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Scaling Laws for Overlaid Wireless Networks: A
Cognitive Radio Network vs. a Primary Network

Changchuan Yin, Long Gao, and Shuguang Cui

Abstract— We study the scaling laws for the throughputs and
delays of two coexisting wireless networks that operate inhe
same geographic region. The primary network consists of Peson
distributed legacy users of densityn, and the secondary network
consists of Poisson distributed cognitive users of density:, with
m > n. The primary users have a higher priority to access the
spectrum without particular considerations for the secondry
users, while the secondary users have to act conservativelg
order to limit the interference to the primary users. With a
practical assumption that the secondary users only know the
locations of the primary transmitters (not the primary receivers),
we first show that both networks can achieve the same throughg
scaling law as what Gupta and Kumar [1] established for a
stand-alone wireless network if proper transmission schees are
deployed, where a certain throughput is achievable for each
individual secondary user (i.e., zero outage) with high prbability.
By using a fluid model, we also show that both networks can
achieve the same delay-throughput tradeoff as the optimal ree
established by El Gamalet al. [2] for a stand-alone wireless
network.

Index Terms—Ad hoc networks, overlaid wireless networks,
throughput, delay, cognitive radio networks.

I. INTRODUCTION

model [5]. In these approaches, the network area is fixed
and the throughput scales with the node densityWe call

this kind of network asdense networkOn the other hand,
based on theextended networknodel where the density of
nodes is fixed and the network area increases withithe
information-theoretic scaling laws of transport capacityre
studied for different values of the pathloss exponerin [8]-

[14]. In particular, Ozgiiret al. [14] proposed a hierarchical
cooperation scheme to achieve a sum throughput that scales a
n?=/2 for 2 < a < 3, i.e., asymptotically linear forr = 2.

In wireless networks, another key performance metric is
delay, which incurs the interesting problems regarding the
interactions between throughput and delay. The issues of
delay-throughput tradeoff for static and mobile wirelegs-n
works have been addressed in [2], [15]-[2H [2], El Gamal
et al established the optimal delay-throughput tradeoff for
static and mobile wireless networks. For static networtkey t
showed that the optimal delay-throughput tradeoff is gign
D(n) = © (nA(n)), whereA(n) and D(n) are the throughput
and delay per S-D pair, respectively. Using a random-walk
mobility model, they showed that a much higher delay of

Initiated by the seminal work of Gupta and Kumar [1], thé (nlogn) is associated with the higher throughputéf1)
throughput scaling law for large-scale wireless networis hfor mobile networks. The delay-throughput tradeoffs in b
become an active research topic [3]-[14]. Scaling laws joiev wireless networks have been investigated under many other
a fundamental way to measure the achievable throughput™8pPility models, which include the i.i.d. model [15], [17],

a wireless network. Considering nodes that are randomly[18], the hybrid random walk model [20], and the Brownian
distributed in a unit area and grouped independently in&® ofnotion model [19]. For the hierarchical cooperation scheme

to-one source-destination (S-D) pairs, Gupta and Kumar [{]

showed that typical time-slotted multi-hop architectuvath

a static wireless network, Ozgiir and Lévéque [21] showed
that a significantly larger delay was introduced comparet wi

a common transmission range and adjacent-neighbor cdf€ tradiFionaI multi-ho scherr12e, and the delay-throughpu
munication can achieve a sum throughput that scales tgadeoff is D(n) = © (n (logn) /\(”)) for A(n) between

S} (\/n/ logn). They also showed that an alternative arbi® (1/(y/nlogn)) and®© (1/logn).

trary network structure with optimally chosen traffic patie

All the aforementioned results focus on the throughput

node locations, and transmission ranges can achieve a stbaling laws or the delay-throughput tradeoffs for a single
throughput of orde® (/7). Thus, they suggested that a factowireless network. In recent years, the ever-growing denfiand
of \/logn is the price to pay for the randomness of the nodeequency resource from wireless communication industrie

locations. In [3], with percolation theory, Franceschettial.

imposes more stress over the already-crowded radio spectru

showed that th@® (/n) sum throughput scaling is achievabledowever, a recent report by the Federal Communications
even for randomly deployed networks under certain spec@bmmission (FCC) Spectrum Policy Task Force indicated that
conditions. In [4], Grossglauser and Tse showed that byvalloover 90 percent of the licensed spectrum remains idle at a
ing the nodes to move independently and uniformly, a constajiven time and location [22]. This motivated the regulation
throughput scaling@®(1) per S-D pair can be achieved. Laterpodies to consider the possibility of permitting secondaet
Diggavi et al. showed that a constant throughput per Sworks to coexist with licensed primary networks, which is th

D pair is achievable even with a one-dimensional mobilitshain driving force behind the cognitive radio technologg][2

