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Abstract— A multi-hop relay channel with multiple antenna M
terminals in a quasi-static slow fading environment is conislered. Y Y

For both full-duplex and half-duplex relays the fundamentd

diversity-multiplexing tradeoff (DMT) is analyzed. It is shown

that, while decode-and-forward (DF) relaying achieves theopti-

mal DMT in the full-duplex relay scenario, the dynamic decod-

and-forward (DDF) protocol is needed to achieve the optimal
DMT if the relay is constrained to half-duplex operation. Far  Fig. 1. The(M1, M2, M3) MIMO multi-hop relay channel model consid-
the latter case, static protocols are considered as well, dnthe ered in the paper. There is no direct link from the source iteatn(S) to the

corresponding achievable DMT performance is characterize. destination terminal (D).
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I. INTRODUCTION

Relays are commonly used in wireless networks to improve ) )

performance, although the fundamental capacity limitety 2and the relay terminals cooperate to transmit the message
channels have vyet to be fully characterized, even for simgfe it intended destination [7], [8]. DMT analysis has been
systems [1]. Rather than focus on capacity limits, we apé(tenswely applied t9 th_'s general relay channel mode}q-ho
interested in characterizing the tradeoff between rate g&ve" @ full characterization of the DMT curve is still an ape
through multiplexing versus the robustness gain through diroblem. In [9] the DMT of the half-duplex single-antenna
versity associated with multiple-antenna relays. We waitids €18y channel is analyzed and a dynamic decode-and-forward
on a multiple antenna multi-hop system in which the sourd@DF) protocolis proposed. In DDF, the relay terminal iste

transmission can only be received by the relay terminal, ithe source transr.ni.ssion until it can dggode thg messade, a
shown in Fig[L. We call this the multiple-input multipletput then.starts transmitting the.message Jomtly_ with the saurc
(MIMO) multi-hop relay channel. The links are assumed tgermmal. The DMT of DD'_: IS shown tq domlr_1ate_ that of all
other protocols, but for high multiplexing gains it does not
the channel state information (CSI) is available only at tH8€€t the cut-set upper bound, which dictates the maximum
possible of such gains [10]. In [11] DDF performance is

receiving end of each transmission. ! . X " .
We analyze this system in terms of the diversityMmProvedslightly by using superposition coding. In [12jder

multiplexing tradeoff (DMT) in the high signal-to-noisetia the assumption of full CSI at the relay terminal, the comgres

(SNR) regime introduced in [2]. DMT analysis is useful irgnd-forward protocol is shown to achieve the optlmal DMT_
characterizing the fundamental tradeoff between thebitiip Performance. There has also been some recent interest in
and the number of degrees of freedom of a communicatiffff PMT analysis for multi-hop relay systems; in [13] and
system. In DMT analysis, reliability is measured in terms df-4] multiple single antenna relays operating in a disteiol
the diversity gain, which characterizes the rate of decapef Manner are cons!dered. Due to the Q|str_|buted .nature of the
error probability with increasing SNR. The degrees of frged "€1aY nodes, amplify-and-forward relaying is considereuer
is measured by the spatial multiplexing gain, which is th&hich the achievable DMT is characterized.
rate of increase in the transmission rate with SNR. While the In contrast to these prior works, we consider a MIMO multi-
DMT analysis is a tool to characterize the fundamental mitop relay channel. For this model, the relay can decode the
of a communication system in a fading environment, prakticaessage without sacrificing degrees of freedom. While we
space-time codes that approach these theoretical limits hanly derive results for a single relay in this paper, our lssu
been designed [3]- [6]. can be extended to multiple relays. In the case of a full-ekpl

In a channel with relays, the source’s transmission is reglay, we show that the DF protocol with a block Markov
ceived by both the relays and the destination, and the sousteicture achieves the optimal DMT performance. In the-half

