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Abstract— This paper presents a low-ML-decoding-complexity,
full-rate, full-diversity space-time block code (STBC) for a 2

transmit antenna, 2 receive antenna multiple-input multiple-
output (MIMO) system, with coding gain equal to that of the
best and well known Golden code for any QAM constellation.
Recently, two codes have been proposed (by Paredes, Gershman
and Alkhansari and by Sezginer and Sari), which enjoy a lower
decoding complexity relative to the Golden code, but have lesser
coding gain. The 2 × 2 STBC presented in this paper has
lesser decoding complexity for non-square QAM constellations,
compared with that of the Golden code, while having the same
decoding complexity for square QAM constellations. Compared
with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes,
the proposed code has the same decoding complexity for non-
rectangular QAM constellations. Simulation results, which com-
pare the codeword error rate (CER) performance, are presented.

I. INTRODUCTION

Multiple-input, multiple-output(MIMO) wireless transmis-
sion systems have been intensively studied during the last
decade. The Alamouti code [1] for two transmit antennas is
a novel scheme for MIMO transmission, which, due to its
orthogonality properties, allows a low complexity maximum-
likelihood (ML) decoder. This scheme led to the generalization
of STBCs from orthogonal designs [2]. Such codes allow
the transmitted symbols to be decoupled from one another
and single-symbol ML decoding is achieved overquasi static
Rayleigh fading channels. Even though these codes achieve the
maximum diversity gain for a given number of transmit and
receive antennas and for any arbitrary complex constellations,
unfortunately, these codes are notfull − rate, where, by a
full − rate code, we mean a code that transmits at a rate
of min(nr, nt) complex symbols per channel use for annt

transmit antenna,nr receive antenna system.
The Golden code [3] is a full-rate, full-diversity code and

has a decoding complexity of the order ofM4, for arbitrary
constellations of sizeM. The codes in [4] and the trace-
orthogonal cyclotomic code in [5] also match the Golden
code. With reduction in the decoding complexity being the
prime objective, two new full-rate, full-diversity codes have
recently been discovered: The first code was independently
discovered by Hottinen, Tirkkonen and Wichman [6] and by
Paredes, Gershman and Alkhansari [7], which we call the
HTW-PGA code and the second, which we call the Sezginer-
Sari code, was reported in [8] by Sezginer and Sari. Both these

codes enable simplified decoding, achieving a complexity
of the order ofM3. The first code is also shown to have
the non-vanishing determinant property [7]. However, these
two codes have lesser coding gain compared to the Golden
code. A detailed discussion of these codes has been made
in [9], wherein a comparison of the codeword error rate
(CER) performance reveals that the Golden code has the best
performance.

In this paper, we propose a new full-rate, full-diversity
STBC for2×2 MIMO transmission, which has low decoding
complexity. The contributions of this paper may be summa-
rized (see Table I also) as follows:

• The proposed code has the same coding gain as that of
the Golden code (and hence of that in [4] and the trace-
orthonormal cyclotomic code) for any QAM constellation
(by a QAM constellation we mean any finite subset of
the integer lattice) and larger coding gain than those of
the HTW-PGA code and the Sezginer-Sari code.

• Compared with the Golden code and the codes in [4] and
[5], the proposed code has lesser decoding complexity
for all complex constellations except for square QAM
constellations in which case the complexity is the same.
Compared to the HTW-PGA code and the Sezginer-Sari
codes, the proposed code has the same decoding complex-
ity for all non-rectangular QAM [Fig 3] constellations.

• The proposed code has the non-vanishing determinant
property for QAM constellations and hence is Diversity-
Multiplexing Gain (DMG) tradeoff optimal.

The remaining content of the paper is organized as follows:
In Section II, the system model and the code design criteria
are reviewed along with some basic definitions. The proposed
STBC is described in Section III and its non-vanishing deter-
minant property is shown in Section IV. In Section V the ML
decoding complexity of the proposed code is discussed and
the scheme to decode it using sphere decoding is discussed
in Section VI. In Section VII, simulation results are presented
to show the performance of the proposed code as well as to
compare with few other known codes. Concluding remarks
constitute Section VIII.

Notations:For a complex matrixX, the matricesXT , XH

anddet [X ] denote the transpose, Hermitian and determinant
of X, respectively. For a complex numbers, R (s) andI (s)
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denote the real and imaginary part ofs, respectively. Also,
j represents

√
−1 and the set of all integers, all real and

complex numbers are denoted byZ, R andC, respectively.
The Frobenius norm and the trace are denoted by‖.‖F and
tr [.] respectively. The columnwise stacking operation onX is
denoted byvec(X). The Kronecker product is denoted by⊗
and IT denotes theT × T identity matrix. Given a complex
vectorx = [x1, x2, · · · , xn]

T
, x̃ is defined as

x̃ , [R (x1) , I (x1) , · · · , I (xn)]
T

and for a complex numbers, the (̌.) operator is defined by

š,
[

R (s) −I (s)
I (s) R (s)

]

.