In a secondary network, the cognitive users opportunistica
access the spectrum licensed to primary users accorditg to t
spectrum sensing result [24], where the primary users have
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a higher priority and the secondary users need to prevent constant; and an integern; such thatf(n) < c1g(n)

any harmful interference to the primary users [25], [26]. for all n > m;.
In this overlaid regime, the throughput scaling law and the 2) f(n) = Q(g(n)) means that there exists a positive
delay-throughput tradeoff for both the primary and seconda constantc; and an integems such thatf(n) > cag(n)

networks are interesting and challenging problems. Soree pr for all n > mq. Namely,g(n) = O(f(n)).

liminary work along this line appeared recently. In [27]8]2  3) f(n) = ©(g(n)) means that bottf(n) = O(g(n)) and
Vu et al. considered the throughput scaling law for a single-  f(n) = Q(g(n)) hold for all n > max(m1, ms).

hop cognitive radio network, where a linear scaling law is

obtained for the secondary network with an outage constrain

for the primary network. In [29], Jeoet al. considered a A- Network Model

multi-hop cognitive network on top of a primary network and Consider the scenario where a network of primary nodes
assumed that the secondary nodes know the location of eagly a network of secondary nodes coexist over a unit square.
primary node regardless of whether it is a transmitter (TX) 0he primary nodes are distributed according to a Poissamt poi

a receiver (RX). With an elegant transmission scheme, thgyocess (P. P. P.) of densityand randomly grouped into one-
showed that by defining a preservation region around eagone source-destination (S-D) pairs. The distributibrthe
primary node, both networks can achieve the same throughgegondary nodes is following a P. P. P. of density The
scaling law as a stand-alone wireless network, while th@condary nodes are also randomly grouped into one-to-one
secondary network may suffer from a finite outage probabilits-p pairs. As the model in [29], we assume that the density

In a practical cognitive network, it is hard for the secoydalof the secondary network is higher than that of the primary
users to know the locations of primary receiving nodes singgtwork, i.e.,

they may keep passive all the time. A reasonable assumggtion i
that the secondary network knows the locations of the pgmar
TXs. Based on this assumption, in this paper we defineyath 5 > 1.

preservation region just around each primary TX and proposéror the wireless channel, we only consider the large-scale
corresponding transmission schemes for the two networks. Y)éthloss and ignore the effects of shadowing and smalescal

show that when the secondary network has a higher densi{yitipath fading. As such, the normalized channel powen gai
as requested in [29], both networks can achieve the sage) is given as

throughput scaling law as a stand-alone wireless netwath, w A

zero outage for the secondary users with high probability. g(r) = g 2)

Considering a fluid model, we also show that both networks ) ) )

can achieve the same delay-throughput tradeoff as the aptiffhere 4 is a system-dependent constantjs the distance

one established for a stand-alone static wireless netwdqi Petween the TX and the corresponding RX, amd> 2

In our approach, the primary network deploys a time-slottélgnotes the pathloss exponent. In the following discussion

multi-hop transmission scheme similar to that in [1] andsio&/€ normalizeA to be unity for simplicity.

not need to cooperate with the secondary network. Note that,The primary network and the secondary network share the

as mentioned in [29], if both the primary network and th&&me spectrum, time, and space, while the former one is the

secondary network are willing to cooperate and do timécensed user of the spectrum and thus has a higher priority t

sharing, both of them could easily achieve the same throutghBCcess the spectrum. The secondary network opportutiigtica

scaling law as a stand-alone wireless network. access the spectrum while keeping its interfgrence to the
The rest of the paper is organized as follows. The systdifimary network at an “acceptable level”. In this paper, the

model, definitions, and main results are described in Secticceptable level” means that the presence of the secondary

Il. The proposed protocols for the primary and secondaﬂ?twork does not degrade the throughput scaling law of the

networks are discussed in Section Ill. The delay and threugpfimary network.

put scaling laws for the primary network are established in We assume that the secondary network only knows the

Section IV. The delay and throughput scaling laws for thigcations of the primary TXs and has no knowledge about the

secondary network are derived in Section V. Finally, Sectidocations of the primary RXs. This is the essential diffeeen
VI summarizes our conclusions. between our model and the model in [29], where the authors

assumed that the secondary network knows the locations of

all the primary nodes. Some other aspects of our model are

defined in a similar way to that in [29], as we will discuss
In this section, we first describe the system model arater.

assumptions about the primary and secondary networks, and

then define the throughput and delay. We p&B) to represent

the probability of evenf and claim that an everff,, occurs B. Transmission Rate and Throughput

with high probability (v.h.p) if p(E,) — 1 asn — co. We  The ambient noise is assumed as additive white Gaussian

use the following order notations throughout this papeve@i ngjse (AWGN) with an average powéf,. During each trans-

non-negative functiong(n) andg(n): mission, we assume that each TX-RX pair deploys a capacity-
1) f(n) = O(g(n)) means that there exists a positivechieving scheme, and the channel bandwidth is normalized t

m=nP, (1)

