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Scaling Laws for Overlaid Wireless Networks: A
Cognitive Radio Network vs. a Primary Network

Changchuan Yin, Long Gao, and Shuguang Cui

Abstract— We study the scaling laws for the throughputs and
delays of two coexisting wireless networks that operate in the
same geographic region. The primary network consists of Poisson
distributed legacy users of densityn, and the secondary network
consists of Poisson distributed cognitive users of densitym, with
m > n. The primary users have a higher priority to access the
spectrum without particular considerations for the secondary
users, while the secondary users have to act conservativelyin
order to limit the interference to the primary users. With a
practical assumption that the secondary users only know the
locations of the primary transmitters (not the primary receivers),
we first show that both networks can achieve the same throughput
scaling law as what Gupta and Kumar [1] established for a
stand-alone wireless network if proper transmission schemes are
deployed, where a certain throughput is achievable for each
individual secondary user (i.e., zero outage) with high probability.
By using a fluid model, we also show that both networks can
achieve the same delay-throughput tradeoff as the optimal one
established by El Gamal et al. [2] for a stand-alone wireless
network.

Index Terms— Ad hoc networks, overlaid wireless networks,
throughput, delay, cognitive radio networks.

I. I NTRODUCTION

Initiated by the seminal work of Gupta and Kumar [1], the
throughput scaling law for large-scale wireless networks has
become an active research topic [3]-[14]. Scaling laws provide
a fundamental way to measure the achievable throughput of
a wireless network. Consideringn nodes that are randomly
distributed in a unit area and grouped independently into one-
to-one source-destination (S-D) pairs, Gupta and Kumar [1]
showed that typical time-slotted multi-hop architectureswith
a common transmission range and adjacent-neighbor com-
munication can achieve a sum throughput that scales as
Θ
(

√

n/ logn
)

. They also showed that an alternative arbi-
trary network structure with optimally chosen traffic patterns,
node locations, and transmission ranges can achieve a sum
throughput of orderΘ(

√
n). Thus, they suggested that a factor

of
√
logn is the price to pay for the randomness of the node

locations. In [3], with percolation theory, Franceschettiet al.
showed that theΘ(

√
n) sum throughput scaling is achievable

even for randomly deployed networks under certain special
conditions. In [4], Grossglauser and Tse showed that by allow-
ing the nodes to move independently and uniformly, a constant
throughput scalingΘ(1) per S-D pair can be achieved. Later,
Diggavi et al. showed that a constant throughput per S-
D pair is achievable even with a one-dimensional mobility
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model [5]. In these approaches, the network area is fixed
and the throughput scales with the node densityn. We call
this kind of network asdense network. On the other hand,
based on theextended networkmodel where the density of
nodes is fixed and the network area increases withn, the
information-theoretic scaling laws of transport capacitywere
studied for different values of the pathloss exponentα in [8]-
[14]. In particular, Özgüret al. [14] proposed a hierarchical
cooperation scheme to achieve a sum throughput that scales as
n2−α/2 for 2 ≤ α < 3, i.e., asymptotically linear forα = 2.

In wireless networks, another key performance metric is
delay, which incurs the interesting problems regarding the
interactions between throughput and delay. The issues of
delay-throughput tradeoff for static and mobile wireless net-
works have been addressed in [2], [15]-[21]. In [2], El Gamal
et al. established the optimal delay-throughput tradeoff for
static and mobile wireless networks. For static networks, they
showed that the optimal delay-throughput tradeoff is givenby
D(n) = Θ (nλ(n)), whereλ(n) andD(n) are the throughput
and delay per S-D pair, respectively. Using a random-walk
mobility model, they showed that a much higher delay of
Θ(n logn) is associated with the higher throughput ofΘ(1)
for mobile networks. The delay-throughput tradeoffs in mobile
wireless networks have been investigated under many other
mobility models, which include the i.i.d. model [15], [17],
[18], the hybrid random walk model [20], and the Brownian
motion model [19]. For the hierarchical cooperation scheme
in a static wireless network, Özgür and Lévêque [21] showed
that a significantly larger delay was introduced compared with
the traditional multi-hop scheme, and the delay-throughput
tradeoff is D(n) = Θ

(

n (logn)
2
λ(n)

)

for λ(n) between

Θ(1/(
√
n logn)) andΘ(1/ logn).

All the aforementioned results focus on the throughput
scaling laws or the delay-throughput tradeoffs for a single
wireless network. In recent years, the ever-growing demandfor
frequency resource from wireless communication industries
imposes more stress over the already-crowded radio spectrum.
However, a recent report by the Federal Communications
Commission (FCC) Spectrum Policy Task Force indicated that
over 90 percent of the licensed spectrum remains idle at a
given time and location [22]. This motivated the regulation
bodies to consider the possibility of permitting secondarynet-
works to coexist with licensed primary networks, which is the
main driving force behind the cognitive radio technology [23].
In a secondary network, the cognitive users opportunistically
access the spectrum licensed to primary users according to the
spectrum sensing result [24], where the primary users have
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a higher priority and the secondary users need to prevent
any harmful interference to the primary users [25], [26].
In this overlaid regime, the throughput scaling law and the
delay-throughput tradeoff for both the primary and secondary
networks are interesting and challenging problems. Some pre-
liminary work along this line appeared recently. In [27], [28],
Vu et al. considered the throughput scaling law for a single-
hop cognitive radio network, where a linear scaling law is
obtained for the secondary network with an outage constraint
for the primary network. In [29], Jeonet al. considered a
multi-hop cognitive network on top of a primary network and
assumed that the secondary nodes know the location of each
primary node regardless of whether it is a transmitter (TX) or
a receiver (RX). With an elegant transmission scheme, they
showed that by defining a preservation region around each
primary node, both networks can achieve the same throughput
scaling law as a stand-alone wireless network, while the
secondary network may suffer from a finite outage probability.