The (̌.) operator can be extended to a complexn× n matrix
by applying it to all the entries of it.

II. CODE DESIGN CRITERIA

A finite set of complex matrices is a STBC. An×n linear
STBC is obtained starting from ann × n matrix consisting
of arbitrary linear combinations ofk complex variables and
their conjugates, and letting the variables take values from
complex constellations. The rate of such a code isk

n complex
symbols per channel use. We consider Rayleigh quasi-static
flat fading MIMO channel with full channel state information
(CSI) at the receiver but not at the transmitter. For2×2 MIMO
transmission, we have

Y = HS + N (1)

whereS ∈ C2×2 is the codeword matrix, transmitted over 2
channel uses,N ∈ C2×2 is a complex white Gaussian noise
matrix with i.i.d entries, i.e.,∼ NC (0, N0) and H ∈ C2×2

is the channel matrix with the entries assumed to be i.i.d
circularly symmetric Gaussian random variables∼ NC (0, 1).
Y ∈ C2×2 is the received matrix.

Definition 1: (Code rate) If there arek independent infor-
mation symbols in the codeword which are transmitted overT
channel uses, then, for annt×nr MIMO system, the code rate
is defined ask/T symbols per channel use. Ifk = nminT ,
wherenmin = min (nt, nr), then the STBC is said to have
full rate.
Considering ML decoding, the decoding metric that is to be
minimized over all possible values of codewordsS is given
by

M (S) = ‖Y − HS‖2F (2)

Definition 2: (Decoding complexity) The ML decoding
complexity is given by the minimum number of symbols
that need to be jointly decoded in minimizing the decoding
metric. This can never be greater thank, in which case, the
decoding complexity is said to be of the order ofMk. If the
decoding complexity is lesser thanMk, the code is said to
admit simplified decoding.

Definition 3: (Generator matrix) For any STBCS that
encodesk information symbols, thegenerator matrix G is

defined by the following equation

ṽec(S) = Gs̃. (3)

wheres, [s1, s2, · · · , sk]T is the information symbol vector
The code design criteria [12] are: (i)Rank criterion− To

achieve maximum diversity, the codeword difference matrix
(X − X̂) must be full rank for all possible pairs of codewords
and the diversity gain is given byntnr, (ii) Determinant
criterion− For a full ranked STBC, the minimum determinant
δmin, defined as

δmin , min
X 6=X̂

det

[(

X − X̂
)(

X − X̂
)H

]

(4)

should be maximized. The coding gain is given by(δmin)
1/nt ,

with nt being the number of transmit antennas.
For the2× 2 MIMO system, the target is to design a code

that is full-rate, i.e transmits 2 complex symbols per channel
use, has full-diversity, maximum coding gain and allows low
ML decoding complexity.

III. THE PROPOSED STBC

In this section, we present our STBC for2 × 2 MIMO
system. The design is based on the class of codes called
co-ordinate interleaved orthogonal designs (CIODs), which
was studied in [11] in connection with the general class of
single-symbol decodable codes and, specifically for 2 transmit
antennas, is as follows.

Definition 4: The CIOD for2 transmit antennas [11] is

X(s1, s2) =

[
s1I + js2Q 0

0 s2I + js1Q

]

(5)

wheresi ∈ C, i = 1, 2 are the information symbols andsiI and
siQ are the in-phase (real) and quadrature-phase (imaginary)
components ofsi, respectively. Notice that in order to make
the above STBC full rank, the signal constellationA from
which the symbolssi are chosen should be such that the real
part (imaginary part, resp.) of any signal point inA is not equal
to the real part (imaginary part, resp.) of any other signal point
in A [11]. So if QAM constellations are chosen, they have to
be rotated. The optimum angle of rotation has been found in
[11] to be 1

2
tan−12 degrees and this maximizes the diversity

and coding gain. We denote this angle byθg.

The proposed2× 2 STBCS is given by

S(x1, x2, x3, x4) = X (s1, s2) + ejθX (s3, s4)P (6)

where

• The four symbolss1, s2, s3 and s4 ∈ A, whereA is a
θg degrees rotated version of a regular QAM signal set,
denoted byAq which is a finite subset of the integer
lattice, andx1, x2, x3, x4 ∈ Aq. To be precise,si =
eθgxi, i = 1, 2, 3, 4.