Il. SYSTEM MODEL, DEFINITIONS, AND MAIN RESULTS



be unity for simplicity. Thus the data rate of theth primary Definition 2: The sum throughpufl'(n;) is defined as the
TX-RX pair is given by product between the throughput per S-D p&fr,) and the

P, (k) (| XpoB) — Xpyrx<k>|>> g e SP pae nfhe netuerk b,
No + Ip(k) + Lp (k) ’ T(n) = Zx(ny). (10)

where||-|| stands for the norm operatiof, (k) is the transmit  according to the network model defined in Section I1.A, the
power of thek-th primary TX-RX pair, X, (k) and X, (k) number of nodes in the primary network (or in the secondary
are the TX and RX locations of thé-th primary TX-RX network) is a random variable. However, we will show in
pair, respectively/, (k) is the sum interference from all othern emma 1 and Lemma 3 at Section Il that the number of nodes
primary TXs to the RX of thei-th primary TX-RX pair, and iy the primary network (or in the secondary network) will be
I, (k) is the sum interference from all the secondary TXs t95,nded by functions of the node densigh.p. As such, in

the RX of thek-th primary TX-RX pair. Specifically/,(k)  the following discussion, we usk, (n) and A, (m) to denote

R,(k) = log <1 +

can be written as the throughputs per S-D pair for the primary network and the
secondary network, respectively. We uggn) andT(m) to
@r denote the sum throughputs for the primary network and the
k)= Y Py(k)g (| Xpu(i) — Xp(k) ), () secondary network, respectively.
i=1,i#k

where@),, is the number of active primary TX-RX pairs, andc. Fluid Model and Delay

Lsp(k) is given by As in [2], we use a fluid model to study the delay-throughput

Qs tradeoffs for the primary and secondary networks. In this
I, (k) = Z Py(1)g (|| Xsx() — Xpux(K) 1), (5) model, we divide each time slot into multiple packet slots] a
i=1 the size of the data packets can be scaled down to arbitrarily
where @, is the number of active secondary TX-RX pairsSmall with the increase of the node density(or m) in the
P,(i) is the transmit power of theth secondary TX-RX pair, networks.
and X, (i) is the TX location of the-th secondary TX-Rx  Definition 3: Thedelay D(n;) of a packefs defined as the

pair. Likewise, the data rate of teth secondary TX-RX pair average time that it takes to reach the destination node afte
is given by the departure from the source node.

Let D;(j) denote the delay of packgtfor S-D pairi. The
Py()g (| Xox(l) — Xs,rx(l)l)) © sample mean of delay over all packets transmitted for S-bD pai

No + Is(1) + Ls(1) 1 is defined as

R,(1) = log (1 +

where X (1) is the RX location of the€-th secondary TX- ) 1 _
RX pair, I5(1) is the sum interference from all other secondary D= hiisogpg Z Di(j), (11)
TXs to the RX of thel-th secondary TX-RX pair, and, (1) =1

is the sum interference from all primary TXs to the RX of thand the average delay over all S-D pairs is given by
I-th secondary TX-RX pair. Specifically,(l) is given by

2
o D(ny) = - ; D.
L) = i_lz;ﬂ Po)g (I Xoax(@) = Xoax(D) 1), (7) The average delay over all realizations of the network is
. . nt/2
and I,s(1) is given by N
N D(n) = B [ D) | = = g ED].  (12)
Ips(l) = Z; Po(i)g (I Xp.ox(i) = Xomx(D) []) - ®) As what we did over the notations of throughput, in the

) o . following discussion, we usé,(n) and D,(m) to denote
Now we give the definitions of throughput per S-D pair anghe packet delays for the primary network and the secondary

sum throughput. _ _ _ network, respectively.
Definition 1: Thethroughput per S-D paii(n,) is defined

as the average data rate that each source node can transmit
to its chosen destinatiom.h.p. in a multi-hop fashion with D- Main Results
a particular scheduling scheme, wherg is the number of  The main results of this paper are as follows.

nodes in the network. We have 1) We propose a coexistence scheme for two overlaid

1 ad hoc wireless networks: a primary network vs. a

D ( min  liminf—M;(t) > )\(nt)) — 1, 9 secondary network. These two networks operate in the
1Sisng/2 t=oo same geographic region and share the same spectrum.

asn; — oo, whereM;(t) is the number of bits that S-D pair The primary network has a higher priority to access

i transmitted int time slots. the spectrum and has no special considerations over the



2)

3)

In

presence of the secondary network, while the secondary
network operates opportunistically to access the spec-
trum in order to limit the interference to the primary
network. We assume that the primary network uses a
typical time-slotted adjacent-neighbor transmission pro
tocol (similar to that in [1]) and the secondary network
has a higher density and only knows the locations of
the primary TXs. By a properly designed secondary
protocol, we show that each secondary source node has
a finite opportunity to transmit its packets to the chosen
destinationw.h.p, i.e., no outage compared with the
result in [29].

