖2

N0

)
;

ln p(rn) = constant − 1

N0
‖rn − Snh‖2. (4)

From (4), one can see that maximization of this log-
likelihood function is equivalent to minimization of the
function ‖rn − Snh‖2. This algorithm needs the esti-
mate of the whole matrix Sn which is a function of
s0

n−1, s
1
n−1, s

0
n, s1

n, s0
n+1, s

1
n+1. For QPSK modulation, it in-

volves a testing of 46 hypotheses for the 3-tap channel. In
general, the possible number combinations for forming the
matrix Sn is M2L, where M is the constellation size and

L is the number of channel taps. Apparently, the complexity
of this ML detection grows exponentially with L. Next, we
propose a sub-optimum solution to reduce the complexity from
exponential to polynomial. The idea is to use the original
Alamouti algorithm or its modified version at the initial stage to
get a rough estimate of the transmitted data. Then the algorithm
switches to the decision directed mode. Let us reform the
matrix Sn as
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0
n + s

0
n ≈ S̃

0
n + s

0
n; Sn = S

1
n + s

1
n ≈ S̃

1
n + s

1
n, (5)
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n+1 0 ŝ0∗

n+1 ŝ1
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where ŝn+i is an estimate of sn+i from previous iteration,
and S̃

0
n (S̃1

n) is an estimate of S
0
n (S1

n), the elements of
which are symbol estimates from previous iteration. The key
to achieve complexity reduction is to split the matrix Sn into
two matrices, the first one S̃

0
n (S̃1

n) contains the interference
symbols which are fixed with the symbol estimates from
previous iteration; whereas the second matrix s

0
n (s1

n) only
contains the desired symbol to be detected. Therefore, only
4 (or M in general) hypotheses need to be tested instead of
46 (or M2L in general) as in the case of the original ML
algorithm. The complexity is thus drastically reduced. With
the matrix decomposition, the function ‖rn − Snh‖2 can be
expanded as
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From (7) and (8), we see that the channel vector h has to
be known or estimated in order to carry out the detection. The
channel state information (CSI) can be obtained, e.g., by the
channel estimation algorithms presented in [8].

In this paper, we are mainly concerned about the turbo
equalization which combines data detection and channel de-
coding in an iterative fashion. Fig. 2 shows the proposed
turbo equalization algorithm. First, the Alamouti algorithm is
used to obtain an initial estimate of the transmitted symbols.
The soft values of the transmitted symbols are computed in
the form of a priori log-likelihood ratio (LLR) {λ(sn; I) =
λ(xn) + jλ(yn)} where sn denotes either s0

n or s1
n. The soft

symbol estimates {λ(sn; I)} are passed to the equalizer, which
computes {λ(sn;O)}, the extrinsic information of {sn}. A
symbol-to-bit converter (SBC) maps {λ(sn;O)} to the LLR
values of coded bits {λ(u′

n;O)}, which are deinterleaved to
yield {λ(un; I)}. Based on the soft inputs {λ(un; I)}, a Log-
MAP decoder computes the LLR for each information bit
λ(bn;O) and each coded bit λ(un;O). The former is used to
make decisions on the transmitted information bit at the final
iteration, and the latter is interleaved and passed through a bit-
to-symbol converter (BSC) to derive a soft symbol estimate
λ(sn; I), which is used for equalization at the next iteration,
i.e., in order to carry out the operations expressed in (7)
and (8) using soft decision feedback. To tackle the problem
of error propagation, we can replace the hard decisions ŝn+i

in the interference matrix S̃
0
n (S̃1

n) in (6) with their soft
estimates s̄n+i = x̄n+i + jȳn+i = tanh[λ(xn+i)/2]/

√
2 +

j tanh[λ(yn+i)/2]/
√

2, where λ(xn+i), λ(yn+i) are the real
and imaginary part of λ(sn+i; I), respectively.

Next, we shall describe how the soft values can be derived
at the output of the equalizer. From (7) and (8), we know that
the qth decision statistics for s0
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can be expressed as
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It is clear to see from the previous equations that the
proposed scheme removes the effects of ISI by canceling
the contribution of the interfering symbols from the received
observation. The approximations in (9) and (10) are owing
to the fact that S
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n and S
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1 as shown in (5).