In a practical cognitive network, it is hard for the secondary
users to know the locations of primary receiving nodes since
they may keep passive all the time. A reasonable assumption is
that the secondary network knows the locations of the primary
TXs. Based on this assumption, in this paper we define a
preservation region just around each primary TX and propose
corresponding transmission schemes for the two networks. We
show that when the secondary network has a higher density
as requested in [29], both networks can achieve the same
throughput scaling law as a stand-alone wireless network, with
zero outage for the secondary users with high probability.
Considering a fluid model, we also show that both networks
can achieve the same delay-throughput tradeoff as the optimal
one established for a stand-alone static wireless network in [2].
In our approach, the primary network deploys a time-slotted
multi-hop transmission scheme similar to that in [1] and does
not need to cooperate with the secondary network. Note that,
as mentioned in [29], if both the primary network and the
secondary network are willing to cooperate and do time-
sharing, both of them could easily achieve the same throughput
scaling law as a stand-alone wireless network.

The rest of the paper is organized as follows. The system
model, definitions, and main results are described in Section
II. The proposed protocols for the primary and secondary
networks are discussed in Section III. The delay and through-
put scaling laws for the primary network are established in
Section IV. The delay and throughput scaling laws for the
secondary network are derived in Section V. Finally, Section
VI summarizes our conclusions.

II. SYSTEM MODEL, DEFINITIONS, AND MAIN RESULTS

In this section, we first describe the system model and
assumptions about the primary and secondary networks, and
then define the throughput and delay. We usep(E) to represent
the probability of eventE and claim that an eventEn occurs
with high probability (w.h.p.) if p(En) → 1 asn → ∞. We
use the following order notations throughout this paper. Given
non-negative functionsf(n) andg(n):

1) f(n) = O(g(n)) means that there exists a positive

constantc1 and an integerm1 such thatf(n) ≤ c1g(n)
for all n ≥ m1.

2) f(n) = Ω(g(n)) means that there exists a positive
constantc2 and an integerm2 such thatf(n) ≥ c2g(n)
for all n ≥ m2. Namely,g(n) = O(f(n)).

3) f(n) = Θ(g(n)) means that bothf(n) = O(g(n)) and
f(n) = Ω(g(n)) hold for all n ≥ max(m1, m2).

A. Network Model

Consider the scenario where a network of primary nodes
and a network of secondary nodes coexist over a unit square.
The primary nodes are distributed according to a Poisson point
process (P. P. P.) of densityn and randomly grouped into one-
to-one source-destination (S-D) pairs. The distribution of the
secondary nodes is following a P. P. P. of densitym. The
secondary nodes are also randomly grouped into one-to-one
S-D pairs. As the model in [29], we assume that the density
of the secondary network is higher than that of the primary
network, i.e.,

m = nβ, (1)

with β > 1.
For the wireless channel, we only consider the large-scale

pathloss and ignore the effects of shadowing and small-scale
multipath fading. As such, the normalized channel power gain
g(r) is given as

g(r) =
A

rα
, (2)

where A is a system-dependent constant,r is the distance
between the TX and the corresponding RX, andα > 2
denotes the pathloss exponent. In the following discussion,
we normalizeA to be unity for simplicity.

The primary network and the secondary network share the
same spectrum, time, and space, while the former one is the
licensed user of the spectrum and thus has a higher priority to
access the spectrum. The secondary network opportunistically
access the spectrum while keeping its interference to the
primary network at an “acceptable level”. In this paper, the
“acceptable level” means that the presence of the secondary
network does not degrade the throughput scaling law of the
primary network.

We assume that the secondary network only knows the
locations of the primary TXs and has no knowledge about the
locations of the primary RXs. This is the essential difference
between our model and the model in [29], where the authors
assumed that the secondary network knows the locations of
all the primary nodes. Some other aspects of our model are
defined in a similar way to that in [29], as we will discuss
later.

B. Transmission Rate and Throughput

The ambient noise is assumed as additive white Gaussian
noise (AWGN) with an average powerN0. During each trans-
mission, we assume that each TX-RX pair deploys a capacity-
achieving scheme, and the channel bandwidth is normalized to
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be unity for simplicity. Thus the data rate of thek-th primary
TX-RX pair is given by

Rp(k) = log

(

1 +
Pp(k)g (‖Xp,tx(k)−Xp,rx(k)‖)

N0 + Ip(k) + Isp(k)

)

, (3)

where‖·‖ stands for the norm operation,Pp(k) is the transmit
power of thek-th primary TX-RX pair,Xp,tx(k) andXp,rx(k)
are the TX and RX locations of thek-th primary TX-RX
pair, respectively,Ip(k) is the sum interference from all other
primary TXs to the RX of thek-th primary TX-RX pair, and
Isp(k) is the sum interference from all the secondary TXs to
the RX of thek-th primary TX-RX pair. Specifically,Ip(k)
can be written as

Ip(k) =

Qp
∑

i=1,i6=k

Pp(k)g (‖ Xp,tx(i)−Xp,rx(k) ‖) , (4)

whereQp is the number of active primary TX-RX pairs, and
Isp(k) is given by

Isp(k) =

Qs
∑

i=1

Ps(i)g (‖ Xs,tx(i)−Xp,rx(k) ‖) , (5)

whereQs is the number of active secondary TX-RX pairs,
Ps(i) is the transmit power of thei-th secondary TX-RX pair,
andXs,tx(i) is the TX location of thei-th secondary TX-RX
pair. Likewise, the data rate of thel-th secondary TX-RX pair
is given by

Rs(l) = log

(

1 +
Ps(l)g (‖Xs,tx(l)−Xs,rx(l)‖)

N0 + Is(l) + Ips(l)

)

, (6)

whereXs,rx(l) is the RX location of thel-th secondary TX-
RX pair,Is(l) is the sum interference from all other secondary
TXs to the RX of thel-th secondary TX-RX pair, andIps(l)
is the sum interference from all primary TXs to the RX of the
l-th secondary TX-RX pair. Specifically,Is(l) is given by

Is(l) =

Qs
∑

i=1,i6=l

Ps(i)g (‖ Xs,tx(i)−Xs,rx(l) ‖) , (7)

andIps(l) is given by

Ips(l) =

Qp
∑

i=1

Pp(i)g (‖ Xp,tx(i)−Xs,rx(l) ‖) . (8)

Now we give the definitions of throughput per S-D pair and
sum throughput.