. . , _ duplex relay case, we first find the DMT of static protocols
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hand, we show that the DDF protocol of [9], in which then which P.(SNR) is the error probability. For each define
time allocation depends on the realization of the sourtayre d(r) as the supremum of the diversity gain over all families
channel, achieves the optimal DMT performance. In the multf codes. The full characterization of the DMT curve for a
hop scenario, since the relay and the source do not transMIMO system is given in the following theorem [2].
simultaneously, they do not need to use distributed spaceTheorem 2.1:For a MIMO system with)/; transmit and
time codes, which are harder to realize in practice [15]].[16M> receive antennas and sufficiently long codewords, the
Furthermore, there is no need to inform the source or tlogtimal DMT curvedas, a,(r) iS given by the piecewise-
destination terminals about the relay decision time as sego linear function connecting the pointsk,d(k)), k& =

to the general relay scenario. Hence, the dynamic relayifig .., min(My, Ms), whered(k) = (M1 — k)(Mz — k).

scheme in the case of the multi-hop relay channel can beFor the rest of the paper, we always consider codes with
realized by using an incremental redundancy code at thefficiently long codewords so that the error event is doteitha
source [6], and any DMT-optimal space-time code at the reldyy the outage event.

Although the DMT of DDF has been previously shown to
dominate that of other protocols in the case of general half-
duplex relay channels, our results prove its optimalitytie t A Full-duplex Relaying

multi-hop relay scenario. In a concurrent work [17], Gharan We first consider the full-duplex relay case. The next
et al. prove the optimality of the DDF protocol in a singletheorem shows that the DMT tradeoff of the end-to-end system
antenna multiple access relay network. is equal to the worst-case DMT tradeoff of each link along
the multi-hop path. The DMT characterization given here for

I[l. SYSTEM MODEL . . . >
) : a single relay can be easily generalized to multiple fule
We consider a three node multi-hop channel composed @fays,

source, relay and destination terminals with, M, and M3 Theorem 3.1:-The DMT d{& v (r)of an
1,4V42,4W3

antennas, respectively, as in Fig. 1. We call this system by, My, Ms) full-duplex system is characterized by
(M,, My, Ms) multi-hop relay channel. The source-relay and

I1l. DMT oF MIMO M ULTI-HOP RELAY CHANNELS

the relay-destination channels are given by Aoy g, (1) = min{dag s, (1), das i (1)} (2)
Proof: The result follows easily as DF achieves the
Y, = SNRHl-XZ- LW, (1) capacity for a full-duplex multi-hop relay channel [1]. =

for i = 1,2, respectively, wher&’;, i = 1, 2, are the received ) . .
signals at the relay and the destination, respectivelyetmt !N the half-duplex relay scenario, the tofatime units need

the source transmission is not received at the destination!¢ e divided among the source and the relay transmissions.
our multi-hop relay channel model. Channels are assumedW@_f'rSt c_on5|der static protocols for which the time allmt _
be frequency non-selective, quasi-static Rayleigh fading 1S fixed, independent of the channel states. However, simila
independent of each other; that is, for= 1,2, H; is an to the generalized decode-and-forward protocol in [18], we
Mis1 x M; channel matrix whose entries are independeﬁ?”Sider unequal division of the time slot among the source
and identically distributed (i.i.d.) complex Gaussiandam @and the relay. The source transmits during the éifStthannel
variables with zero means and unit variances (i.e., they 4€eS, wher® < a < 1. The relay tries to decode the message
CAN(0,1)). The additive white Gaussian terms also have i.i.@d forwards over the remainir(@ — a)T" channel uses. We
entries with CA(0,1). X;, i = 1,2, are M; x T source call this protocoldecode-and-forward with fixed allocation
and relay input matrices, wherg is the total number of (fDF), and its DMT is given in the next proposition.
transmissions over which the channel is constant. We h Iirojgjc;s;t\zr; 3rlgl'a;§/hechan[|)1l\éllT witk?f ﬁxggetimgag]%%%lggn
short-term power constraints at the source and the relangiy, (0’< 0 < 1) is

by trace( E[XHX;]) < M,;T. Fori = 1,2, we define

fD o . r r
) ) Proof: This result follows easily from Theorelm 2.1 with
We assume that only the receivers have channel state infgfnple scaling of the DMT curve due to time division. m
mation. . . . . We can see from the above DMT that the highest multi-
Following [2], for increasingS N R we consider a family of plexing gain for the fDF scheme isin{a M, (1 — a)M;}.
codes and say that the system achieves a multiplexing gaincg{ the other hand, the highest diversity gain is limited to