Otherwise, equality would hold in the absence of feedback
error, meaning that the interference is completely canceled.
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A close examination at equation (15) reveals that the pro-
posed scheme not only preserves the features of the original
Alamouti algorithm, i.e, achieving spatial diversity at the
receiver, but also takes advantage of the multipath propagation
and obtains the temporal diversity by multipath combining
(both p0 = |h0
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on the symbol sm being transmitted are

z0
n(m)|[sn = sm] ≈ P + 2Re{c0smsm} + γ0

m;

z1
n(m)|[sn = sm] ≈ P − 2Re{c1smsm} + γ1

m,

leading to the conditional PDFs

f [z0

n(m)|sm] =
1

πN0
γ (m)

exp

(
−
|z0

n(m) − P − 2 Re{c0smsm}|2

N0
γ (m)

)

= exp

(
ln α0(m) −

|z0
n(m) − P − 2 Re{c0smsm}|2

N0
γ (m)

)
;

f [z1

n(m)|sm] =
1

πN1
γ (m)

exp

(
−
|z1

n(m) − P + 2 Re{c1smsm}|2

N1
γ (m)

)

= exp

(
ln α1(m) −

|z1
n(m) − P + 2 Re{c1smsm}|2

N1
γ (m)

)
,

(16)



PSfrag replacements

Equalizer

BSC

SBC

Alamouti

Decision
Log-MAP
DecoderChannel

Estimator

Equalizer

λ(u′

n
; O) λ(un; I)

λ(un; O)

λ(bn; I)

λ(bn; O)r0

n, r1

n

λ(sn; I)

ĥ
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where
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For QPSK modulated signals, the symbol log-likelihood
ratio (LLR) λ(sn;O) = λ(xn) + jλ(yn) to bits LLRs
λ(u′

n[0]), λ(u′
n[1]) mapping rule is simply λ(u′

n[0];O) =
λ(xn); λ(u′

n[1];O) = λ(yn). Next, we show how the LLR
value of xn and yn can be derived from z0

n. Let us define
max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1 + e−|x−y|),
i.e., the max operation compensated with a correction term
ln(1 + e−|x−y|). Based on (16), the LLR value of xn can be
computed as
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The equation (17) holds since the real part of the symbols
s0, s3 corresponds to 0, and the real part of the symbols s1, s2

corresponds to 1; the imaginary part of the symbols s0, s1

corresponds to 0, and the imaginary part of the symbols s2, s3

corresponds to 1.
The LLRs λ(u′

n+1[0]), λ(u′
n+1[1]) can be computed simi-

larly based on z1
n. In this case, fm in (18) should be replaced

by

fm = ln α1(m) − |z1
n(m) − P + 2Re{c1smsm}|2

N1
γ (m)

, (19)

which is derived based on the definition of f [z1
n(m)|sm]

in (16). With equations (17), (18) and (19), we can derive
the soft output λ(u′

n;O) of the equalizer shown in Fig. 2.

IV. NUMERICAL RESULTS

Numerical results are presented in this section to assess the
performance of the proposed turbo equalization scheme. We
employ a rate 1/3 Maximum Free Distance convolutional code
with constraint length 5 and generator polynomials (25, 33, 37)
in octal form. During each Monte-Carlo run, the block size
is set to 2000 information bits followed by 4 tails bits to
terminate the trellis, which corresponds to 2004 × 3 = 6012
coded bits or 3006 QPSK symbols, 200 of which are used as
pilots to acquire a channel estimate ĥl

ij . Channel estimation

TABLE I
THE SIMULATED CHANNEL

Tx0-Rx0 Tx1-Rx0
h0

ij 0.10 + 0.14i 0.046 + 0.516i

h1

ij −0.19 − 0.24i 0.532 + 0.14i

h2

ij 0.472 + 0.15i 0.25 − 0.34i
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Fig. 3. Comparison of different schemes.

is conducted with the modified maximum likelihood algorithm
introduced in [8]. The coded bits are interleaved by a random
interleaver. The noise variance N0 and path delays are assumed
to be known to the receiver. The simulation curves are obtained
by averaging the simulation results over a minimum of 30
blocks of data transmitted and after at least 100 errors are
generated. The Alamouti algorithm is used to obtain an initial
estimate of the transmitted symbols. The basic principle is
to apply the Alamouti detection scheme on each path and
combine the desired signals from different paths to obtain
multipath diversity gain.