Definition 1: The throughput per S-D pairλ(nt) is defined
as the average data rate that each source node can transmit
to its chosen destinationw.h.p. in a multi-hop fashion with
a particular scheduling scheme, wherent is the number of
nodes in the network. We have

p

(

min
1≤i≤nt/2

lim inf
t→∞

1

t
Mi(t) ≥ λ(nt)

)

→ 1, (9)

asnt → ∞, whereMi(t) is the number of bits that S-D pair
i transmitted int time slots.

Definition 2: The sum throughputT (nt) is defined as the
product between the throughput per S-D pairλ(nt) and the
number of S-D pairs in the network, i.e.,

T (nt) =
nt

2
λ(nt). (10)

According to the network model defined in Section II.A, the
number of nodes in the primary network (or in the secondary
network) is a random variable. However, we will show in
Lemma 1 and Lemma 3 at Section III that the number of nodes
in the primary network (or in the secondary network) will be
bounded by functions of the node densityw.h.p.. As such, in
the following discussion, we useλp(n) andλs(m) to denote
the throughputs per S-D pair for the primary network and the
secondary network, respectively. We useTp(n) andTs(m) to
denote the sum throughputs for the primary network and the
secondary network, respectively.

C. Fluid Model and Delay

As in [2], we use a fluid model to study the delay-throughput
tradeoffs for the primary and secondary networks. In this
model, we divide each time slot into multiple packet slots, and
the size of the data packets can be scaled down to arbitrarily
small with the increase of the node densityn (or m) in the
networks.

Definition 3: ThedelayD(nt) of a packetis defined as the
average time that it takes to reach the destination node after
the departure from the source node.

Let Di(j) denote the delay of packetj for S-D pairi. The
sample mean of delay over all packets transmitted for S-D pair
i is defined as

Di = lim sup
k→∞

1

k

k
∑

j=1

Di(j), (11)

and the average delay over all S-D pairs is given by

D(nt) =
2

nt

nt/2
∑

i=1

Di.

The average delay over all realizations of the network is

D(nt) = E
[

D(nt)
]

=
2

nt

nt/2
∑

i=1

E [Di] . (12)

As what we did over the notations of throughput, in the
following discussion, we useDp(n) and Ds(m) to denote
the packet delays for the primary network and the secondary
network, respectively.

D. Main Results

The main results of this paper are as follows.

1) We propose a coexistence scheme for two overlaid
ad hoc wireless networks: a primary network vs. a
secondary network. These two networks operate in the
same geographic region and share the same spectrum.
The primary network has a higher priority to access
the spectrum and has no special considerations over the
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presence of the secondary network, while the secondary
network operates opportunistically to access the spec-
trum in order to limit the interference to the primary
network. We assume that the primary network uses a
typical time-slotted adjacent-neighbor transmission pro-
tocol (similar to that in [1]) and the secondary network
has a higher density and only knows the locations of
the primary TXs. By a properly designed secondary
protocol, we show that each secondary source node has
a finite opportunity to transmit its packets to the chosen
destinationw.h.p., i.e., no outage compared with the
result in [29].

2) For the primary network, we show that the throughput
per S-D pair isλp(n) = Θ(

√

1
n logn ) w.h.p. and the

sum throughput isTp(n) = Θ(
√

n
logn ) w.h.p.. These

results are the same as those in a stand-alone ad
hoc wireless network considered in [1]. Following the
fluid model [2], we give the delay-throughput tradeoff
for the primary network asDp(n) = Θ(nλp(n)) for
λp(n) = O( 1√

n logn
), which is the optimal delay-

throughput tradeoff for a stand-alone wireless ad hoc
network established in [2].

3) For the secondary network, we prove that the throughput
per S-D pair isλs(m) = Θ(

√

1
m logm ) w.h.p. and

the sum throughput isTs(m) = Θ(
√

m
logm ) w.h.p..

Although due to the presence of the preservation regions,
the secondary packets seemingly experience larger de-
lays compared with that of the primary network, we
show that the delay-throughput tradeoff for the sec-
ondary network is the same as that in the primary
network, i.e.,Ds(m) = Θ(mλs(m)) for λs(m) =
O( 1√

m logm
).

III. N ETWORK PROTOCOLS

In our proposed scheme, the primary network deploys a
modified time-slotted multi-hop transmission scheme over that
in [1], [2], [29]. The secondary network adapts its protocolac-
cording to the primary transmission scheme. We first describe
the primary protocol, then introduce the secondary protocol,
and finally give a lemma to show that with our proposed
protocols the secondary users can communicate without outage
w.h.p.. Similarly as in [29], we claim that an outage event
occurs when a node has zero opportunity to communicate.
The outage probability is defined as the fraction of nodes that
have zero opportunity to communicate.

A. Primary Network Protocol

• We divide the unit square into small-square primary cells.
The area of each primary cell isap = k1 logn

n , with k1 ≥
1.