• P is a permutation matrix designed to make the STBC

full rate and is given byP =

[
0 1
1 0

]

.



• The choice ofθ in the above expression should be such
that the diversity and coding gain are maximized. A
computer search was done forθ in the range[0, π/2].
The optimum value ofθ was found out to beπ/4.

Explicitly, our code matrix is
S(x1, x2, x3, x4) =

[
s1I + js2Q ejπ/4(s3I + js4Q)

ejπ/4(s4I + js3Q) s2I + js1Q

]

(7)

The minimum determinant for our code when the symbols are
chosen from QAM constellations is3.2, the same as that of
the Golden code, which will be proved in the next section.

The generator matrix for our STBC, corresponding to the
symbolssi, is as follows:

G =
















1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 − 1√

2

1√
2

0

0 0 0 0 0 1√
2

1√
2

0

0 0 0 0 1√
2

0 0 − 1√
2

0 0 0 0 1√
2

0 0 1√
2

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
















(8)

It is easy to see that this generator matrix is orthonormal. In
[5], it was shown that a necessary and sufficient condition for
an STBC to beInformation losslessis that its generator matrix
should be unitary. Hence, our STBC has theInformation
losslessnessproperty.

IV. NVD PROPERTY AND THE DMG OPTIMALITY

In this section it is shown that the proposed code has
the non-vanishing determinant (NVD) property [3], which in
conjunction with full-rateness means that our code is DMG
tradeoff optimal [10].

The determinant of the codeword matrixS can be written
as

det(S) = (s1I+js2Q)(s2I+s1Q)−j[(s3I+js4Q)(s4I+s3Q)].

UsingsiI = (si+s∗i )/2 andjsiQ = (si−s∗i )/2 in the equation
above, we get,

4det(S) = (s1 + s∗1 + s2 − s∗2)(s2 + s∗2 + s1 − s∗1)

− j[(s3 + s∗3 + s4 − s∗4)(s4 + s∗4 + s3 − s∗3)]

=
`

(s1 + s2) + (s1 − s2)
∗

´`

(s1 + s2)− (s1 − s2)
∗

´

− j[
`

(s3 + s4) + (s3 − s4)
∗

´`

(s3 + s4)− (s3 − s4)
∗

´

].

Since si = ejθgxi, i = 1, 2, 3, 4, with si ∈ A, xi ∈ Aq, a
subset ofZ[i], definingA , (x1 +x2), B , (x1 −x2)

∗, C ,

(x3 + x4) andD , (x3 − x4)
∗, with A,B,C andD ∈ Z[i],

we get

4Det(S) = (ejθgA+ e−jθgB)(ejθgA− e−jθgB)

− j[(ejθgC + e−jθgD)(ejθgC − e−jθgD)]

= ej2θgA2 − e−j2θgB2 − j[ej2θgC2 − e−j2θgD2].

Sinceej2θg = cos(2θg) + sin(2θg) = (1 + 2j)/
√
5, we get

4
√
5Det(S) = (1+2j)(A2−jC2)−(1−2j)(B2−jD2). (9)

For the determinant ofS to be 0, we must have

(1 + 2j)(A2 − jC2) = (1− 2j)(B2 − jD2)

⇒ (1 + 2j)2(A2 − jC2) = 5(B2 − jD2).

The above can be written as

A2

1
− jC2

1
= 5(B2 − jD2) (10)

where A1 = (1 + 2j)A,C1 = (1 + 2j)C and clearly
A1, C1 ∈ Z[i]. It has been shown in [4] that (10) holds
only when A1 = B = C1 = D = 0, i.e., only when
x1 = x2 = x3 = x4 = 0. This means that the determinant of
the codeword difference matrix is 0 only when the codeword
difference matrix is itself 0. So, for any distinct pair of
codewords, the codeword difference matrix is always full
rank for any constellation which is a subset ofZ[i]. Also,
the minimum value of the modulus of R.H.S of (9) can be
seen to be4. So, |Det(S)| ≥ 1/

√
5. In particular, when the

constellation chosen is the standard QAM constellation, the
difference between any two signal points is a multiple of 2.
Hence, for such constellations,|Det(S-S′)| ≥ 4/

√
5, whereS

and S′ are distinct codewords. The minimum determinant is
consequently 16/5. This means that the proposed codes has
the non-vanishing determinant (NVD) property [3]. In [10],it
was shown that full-rate codes which satisfy the non-vanishing
determinant property achieve the optimal DMG tradeoff. So,
our proposed STBC is DMG tradeoff optimal.