B. Static Protocols for Half-duplex Relaying

rif the rate R(SN R) satisfies My min{ My, M3}. We illustrate the DMT of &4, 2, 3) system
R(SNR) with a fixed time allocation of = 0.3 in Fig.[2.
SNRoo log(SNR) Since different time allocations result in different DMT

curves, we can optimize the time allocation based on the
multiplexing gain [18], [19]. We call this protocdDF with

log P.(SNR) variable time allocation(vDF). Note that this is still a static
SN}gIr_lm log(SNR) ’ protocol since the time allocation variable is determinagdual

The diversity gaind of this family is defined as

d=—
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Fig. 2. The dotted and the dashed curves correspodd tdr) anddz 3(r),
respectively. Note that the dashed curve also correspantt®etDMT in the
case of a full-duplex relay terminal. The solid curve is thelDcurve of a
(4,2, 3) half-duplex multi-hop relay with the fDF protocol ard= 0.3.

Fig. 3. The DMT curve of &4, 1,3) multi-hop relay channel. The two
topmost curves correspond to the cut-set bounds, whereatsieed curve is
also the DMT for a full-duplex relay. The DDF, vDF and fDF pobl with
a = 0.5 are also illustrated, where the DDF curve is the optimal DMihw
half-duplex relaying.

only on the multiplexing gain and is independent of the

channel realization. For each multiplexing gairthe diversity antennas. In DDF for the relay channel, the source transmits
gain is the minimum of the two diversity gains i (3); hence thduring the entire timeslot using an incremental redundancy
optimal time allocation variable(r) is the one that satisfies type codebook. This code design enables the relay to decode
. r the message after receiving only a portion of the codeword;
A5 o v, (1) = iy o (—> = dy,Ms (17> . (4) hence the relay decodes the message when the accumulated
a(r) —alr) mutual information over the source-relay channel is sufiti
Corollary 3.3: The number of degrees of freedom ofor the transmission rate. Thus, the relay decoding time

an (MlvMQa%BA)/[*mUIti'hop relay channel with the VDF pecomes a random variable that depends on the source-relay
1 2

protocol is g3, while the maximal diversity gain is channel quality. As soon as the relay decodes the message, it
M min{M;, M3}. starts transmitting.

We now present the DMT for some special cases becaus@he achievable DMT of the DDF scheme in the case of
a general closed form expression is not tractable. We fistsingle-antenna cooperative relay channel is charaeteitz
consider the(Mi, 1, Ms) system. Since the hops for this[9], where it is shown to dominate the DMTs of amplify-and-
setup are multiple-input single-output (MISO) and singlput  forward (AF) and decode-and-forward (DF) based protocols
multiple-output (SIMO) systems, the DMTs are charactefizeand, more strikingly, to achieve the DMT upper bound for
asdag,,m,, = M (1 —r), i =1,2. From [4) and defining multiplexing gainsr < 0.5. Hence, DDF is DMT-optimal in
A2 My/M;andB21—7r— A(l+7), we find this range of low multiplexing gains for the single antenna

cooperative relay channel.
a(r) = —B+ /B —4A(A-1)r Here, we consider using the DDF protocol for the multi-
2(A-1) antenna multi-hop relay channel, and show that it achieves
for A # 1. We havea(r) = 0.5 if A= 1. The DMT achieved the DMT cut-set upper bound; that is, DDF is DMT-optimal.
by the vDF protocol in &4, 1,3) system is plotted in Fig.]3. The intuitive explanation behind the optimality of DDF in
In this figure, we also plot the DMT for the fDF scheme wittihis setting is as follows: In the multi-hop relay scenario,
a fixed time allocatioru = 0.5. the message needs to be decoded at the relay terminal, since

If we haveM; = M3 = M, then the optimal time allocation otherwise the destination would not be able to decode iegith
is a = 0.5 independent of the multiplexing gain, and the DMTue to the data processing inequality. However, any fixed tim
is given bydﬁfﬂz,M(T) = dr.ar, (27). allocation scheme either wastes multiplexing gain, sirtce i