• We group the primary cells into primary clusters, and
each cluster hasK2

p = 25 primary cells. We split
the transmission time into time division multiple access
(TDMA) frames, where each frame has 25 time slots that
correspond to the number of cells in each primary cluster

Fig. 1. A four-cluster example with 25 cells per cluster. Thecells in each
cluster take turns to be active along the arrowed line over time.

with each slot of lengthtp. In each time slot, one cell in
each primary cluster is chosen to be active. The cells in
each primary cluster take turns to be active in a round-
robin fashion. All primary clusters follow the same 25-
TDMA transmission pattern, as shown in Fig. 1.

• We define the data path along which the packets traverse
as the horizontal line and then the vertical line connecting
a source and its corresponding destination, as shown in
Fig. 2. One node within a primary cell is defined as a
designated relay node, which is responsible for relaying
the packets of all the data paths passing through the cell.
The packets will be forwarded from cell to cell by the
relay nodes first along the horizontal data path (HDP),
then along the vertical data path (VDP). Nodes in a
particular cell take turns to serve as the designated relay
node.

• When a primary cell is active, it transmits a single packet
for each of the data paths passing through the cell. The
transmission is also deployed in a TDMA fashion. The
TDMA frame structure for the primary network is shown
in Fig. 3, where one packet slot is assigned to one S-
D data path that passes through or originates from a
particular primary cell. As such, the number of packet
slots is determined by the total number of data paths in
the cell, which is based on the so-called fluid model [2].
The specific packet transmission procedure is as follows:

– The designated relay node first transmits a single
packet for each of the S-D paths passing through
the cell; and then each of the source nodes within
the cell takes turns to transmit a single packet.

– The receiving node must be located in one of the
neighboring primary cells along the predefined data
path, unless it is a destination node, which may be
located in the same cell. If the next-hop of the packet
is the final destination, it will be directly delivered
to the destination node; otherwise, the packet will be
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Fig. 2. Examples of HDPs and VDPs for the primary S-D pairs.

Fig. 3. Structure of the primary TDMA frame, wheretp is the time-slot
duration of the primary TDMA scheme.

transmitted to a designated relay node.
– The designated relay node in each primary cell

maintains a buffer to temporarily store the packets
received from its neighboring cells, and each packet
will be transmitted to the next hop in the next active
time slot of the cell.

• At each packet slot, the TX node transmits with power
of P0a

α
2

p , whereP0 is a constant.

The primary protocol in this paper is similar to that in [2]
but with different data paths and TDMA transmission patterns.
As a result, we have the following two lemmas.

Lemma 1:Let npt denote the number of total primary
nodes in the unit square; then we haven

2 < npt < en w.h.p..
Proof: Since npt is a Poisson random variable with

parameterµ = n, using the Chernoff bound in Lemma 11
(see Appendix), we have

p
(

npt ≤
n

2

)

≤ e−n(en)
n
2

(

n
2

)
n
2

=

(

2

e

)
n
2

→ 0 (13)

asn → ∞, and

p (npt ≥ en) ≤ e−n(en)en

(en)en

= e−n → 0 (14)

asn → ∞. Combining (13) and (14) via the union bound, we
obtain

p
(

npt ≤
n

2
ornpt ≥ en

)

≤ p
(

npt ≤
n

2

)

+p (npt ≥ en) → 0

asn → ∞. Hence

p
(n

2
< npt < en

)

= 1− p
(

npt ≤
n

2
ornpt ≥ en

)

→ 1

asn → ∞, which completes the proof.
Lemma 2:For k1 ≥ 1, each primary cell contains at least

one but no more thank1e logn primary nodesw.h.p..
Proof: Let np denote the number of primary nodes in a

particular primary cell; thennp is a Poisson random variable
with parameterµ = nap = k1 logn. The probability ofnp = 0
is given by

p (np = 0) =
e−k1 logn(k1 logn)

k

k!

∣

∣

∣

∣

k=0

=
1

nk1

. (15)

By the union bound, the probability that at least one primary
cell having no nodes is upper-bounded by the total number of
cells multiplied byp (np = 0), which is

p (At least one primary cell has no nodes)

≤ 1

ap
p (np = 0) =

1

k1nk1−1 logn
→ 0

asn → ∞ for k1 ≥ 1.
Now consider the upper bound ofnp. By the Chernoff

bound in Lemma 11 (see Appendix), we have

p (np ≥ k1e logn) ≤
e−k1 logn (ek1 log n)

k1e logn

(k1e logn)
k1e log n

= n−k1 .

As long ask1 ≥ 1, by the union bound, we have

p (At least one primary cell has more thank1e logn nodes)

≤ 1

ap
n−k1 =

1

k1nk1−1 logn
→ 0

asn → ∞. This completes the proof.

B. Secondary Network Protocol

• We divide the unit area into square secondary cells with
sizeas =

k2 logm
m , with k2≥ 1.

• We group the secondary cells into secondary clusters.
Each secondary cluster hasK2

s = 25 cells. Similar to
the primary network protocol, the secondary network also
follows a 25-TDMA pattern to communicate. We let the
duration of each secondary TDMA frame equal to that
of one primary time slot. The relationship between the
primary TDMA frame and the secondary TDMA frame
is shown in Fig. 4, where each secondary time slot is
further divided into packet slots.

• To limit the interference from the secondary nodes to
the primary nodes, we define a preservation region as a
square containingM2 secondary cells around a particular
primary cell in which an active primary TX (not the RX)
is located, whereM is an integer and the value will
be defined later. No secondary nodes in the preservation
regions are allowed to transmit.

• The designated relay nodes and data paths for the sec-
ondary network are defined in the same way as those
for the primary network. As shown in Fig. 5, when a
particular secondary cell outside the preservation region
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Fig. 4. Structure of the secondary TDMA frame and its relationship with the
primary TDMA frame, wherets is the time-slot duration for the secondary
TDMA scheme.

is active, its designated relay node transmits a single
packet for each of the data paths passing through the
cell, and each of the secondary source nodes within the
cell takes turns to transmit a single packet. The packet is
transmitted to the next-hop relay node or the destination
node in neighboring secondary cells along the HDP or
VDP path. Note that if the RX node is the destination
node, it may be located in the same cell, as we discussed
for the primary protocol.