In our simulations, we tested a 2Tx-1Rx channel with com-
plex channel gains specified in Table I (before normalization).
The channel coefficients are normalized such that

∑ |hl
i,j |2 =

1.0, where j = 0, and the summation is carried out over all
possible values of i ∈ {0, 1} and l ∈ {0, 1, 2}. Fig. 3 shows the
comparison of different schemes. As expected, the proposed
turbo equalizer outperforms the MMSE based scheme. For ex-
ample, at BER of 10−2, the performance penalty by the MMSE
scheme is around 1 dB compared to the proposed scheme. The
reason is that the proposed scheme not only effectively reduces
the effects of ISI by canceling the interference as shown by
equation (10), but also achieves spatial and temporal diversity



TABLE II

operations ∗ / +/−
Proposed scheme 8L + 17 4 8L + 23
MMSE scheme 64L2 + 80L + 173 36 64L2 + 64L + 145
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Fig. 4. EXIT chart analysis of the proposed scheme at Eb/N0 = 6.0 dB.

as shown by equation (15). On the contrary, the MMSE scheme
cannot utilize the spatial diversity as discussed in [9]. To work
around this problem, the solution in [5] is not to use any STBC
or STTC. The curve of the original Alamouti algorithm is also
plotted in the figure and is shown to be inferior to all the
schemes at high Eb/N0 when ISI is dominant. The reason is
that the Alamouti algorithm does not take the ISI into account,
and thus suffers the most from the detrimental effects of ISI;
whereas other schemes effectively remove the ISI by canceling
interference with decision feedback. However, at low Eb/N0,
the original Alamouti algorithm shows better performance than
the MMSE scheme because the ISI is not effectively canceled
at low Eb/N0 when the noise is dominant. In this case, the
turbo equalization schemes suffer from the problem of error
propagation.

The proposed scheme only require linear processing as
the original Alamouti algorithm. Table II shows the required
number of complex multiplications (∗), divisions (/), and
additions/subtractions (+/−) for each QPSK symbol estimate
by different turbo equalization schemes. L is the number of
channel taps. Apparently, the proposed scheme reduces the
complexity from O(L2) to O(L) compared to the MMSE
based turbo equalization scheme. As the number of multipath
components increases, the complexity reduction becomes more
significant.

The convergence behavior of the proposed scheme is in-
vestigated at Eb/N0 = 6 dB in Fig. 4 using the extrinsic
information transfer (EXIT) chart which traces the evolution of
the mutual information IE

i /IE
o ∈ [0, 1] between input/output

LLR and sn for equalization; and the mutual information
ID
i /ID

o between input/output LLR and un for decoding. Refer
to [10] for detailed discussion of this analysis method and [4]
for its application in turbo equalization.

It should be noted that in our case, IE
i > 0 at the beginning

of the iterative process. This is due to the presence of the initial
Alamouti detection stage (see the lower left corner in Fig. 2).
Therefore, the a priori information is not zero when the turbo

equalization starts. In Fig. 4, the iterative equalization and
decoding process is depicted by a staircase trace between the
transfer curves of the equalizer and decoder (→ represents the
decoding process and ↑ represents the equalization process).
The expected trace is shown in this figure. The real trace
slightly deviates the predicted one due to the finite interleaver
length. However, the discrepancy is small. The trace shows
that only 4 stages of equalization/decoding are needed for
the proposed scheme to converge (reach the maximum ID

o )
at Eb/N0 = 6 dB. The majority of the gain is obtained at the
first and second iterations. (Note that there is a decoding step
– the fourth one at the end of the trace which is hardly visible
as the diagram gets too cramped.) This is in close agreement
with our simulation results.

V. CONCLUSIONS

The use of multiple antennas in combination with advanced
detection techniques, such as turbo equalization is an effective
means for a communication system to provide high quality
and high data rate services. Alamouti’s space-time block code
with two transmit antennas and one or two receive antennas
over frequency selective MIMO channel is considered in this
paper. In order to overcome the prohibitive computational
complexity imposed by the maximum likelihood detection for
the system under investigation, we propose a low complexity
detection scheme, which is shown to provide large performance
gains compared to the original Alamouti algorithm and the
conventional linear MMSE equalization for the STBC coded
systems over frequency selective channels.
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