) cannot utilize the good states of the source-relay charmmel,
C. Dy_namlc Decode-and-Forward Protocol for Half-dupleXegits in outage in the case of a poor quality (ISNR)
Relaying source-relay channel. DDF, by enforcing decoding at thayrel

In [9], Azarian et al. proposed the dynamic decode-andnd dynamically allocating the source transmission timseda

forward protocol for the cooperative relay channel withgégn on the source-relay channel state, achieves the optimal DMT
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Fig. 4. The DMT of a(2,2,2) system. From top to bottom, the three

in which we have defined curves correspond to the full-duplex relay DMT, the halplgx relay DMT
which is achievable by DDF protocol, and the DMT of the statfotocol
M} with a = 0.5.
Si(os) 2> (1 —aij)*, fori=1,2. (6)
J=l Corollary 3.8: The DMT of the(2, 2, 2) system with a half-

Proof: The proof can be found in Appendik .

dupl lay is gi b
The optimality of the above DMT achieved by the DDF uplexrelay is given by

protocol is shown in the following theorem. 00 it 0<b<1/2
Theorem 3.5:DDF is DMT-optimal for MIMO multi-hop dPPE(ry = =4 if 1/2<b<2/3 (7)
half-duplex relay channels. 2-r)if 2/3<b< 1
3 . 2—r - =
Proof: The proof can be found in AppendiX Il. = The DMT of the(2,2,2) system is plotted in Fid]4. The
Corollary 3.6: The number of degrees of freedom of afopmost curve in the figure is the DMT of Zix 2 MIMO

(M, M2, M3) multi-hop relay channel l% while the system, which can be achieved by a full-duplex relay. The

maximal diversity gain is\ min{M;, M3}. Hence, the end- lowest curve is the DMT of the vDF protocol. Note that for
points of the DMT curve can also be achieved by statihis symmetric scenario vDF reduces to fDF with= 0.5.
relaying, i.e., with fixed time allocation correspondingth®
multiplexing gain.

It can be seen from Theorefl B.4 that the DMT of a e have derived the diversity-multiplexing tradeoff of
half-duplex multi-hop relay channel is not a piecewisedin MIMO multi-hop relay channels for bot_h _fuII-dupIex and half
function as in the case of a point-to-point MIMO channefluplex relays. For full-duplex relays, it is easy to showttha
While it is hard to give a general closed form expression féf€ decode-and-forward protocol achieves the optimal DMT,
the DMT of MIMO multi-hop channels, for giverd/;, M, wh_|ch is s_|mply the minimum of the DMTs of_ the two links.
and M; and a fixed multiplexing gaim, the optimization ThiS applies to multiple relays as well; that is, the DMT of
problem in [(5) can be converted into a convex optimizatiotll?e end-to-end system will be limited by link with the smatle
problem, and hence can be solved efficiently [20]. We noMT- In the case of a half-duplex relay, we have shown that
give an explicit characterization of the DMT for some classdhe dynamic decode-and-forward protocol, in which theyrela
of multi-hop relay channels. listens unpl d.ecodlng and ther_1 forw.ards., achleves.themsﬂu

Corollary 3.7: The DMT of an (M, 1, Ms) system is DMT, wh_lch is no longer a piecewise-linear _functl_on of the

multiplexing gain. We have also shown that this optimal DMT
, 1—-2r performance cannot be achieved by static time allocation.

A, 1., (r) = min(My, M) 1—r Finally, we have provided explicit expressions for the DMT
of some classes of half-duplex multi-hop relay systems, and

for 0 <7 <1/2, and0 elsewhere. _ compared the achievable performances with fixed and dynamic
In Fig.[3 we illustrate the DMT of thé4, 1,3) multi-hop time allocation.

relay channel, which is achieved by the DDF protocol. We

see that the DDF DMT dominates that of the static protocols APPENDIX|

at all multiplexing gains except the end-points. As stated i PROOF OFTHEOREM[3.4

Corollary[3.6 these end-points can be achieved by the statid=or the achievability scheme, we assume that the inputs at
fixed time allocation fDF protocol as well. both the source and the relay are Gaussian with identityrcova

IV. CONCLUSIONS




ance matrices. Let the transmission rate be= rlog SNR,

and define
SNR t
% HlHi).