• When a secondary cell falls into a preservation region1, its
designated relay node buffers the packets that it receives;
it waits until the preservation region is cleared and the
cell is active to deliver the packets to the next hop.

• At each packet slot, the active secondary TX node trans-
mits with power ofP1a

α
2

s , whereP1 is a constant.

Similarly as in the primary network case, we have the
following two lemmas for the secondary network.

Lemma 3:Let nst denote the total number of secondary
nodes in the unit square; then we havem

2 < nst < em w.h.p..
Proof: The proof is similar to that of Lemma 1.

Lemma 4:For k2 ≥ 1, each secondary cell contains at least
one but no more thank2e logm secondary nodesw.h.p..

Proof: The proof is similar to that of Lemma 2.
Regarding the cluster size, note that the value ofKs is not

necessarily the same as that ofKp. Here we chooseKs =
Kp for simplicity. Without loss of generality, we also choose
k1 = k2 in the following discussion.

Now, let us discuss how to choose the value ofM , i.e.,
the size for the preservation region. Considering the fact that
the primary TX may only transmit to a node in its adjacent
cells or within the same cell, the preservation region should
accommodate at least 9 primary cells to protect the potential
primary RX. Since the primary RX may be located close
to the outer boundary of the 9-cell region, we should add
another layer of protective secondary cells. As such, any
active secondary TXs outside the preservation region are at
least certain-distance-away from the potential primary RX.
Therefore, we define the side length of the preservation square
region as

M
√
as ≥ 3

√
ap + 2ǫp, (16)

1Note that the secondary nodes located in the preservation regions can still
receive packets from TXs outside the preservation regions,although they are
not permitted to transmit packets.

Fig. 5. Preservation region and examples of secondary data paths.

where ǫp > 0 defines the width of the protective secondary
strip around the 9 primary cells in the preservation region.
There is a tradeoff in choosing the value ofǫp. If we choose
a largerǫp, the interference from the secondary network to
the primary network will be less. However, the opportunity
for the secondary network to access the spectrum will also
be less since the unpreserved area in the unit square will be
reduced. In the following discussion, we setǫp =

√
as for

simplicity. Accordingly, the minimum value ofM can be set
as

M = ⌊
3
√
ap + 2

√
as√

as
⌋

= ⌊3
√

ap
as

⌋+ 2

≈ 3

√

nβ−1

β
, (17)

where⌊·⌋ denotes the flooring operation. In the last equation
of (17), we appliedap = k1 log n

n , as =
k2 logm

m , k1 = k2,
and (1), assuming thatn is large enough. In the following
discussion, “n is large” or “n is large enough” means that,
for a fixedβ, n is chosen to satisfyas ≪ ap. For example,
whenk1 = k2, β = 2, n = 1000, we havem = 1000000 and
ap

as
= nβ−1

β = 500.

Note that the preservation region defined here is larger than
that in [29] due to the fact that we only know the locations of
primary TXs. If a secondary node falls inside a preservation
region, it will be silenced. If not, it may become active and has
an opportunity to transmit its packets. Accordingly, we call the
unpreserved region as the “active region”. Since the locations
of preservation regions change periodically according to the
active time slots in the primary TDMA frame, from the point
view of a specific secondary node, it is periodically located
in the active region. We define the following terminology to
measure the fraction of time in which a secondary cell is
located in the active region.
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Fig. 6. Preservation regions and worst places in one primarycluster.

Definition 4: The opportunistic factorof a secondary cell
is defined as the fraction of time in which it is located in the
active region.

We use the following lemma to show that, with the protocols
defined previously, each individual secondary source node
has a finite opportunity to transmit its packets to the chosen
destinationw.h.p..

Lemma 5:With the proposed transmission protocol, we
have the following results:

1) The opportunistic factor for a secondary cell is925 ≤
η ≤ 16

25 , for n is large enough.
2) Each individual secondary node has a finite opportunity

to transmit its packets to the chosen destination, i.e., zero
outage,w.h.p..

Proof: Consider one primary cluster of 25 primary
cells as shown in Fig. 6, where the preservation regions are
illustrated as the shaded area when the upper-left primary cell
is active in this and neighboring clusters. The primary cells
will take turns to be active over time (see Fig. 1) and the
locations of the preservation regions will change accordingly.
We can easily verify that any point in the cluster has a
finite opportunity to be in the active region whenn is large.
However, during each period of a primary TDMA frame,
the fractions of time for different secondary nodes to be in
the active region are not the same. The worst places are the
squares with side length of2

√
as around the vertices of each

primary cell, as shown by those deeply-shaded small squaresin
Fig. 6. The opportunistic factor of the secondary cells in these
squares is925 . The best places are the squares with side length
of

√
ap − 2

√
as inside each primary cell, as shown by the

deeply-shaded squares in Fig. 7. The opportunistic factor of the
secondary cells in these squares are16

25 . When the secondary
cell lies in other places, the opportunistic factor is between 9

25
and 16

25 .
The condition that a secondary node is located in the active

region is not sufficient to ensure that it can transmit packets

Fig. 7. The best places in one primary cluster.

to the destination along the predefined data path. Recall that
the secondary network also deploys a TDMA scheme with
adjacent-neighbor transmission. The sufficient conditionto
ensure that each individual secondary node has a finite chance
to transmit packets is that the secondary cell in which the node
is located will be assigned with at least one active secondary
TDMA slot within each secondary frame, whenever the cell
is in the active region. Since in each primary time slot, we
have one complete secondary TDMA frame in our protocol,
the above sufficient condition is indeed satisfied.