V. DECODING COMPLEXITY

The decoding complexity of the proposed code is of the
order ofM3. This is due to the fact that conditionally given
the symbolsx3 andx4, the symbolsx1 andx2 can be decoded
independently. This can be proved as follows. Writing the
STBC in terms of its weight matrices/dispersion matrices
Ai, i = 1, 2, · · · , 8, [11], we have

S =

4∑

m=1

xmIA2m−1 + xmQA2m
︸ ︷︷ ︸

Tm

= S1 + S2

where

S1 =
2∑

m=1

xmIA2m−1 + xmQA2m

and

S2 =

4∑

m=3

xmIA2m−1 + xmQA2m.

For our code, we have

A1 =

[
cosθg 0

0 jsinθg

]

; A2 =

[
−sinθg 0

0 jcosθg

]

A3 =

[
jsinθg 0

0 cosθg

]

; A4 =

[
jcosθg 0

0 −sinθg

]

A5 = ejπ/4
[

0 cosθg
jsinθg 0

]

A6 = ejπ/4
[

0 −sinθg
jcosθg 0

]



A7 = ejπ/4
[

0 jsinθg
cosθg 0

]

A8 = ejπ/4
[

0 jcosθg
−sinθg 0

]

.

The ML decoding metric in (2) can be written as

M (S) = tr
[

(Y −HS) (Y −HS)
H
]

= tr
[

(Y −HS1 −HS2) (Y −HS1 −HS2)
H
]

= tr
[

(Y −HS1) (Y −HS1)
H
]

− tr
[

HS2 (Y −HS1)
H
]

− tr
[

(Y −HS1) (HS2)
H
]

+ tr
[

HS2 (HS2)
H
]

.

It can be verified that the following hold true forl,m ∈ [1, 4]

AmAH
l +AlA

H
m = 0

{
∀l 6= m,m+ 1, if m is odd
∀l 6= m,m− 1, if m is even.

From [11], we obtain

tr
h

(Y −HS1) (Y −HS1)
H

i

=
2

X

m=1

‖Y −HTm‖2
F

− tr
“

Y Y H

”

and hence,

M (S) =

2∑

m=1

‖Y −HTm‖2F − tr
(
Y Y H

)

+ tr
[

HS2 (HS1)
H
]

+ tr
[

HS1 (HS2)
H
]

− tr
[
HS2Y

H
]
− tr

[

Y (HS2)
H
]

+ tr
[

HS2 (HS2)
H
]

=

2∑

m=1

‖Y −HTm‖2F +

2∑

m=1

tr
[

HS2 (HTm)
H
]

+

2∑

m=1

tr
[

HTm (HS2)
H
]

+ ‖Y −HS2‖2F

− 2tr(Y Y H).

Hence, whenS2 is given, i.e, symbolsx3 andx4 are given,
the ML metric can be decomposed as

M (S) =

2∑

m=1

M (xm) +Mc (11)

with Mc = ‖Y −HS2‖2F − 2tr(Y Y H) andM(xm) being a
function of symbolxm alone. Thus decoding can be done as
follows: choose the pair(x3, x4) and then, in parallel, decode
x1 andx2 so as to minimize the ML decoding metric. With
this approach, there are2M3 values of the decoding metric
that need to be computed in the worst case. So, the decoding
complexity is of the order ofM3.

VI. SIMPLIFIED DECODING USING SPHERE
DECODER

In this section, it is shows that sphere decoding can be used
to achieve the decoding complexity ofM3. It can be shown
that (1) can be written as

ṽec(Y) = Heq s̃+ ṽec(N) (12)

whereHeq ∈ R8×8 is given by

Heq =
(
I2 ⊗ Ȟ

)
G (13)

with G ∈ R8×8 being the generator matrix as in (8) and

s̃, [R(s1), I(s1), · · · ,R(s4), I(s4)]T

with si, i = 1, · · · , 4 drawn fromA, which is a rotation of the
regular QAM constellationAq. Let

xq , [x1, x2, x3, x4]
T

Then,
s̃= Fx̃q.

where F ∈ R8×8 is diag[J, J, J, J] with J being a rotation
matrix and is defined as follows

J ,

[
cos(θg) −sin(θg)
sin(θg) cos(θg)

]

.