(8)

K2

C;(H;) = log det (I +

The relay listens foraT" channel uses until it decodes the

message. Hence, we have

rlog SNR
C:

If a > 1 thenthe relay is in outage, which leads to an outagg
for the whole system. Ifi < 1, then the relay transmits during out (1)
the rest of the timeslot fofl —a)T channel uses. Conditioned

on successful decoding at the relay, ie.< 1, the outage
probability over the second hop is given by

P{rlogSNR > (1 — a)Cs(H,)}

iy ) )
|

C1(H1)C>(Hz)
Let Ai1,...,A1,m; be the nonzero eigenvalues HiHI

zP{rlogSNR> (1 —

=P {rlog SNR > (9)

Ci(Hy) + C2(Hy)

for ¢ = 1,2. Suppose)\; ; = SNR™ % for j = 1,..., M},
1=1,2. We hav
M*
: SNR
j=1 ‘
M}
= log [] SNRO )" (10)

j=1

where(x)* £ max{0, x}. Using these exponential equalities, _

we can rewrite[(9) as follows

P{rlogSNR > (1 — a)C2(Hz2)}
C1(Hy)C2(Hz) }
C1(Hy) + C2(Hg)
log SNR¥ (1) Jog SNR*>(*2)
log SNR¥1(®1) 4 Jog SNR2(2)

=P {rlogSNR >

=P {log SNR" >

—rfr> }

where we haves;(a;) Z;\fl(l —a; i)t
Then the overall outage probability can be written as

}

Sl (01)52 (az)
Si(aq) + Sa(az)

Pou(r) = P{r>5Si(a1)}
Sl(al)SQ((Xz)
+P{Sl 1) >T1r>
(e1) S1(ar) + Sa(a2)
1Define the exponential equality as f(SNR)=SNRe°, if
limg N R oo BLENID - _ . The exponential inequaliies< and >

3 i lo_f, SNR
are defined similarly.

We define

O, {(a1,02) 17 > Si(aa)}
{(al,az) : Sl(al) >r >

O1 U0y

Sl (01)52 (az)
S1(an) + Sa(az)

(@

|

Then using the joint probability of the eigenvaluean‘H;r
given in [2], the outage probability can be computed as

(1>

/ p(al, az)daldaz
(@]

2 M

/ [ [ SR 1+HM=Mi1Dass oy dery

i=1j=1

where’ £ O N (RMi+ RM:+),

Using Laplace’s method as in [2], we obtain the expo-

nential behavior of the outage probability d3,,.(r)
SNR-4""" (") where

dPPE (r) = inf  f(a1,a2) (11)
(ov1,2)€0
and
2 M7
floa,az) 23 (2 — 14 |M; — Miga oy, (12)
i=1 j=1
Next, we define
o, 2 {(al,az) € RMit x RM:+|
Qi1 > > vy > 0,0 > 31(041)}
Oy = {(al,az) e RMit+ x RMzH|
S1(a1)S2(a2)

Qi1 2 2 a2 0,1 >

|

Si(ay) + Sa(az)

o

= @1U@2

We can see that’ = O. Hence,

dPPE(ry = inf  f(aq, o)
(o1,a2)€O0
= inf inf B f(Oél,Oéz), inf B f(al,az)
(al,az)eol (01702)602
= lIlf 5 f(al,az)

(a1,002)EO
in which the last equality follows since we have

Sl(al)SQ((Xz)
Silen) 2 Si(aa) + Sa(az)

for all (a1, a2), and hence); C Os.



APPENDIXII Similar to AppendiX]l, we obtain the exponential behavior
PROOF OFTHEOREMI3.5 of the above outage probability using Laplace’s methodeNot
We first give an upper bound for the DMT of the MIMOthat, since0” = O, the outage probability upper bound has
multi-hop half duplex relay channel, and show that the DD{fe same diversity gain function as the DDF protocol. Hence,
DMT given in Theoren{ 34 matches this upper bound. L&DF is DMT-optimal.
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