Based on the above discussions, during each period of
a primary TDMA frame, each secondary cell has a finite
opportunity to be located in the active region with an op-
portunistic factor of 9

25 ≤ η ≤ 16
25 , and each of them is

assigned with a secondary TDMA slot. According to the
secondary protocol, when a secondary cell is active, each
packet buffered in this cell will be assigned with a packet
slot w.h.p. to be transmitted, since the total number of data
paths that pass through or originate from each secondary cell
is upper-boundedw.h.p.(see Lemma 10 in Section V). Thus,
the packets from any secondary source node have a finite
opportunity to be transmitted along the predefined data path
to the chosen destinationw.h.p.. This completes the proof for
the zero outage property.

There is a significant difference between our result here
and that in [29]. The authors in [29] defined preservation
regions of 9 secondary cells around each primary node, and the
positions of the preservation regions are fixed. If the secondary
nodes are located in the preservation regions, they will never
be active. Therefore, the secondary network in [29] usually
suffers from a non-zero outage probability, even though the
outage probability is upper-boundedw.h.p.. In our case, each
secondary node has a finite opportunity to be active such that
we have zero outagew.h.p..
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IV. D ELAY AND THROUGHPUTANALYSIS FOR THE

PRIMARY NETWORK

In this section, we discuss the delay and throughput scaling
laws as well as the delay-throughput tradeoff for the primary
network. The main results are given in three theorems. We first
present the delay and throughput scaling laws, then establish
the delay-throughput tradeoff for the primary network.

A. Delay Analysis for the Primary Network

The packet delay for the primary network is given by the
following theorem.

Theorem 1:According to the primary network protocol in
Section III, the packet delay is given by

Dp(n) = Θ

(

1
√

ap(n)

)

, w.h.p.. (18)

Proof: We first derive the average number of hops for
each packet to traverse along the primary S-D data path, then
use the fact that the time for each primary packet to spend at
each hop is a constant,25tp, as shown in Fig. 3, and finally
calculate the average delay for each primary S-D pair .

Since each primary hop spans a distance ofΘ
(

√

ap(n)
)

w.h.p., the number of hops for a primary packet along the S-D

data pathi is Θ

(

dp(i)√
ap(i)

)

w.h.p., wheredp(i) is the length

of the primary S-D data pathi. Hence, the number of hops
traversed by a primary packet, averaged over all S-D pairs, is

Θ

(

2
npt

∑npt/2
i=1

dp(i)√
ap(n)

)

w.h.p..

The data path lengthdp(i) is a random variable, with a
maximum value of 2. According to the law of large numbers,
asnpt → ∞, the average distance between primary S-D pairs
is

2

npt

npt/2
∑

i=1

dp(i) = Θ (1).

Therefore, the average number of hops for a primary packet

to traverse isΘ

(

1√
ap(n)

)

w.h.p.. Since we use a fluid

model such that the packet size of the primary network scales
proportionally to the throughputλp(n), each packet arrived at
a primary cell will be transmitted in the next active time slot
of the cell. As such, the maximum time spent at each primary
hop for a particular packet is25tp. Hence, the average delay
for each primary packet is given by

Dp(n) = Θ

(

25tp
√

ap(n)

)

= Θ

(

1
√

ap(n)

)

, w.h.p, (19)

which completes the proof.
The above proof follows the same logic as the proof of

Theorem 4 in [2]. The two differences are that we use HDPs
and VDPs as the packet routing paths instead of the direct S-D
links and we use a different TDMA transmission pattern.

B. Throughput Analysis for the Primary Network

For the primary network, the throughput per S-D pair and
the sum throughput scaling laws are given in the following
theorem.

Theorem 2:With the primary protocol defined in Section
III, the primary network can achieve the following throughput
per S-D pair and sum throughputw.h.p.:

λp(n) = Θ

(
√

1

n logn

)

(20)

and

Tp(n) = Θ

(√

n

logn

)

. (21)

Before we give the proof of the above theorem, we first give
two lemmas, then use these lemmas to prove the theorem.
The main logical flows in the proofs of these lemmas and the
theorem are motivated by that in [29] and [15].

Lemma 6:With the primary protocol defined in Section III,
each TX node in a primary cell can support a constant data
rate ofK1, whereK1 > 0 is independent ofn.

Proof: In a given primary packet slot, suppose we have
Qp active primary cells andQs active secondary cells. The
data rate supported for a TX node in thei-th active primary
cell can be calculated as follows:

Rp(i) =
1

25
log

(

1 +
Pp(i)g(‖Xp,tx(i)−Xp,rx(i)‖)

N0 + Ip(i) + Isp(i)

)

,

(22)
where 1

25 denotes the rate loss due to the 25-TDMA transmis-
sion in the primary network. Note that since there is only
one active primary link initiated in each primary cell at a
given time, we index the active link initiated in thei-th active
primary cell as thei-th active primary link in the whole
network. In Fig. 8, we show the primary interference sources
to the primary RX of thei-th active primary link, where the
shaded cells represent the active primary cells based on the
25-TDMA protocol. From the figure, we see that we have
8 primary interferers with a distance of at least3

√
ap, 16

primary interferers with a distance of at least7
√
ap, and so

on. Thus,Ip(i) is upper-bounded as

Ip(i) =

Qp
∑

k=1,k 6=i

Pp(k)g(‖Xp,tx(k)−Xp,rx(i)‖)

< P0

∞
∑

t=1

8t(4t− 1)−α

= Ip < ∞, (23)

where we used the relationship thatPp(k) = P0a
α
2

p for all
k’s and the fact that the series

∑∞
t=1 8t(4t− 1)−α converges

to a constant forα > 2 (see Lemma 12 in Appendix). Due
to the preservation regions, a minimum distance

√
as can

be guaranteed from all secondary active TXs to any active
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primary RXs. Thus,Isp(i) is upper-bounded as

Isp(i) =

Qs
∑

k=1

Ps(k)g(‖Xs,tx(k)−Xp,rx(k)‖)

+P1a
α
2

s (
√
as)

−α

< P1

∞
∑

t=1

8t(4t− 1)−α + P1

= Isp < ∞, (24)

where we used the fact thatPs(k) = P1a
α
2

s for all k’s and
Lemma 12. Therefore, we have

Rp(i) >
1

25
log

(

1 +
P0(

√
5)−α

N0 + Ip + Isp

)

= K1 > 0, (25)

where the relationship that‖Xp,tx(i) −Xp,rx(i)‖ ≤
√

5ap is
used (see Fig. 8). This completes the proof.