So, (12) can be written as

ṽec(Y) = H′
eq x̃q + ṽec(N) (14)

where H′
eq = HeqF. Using this equivalent model, the ML

decoding metric can be written as

M (x̃q) = ‖ṽec (Y)− H′
eq x̃q‖2 (15)

On obtaining the QR decomposition ofH′
eq, we getH′

eq= QR,
whereQ ∈ R8×8 is an orthonormal matrix andR ∈ R8×8 is
an upper triangular matrix. The ML decoding metric now can
be written as

M(x̃q) = ‖QT ṽec(Y)− Rx̃q‖2 (16)

If H′
eq , [h1 h2 · · · h8], wherehi, i = 1, 2, · · · , 8 are column

vectors, thenQ and R have the general form obtained by
Gram− Schmidt process as shown below

Q = [q
1

q
2

q
3
· · ·q

8
]

whereqi, i = 1, 2, · · · , 8 are column vectors, and

R =










‖r1‖ 〈h2, q1
〉 〈h3, q1

〉 . . . 〈h8, q1
〉

0 ‖r2‖ 〈h3, q2
〉 . . . 〈h8, q2

〉
0 0 ‖r3‖ . . . 〈h8, q3

〉
...

...
...

. . .
...

0 0 0 . . . ‖r8‖










where r1 = h1, q
1
= r1

‖r1‖ , r i = hi −
∑i−1

j=1
〈hi, qj〉qj ,

qi =
r i

‖r i‖ , i = 2, · · · , 8.



It can be shown by direct computation thatR has the
following structure















a a 0 0 a a a a
0 a 0 0 a a a a
0 0 a a a a a a
0 0 0 a a a a a
0 0 0 0 a a a a
0 0 0 0 0 a a a
0 0 0 0 0 0 a a
0 0 0 0 0 0 0 a















(17)

wherea stands for a possibly non-zero entry.
The structure of the matrixR allows us to perform a 4

dimensional real sphere decoding (SD) [13] to find the partial
vector [R(x3), I(x3),R(x4), I(x4)]

T and hence obtain the
symbolsx3 and x4. Having found these,x1 and x2 can be
decoded independently. Observe that the real and imaginary
parts of symbolx1 are entangled with one another because
of constellation rotation but are independent of the real and
imaginary parts ofx2 whenx3 andx4 are conditionally given.

Having found the partial vector
[R(x3), I(x3),R(x4), I(x4)]

T , we proceed to find the
rest of the symbols as follows. We do two parallel 2
dimensional real search to decode the symbolsx1 andx2. So,
overall, the worst case decoding complexity of the proposed
STBC is 2M3. This is due to the fact that

1) A 4 dimensional real SD requiresM2 metric computa-
tions in the worst possible case.

2) Two parallel 2 dimensional real SD require2M metric
computations in the worst case.

This decoding complexity is the same as that achieved by the
HTW-PGA code and the Sezginer-Sari code.

Though it has not been mentioned anywhere to the best of
our knowledge, the ML decoding complexity of the Golden
code, Dayal-Varanasi code and the trace-orthogonal cyclo-
tomic code is also2M3 for square QAM constellations. This
follows from the structure of theR matrices for these codes
which are counterparts of the one in (17). TheR matrices of
these codes are similar in structure and as shown below:

R =















a 0 a 0 a a a a
0 a 0 a a a a a
0 0 a 0 a a a a
0 0 0 a a a a a
0 0 0 0 a a a a
0 0 0 0 0 a a a
0 0 0 0 0 0 a a
0 0 0 0 0 0 0 a















Table I presents the comparison of the known full-rate, full-
diversity2×2 codes in terms of their ML decoding complexity
and the coding gain.

VII. SIMULATION RESULTS

Fig 1 shows the codeword error performance plots for the
Golden code, the proposed STBC and the HTW-PGA code for
the 4-QAM constellation. The performance of the proposed

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

C
E

R

 

 
Proposed code
Golden code
HTW−PGA Code

Fig. 1. CER PERFORMANCE FOR 4-QAM

code is the same as that of the Golden code. The HTW-PGA
code performs slightly worse due to its lower coding gain. Fig
2, which is a plot of the CER performance for 16-QAM, also
highlights these aspects. Table I gives a comparison between
the well known full-rate, full-diversity codes for2×2 MIMO.

VIII. CONCLUDING REMARKS

In this paper, we have presented a full-rate STBC for2× 2
MIMO systems which matches the best known codes for such
systems in terms of error performance, while at the same
time, enjoys simplified-decoding complexity that the codes
presented in [7] and [8] do. Recently, a Rate-1 STBC, based
on scaled repetition and rotation of the Alamouti code, was
proposed [15]. This code was shown to have a hard-decision
performance which was only slightly worse than that of the
Golden code for a spectral efficiency of4b/s/Hz, but the
complexity was significantly lower.
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