Lemma 7:For ap(n) = k1 logn/n, the number of primary
S-D paths (including both HDPs and VDPs) that pass through
or originate from each primary cell isO

(

n
√

ap(n)
)

w.h.p..
Proof: See the proof of Lemma 3 in [29] or the proof

of Lemma 2 in [15].
Now we give the proof for Theorem 2.

Proof: Consider the proof of the per-node throughput
in (20). According to the definitions in Section II, we need
to show that there are deterministic constantsc2 > 0 and
c1 < +∞ to satisfy

lim
n→∞

p

(

c2√
n logn

≤ λp(n) ≤
c1√

n logn

)

= 1. (26)

A loose upper bound of the per-node throughput for the
primary network is achieved when the secondary network is
absent. Gupta and Kumar [1] have already showed that such
an upper bound given in (26) exists. We then only need to
consider the proof for the lower bound.

Since a given TX node in each primary cell can support a
constant data rate ofK1 (see Lemma 6), each primary S-D pair
can achieve a data rate of at leastK1 divided by the maximum
number of data paths that pass through and originate from the
primary cell. From Lemma 7, we know that the number of
data paths that pass through or originate from each primary
cell isO

(

n
√

ap(n)
)

w.h.p..Therefore, the throughput per S-

D pair λp(n) is lower-bounded byΩ

(

1

n
√

ap(n)

)

w.h.p., i.e.,

the lower bound isΩ
(

1√
n logn

)

w.h.p..
From Lemma 1, the number of primary S-D pairs is lower-

bounded byn
4 w.h.p.. Thus, the sum throughputSp(n) is

lower-bounded byn
4λp(n) w.h.p., i.e., the lower bound is

Ω
(

√

n
log n

)

w.h.p.. The upper bound ofSp(n) is already

established in [1]. This completes the proof.
From the proof of Theorem 2, the throughput per S-D pair for
the primary network can be written as

λp(n) = Θ

(

1

n
√

ap(n)

)

, w.h.p.. (27)

Fig. 8. Interference from the concurrent primary transmissions to the worst-
case primary RX of the transmission from thei-th primary cell.

C. Delay-throughput Tradeoff for the Primary Network

Combining the results in (18) and (27), the delay-throughput
tradeoff for the primary network is given by the following
theorem.

Theorem 3:With the primary protocol defined in Section
III, the delay-throughput tradeoff is

Dp(n) = Θ (nλp(n)) , for λp(n) = O

(

1√
n logn

)

. (28)

V. DELAY AND THROUGHPUTANALYSIS FOR THE

SECONDARY NETWORK

The difference between the primary and the secondary trans-
mission schemes arises from the presence of the preservation
regions. When their paths are blocked by the preservation
regions, the secondary relay nodes buffer the packets and wait
until the next hop is available. Due to the presence of the
preservation region, the secondary packets will experience a
larger delay compared with the primary packets. However, the
average packet delay per hop for each secondary S-D data
path is still a constant as we discussed later. Thus, we can
show that the throughput scaling law and the delay-throughput
tradeoff for the secondary network are the same as those in the
primary network. In the following discussion, we first analyze
the average packet delay, then discuss the throughput scaling
law, and finally describe the delay-throughput tradeoff.

A. Delay Analysis for the Secondary Network

The average packet delay for the secondary network is given
by the following theorem.

Theorem 4:According to the proposed secondary network
protocol in Section III, the packet delay is given by

Ds(m) = Θ

(

1
√

as(m)

)

, w.h.p.. (29)
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Before giving the proof of Theorem 4, we present the
following lemma.

Lemma 8:The average packet delay for each secondary hop
is Θ(1).

Proof: Let Dj
s,h(i) denote the packet delay for the

secondary network over hopj and S-D pairi. As shown in
Fig. 4, if there are no preservation regions, each secondary
cell has one active time slot in each primary time slot. In
another word, each secondary packet will experience a worst-
case delay oftp at each hop, i.e.,Dj

s,h(i) = tp. When we
have the preservation regions, according to Lemma 5,Dj

s,h(i)
is a bounded random variable. It depends on the location of
the active TX from which the secondary packet departs. As
shown in Fig. 4 and Fig. 6, when the active TX is located
in the worst places as shown in Fig. 6,Dj

s,h(i) is 1
ηmin

tp,
whereηmin = 9

25 is the minimum value of the opportunistic
factor η. Similarly, when the active TX is located in the
best places as shown in Fig. 7,Dj

s,h(i) is 1
ηmax

tp, where
ηmax = 16

25 is the maximum value of the opportunistic factor
η. Hence, the ensemble average ofDj

s,h(i) will be a constant

c0, where 1
ηmax

tp < c0 < 1
ηmin

tp, i.e., E
[

Dj
s,h(i)

]

= Θ(1).
This completes the proof.

Now, let us prove Theorem 4.
Proof: Since each secondary hop covers a distance

of Θ
(

√

as(m)
)

w.h.p., and similarly as in the proof of
Theorem 2, the average length of each secondary S-D data
path isΘ(1), the average number of hops for each secondary

packet isΘ

(

1√
as(m)

)

w.h.p.. From Lemma 8, the average

packet delay for each secondary hop isΘ(1). Therefore, the
average packet delay for the secondary network is

Ds(m) = Θ

(

1
√

as(m)

)

w.h.p., which completes the proof.

B. Throughput Analysis for the Secondary Network

For the secondary network, the throughput scaling law is
given by the following theorem.

Theorem 5:With the secondary protocol defined in Section
III, the secondary network can achieve the following through-
put per-node and sum throughputw.h.p.:

λs(m) = Θ

(
√

1

m logm

)

(30)

and

Ts(m) = Θ

(√

m

logm

)

. (31)

Similarly as in the primary network case, we first present
two lemmas, then use these lemmas to prove Theorem 5.

Lemma 9:With the proposed secondary protocol, each TX
node in a secondary cell can support a data rate ofK2, where
K2 > 0 is independent ofm.

Proof: Due to the presence of the preservation regions,
a minimum distance of1.5

√
ap from all primary TXs to a

specific active secondary RX can be guaranteed. At a given

secondary packet slot and at thei-th secondary link (i.e., the
active transmission initiated in thei-th secondary cell), the
interference from all active primary TXs is upper-bounded as

Ips(i) < P0a
α
2

p

∞
∑

t=1

8t((3t− 1)
√
ap)

−α

+P0a
α
2

p

(

1.5
√
ap
)−α

< P0

∞
∑

t=1

8t(3t− 1)−α + P0(1.5)
−α

= Ips < ∞, (32)

where we applied the same technique as in the proof of
Lemma 6 to obtain the upper bound. Likewise,Is(i) is upper-
bounded byIs = P1

∑∞
t=1 8t(4t − 1)−α, which converges

to a constant as shown in Lemma 12 (see the Appendix).
Considering the effects of the preservation region, the lower
bound of the data rate that is supported in each secondary cell
can be written as

Rs(i) >
1

25
ηmin log

(

1 +
P0(

√
5)−α

N0 + Ips + Is

)

= K2 > 0, (33)

whereηmin = 9
25 represents the penalty due to the presence

of the preservation region. Thus, we can guarantee a constant
data rateK2 > 0 for a given TX node in each secondary cell,
which completes the proof.

Lemma 10:For as(m) = k2 logm/m, the number of
secondary S-D paths (including both HDPs and VDPs)
that pass through or originate from each secondary cell is
O
(

m
√

as(m)
)

w.h.p..
Proof: The proof of Lemma 10 follows the same logic

as that in the proof of Lemma 7.
Now, let us prove Theorem 5.

Proof: The proof of Theorem 5 is similar to the proof
of Theorem 2.

Similarly as in Theorem 2, the throughput per S-D pair of
the secondary network can be written as

λs(m) = Θ

(

1

m
√

as(m)

)

, w.h.p.. (34)

C. Delay-throughput Tradeoff for the Secondary Network

Combining the results in (29) and (34), the delay-throughput
tradeoff for the secondary network is given by the following
theorem.

Theorem 6:With the secondary protocol defined in Section
III, the delay-throughput tradeoff for the secondary network is

Ds(m) = Θ (mλs(m)) , for λs(m) = O

(

1√
m logm

)

.

(35)

VI. CONCLUSION

In this paper, we studied the coexistence of two wireless
networks with different priorities, where the primary network
has a higher priority to access the spectrum, and the secondary
network opportunistically explore the spectrum. When the
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secondary network has a higher density, with our proposed
protocols, both of these networks can achieve the throughput
scaling law promised by Gupta and Kumar in [1]. Comparing
with the recent result in [29], we only assumed the knowledge
about the primary TX locations and there is no outage penalty
for the secondary nodes. By using a fluid model, we also
showed that both networks can achieve the same delay-
throughput tradeoff as the optimal one established for a stand-
alone wireless network in [2].

APPENDIX

In the appendix, we first recall the useful Chernoff bound for
a Poisson random variable from [30]; then we give a lemma to
show that the infinite series sums in Lemma 6 and Lemma 9
converge to a constant.

Lemma 11: (Theorem 5.4 in [30])Let X be a Poisson
random variable with parameterµ.

1) If x > µ, then

p (X ≥ x) ≤ e−µ(eµ)x

xx
;

2) If x < µ, then

p (X ≤ x) ≤ e−µ(eµ)x

xx
.

Lemma 12:The sum
∑∞

t=1 at(bt − 1)−α converges to a
constant, whereα > 2, a andb are positive integers.

Proof:

∞
∑

t=1

at

(bt− 1)α
=

a

bα

∞
∑

t=1

t

(t− 1
b )

α

=
a

bα

∞
∑

t=1

1

(t− 1
b )

α−1

+
a

bα+1

∞
∑

t=1

1

(t− 1
b )

α
. (36)

Applying the following inequality

∞
∑

t=1

1

(t− 1
b )

α
≤ 1

(1− 1
b )

α
+

� ∞

1

1

(t− 1
b )

α
dt

to (36), we obtain

∞
∑

t=1

at

(bt− 1)α
≤ a

bα

(

1

(1− 1
b )

α−1
+

� ∞

1

1

(t− 1
b )

α−1
dt

)

+
a

bα+1

(

1

(1− 1
b )

α
+

� ∞

1

1

(t− 1
b )

α
dt

)

=
a

bα
(

1− 1
b

)α−1 +
a
(

1− 1
b

)−α+2

bα(α− 2)

+
a

bα+1
(

1− 1
b

)α +
a
(

1− 1
b

)−α+1

bα+1(α− 1)
,

where the last equation is a constant whenα > 2. This
completes the proof.
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