For the primary network, we show that the throughput

per S-D pair is)\,(n) = O(,/—=—) w.h.p and the

nlogn

sum throughput isT;,(n) = ©(,/5;) W.h.p. These
results are the same as those in a stand-alone ad

hoc wireless network considered in [1]. Following the

fluid model [2], we give the delay-throughput tradeoffig. 1.
cluster take turns to be active along the arrowed line ovee.ti

for the primary network asD,(n) = ©(nA,(n)) for
Ap(n) O(—===), which is the optimal delay-
throughput tradeofif for a stand-alone wireless ad hoc
network established in [2].

For the secondary network, we prove that the throughput

per S-D pair isA;(m) = O(y/mpzm) Wh.p and
the sum throughput isl(m) = O(,/2%;) w.h.p.

Although due to the presence of the preservation regions,.
the secondary packets seemingly experience larger de-
lays compared with that of the primary network, we
show that the delay-throughput tradeoff for the sec-
ondary network is the same as that in the primary
network, i.e., Ds(m) O(mAs(m)) for As(m)

O(mt=)-

I"l.
our proposed scheme, the primary network deploys a

N ETWORK PROTOCOLS

modified time-slotted multi-hop transmission scheme olat t
in [1], [2], [29]. The secondary network adapts its protoaci
cording to the primary transmission scheme. We first describ
the primary protocol, then introduce the secondary prdtoco

and

finally give a lemma to show that with our proposed

protocols the secondary users can communicate withougeuta
w.h.p. Similarly as in [29], we claim that an outage event
occurs when a node has zero opportunity to communicate.

The

outage probability is defined as the fraction of nodes tha

have zero opportunity to communicate.

A. Primary Network Protocol

We divide the unit square into small-square primary cells.
'1I'he area of each primary cell ig, = =2, with k; >

We group the primary cells into primary clusters, and
each cluster hasKg 25 primary cells. We split
the transmission time into time division multiple access
(TDMA) frames, where each frame has 25 time slots that
correspond to the number of cells in each primary cluster

Active cell

Yy

A

\/

A four-cluster example with 25 cells per cluster. Tdadls in each

with each slot of lengtlt,. In each time slot, one cell in
each primary cluster is chosen to be active. The cells in
each primary cluster take turns to be active in a round-
robin fashion. All primary clusters follow the same 25-
TDMA transmission pattern, as shown in Fig. 1.

We define the data path along which the packets traverse
as the horizontal line and then the vertical line connecting
a source and its corresponding destination, as shown in
Fig. 2. One node within a primary cell is defined as a
designated relay node, which is responsible for relaying
the packets of all the data paths passing through the cell.
The packets will be forwarded from cell to cell by the
relay nodes first along the horizontal data path (HDP),
then along the vertical data path (VDP). Nodes in a
particular cell take turns to serve as the designated relay
node.

When a primary cell is active, it transmits a single packet
for each of the data paths passing through the cell. The
transmission is also deployed in a TDMA fashion. The
TDMA frame structure for the primary network is shown
in Fig. 3, where one packet slot is assigned to one S-
D data path that passes through or originates from a
particular primary cell. As such, the number of packet
slots is determined by the total number of data paths in
the cell, which is based on the so-called fluid model [2].
The specific packet transmission procedure is as follows:

— The designated relay node first transmits a single
packet for each of the S-D paths passing through
the cell; and then each of the source nodes within
the cell takes turns to transmit a single packet.

The receiving node must be located in one of the
neighboring primary cells along the predefined data
path, unless it is a destination node, which may be
located in the same cell. If the next-hop of the packet
is the final destination, it will be directly delivered
to the destination node; otherwise, the packet will be
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asn — oo. Hence

(n
P2
asn — oo, which completes the proof. [ ]

o Lemma 2:For k; > 1, each primary cell contains at least
one but no more thah;elogn primary nodesw.h.p.

n
<npt<en)zl—p(npt§§ornpt26n)—>l

Proof: Let n, denote the number of primary nodes in a

particular primary cell; them,, is a Poisson random variable
with parametep = na, = k1 logn. The probability ofn, =0
0 is given by

ek 1‘)g"(kl logn)* 1

k! peo TF

(15)

p(np=0)=

By the union bound, the probability that at least one primary

cell having no nodes is upper-bounded by the total number of

Fig. 2. Examples of HDPs and VDPs for the primary S-D pairs.

One primary TDMA frame

I
*
1
T

Primary packet slots

cells multiplied byp (n,, = 0), which is

p (At least one primary cell has no nodes

1 1
< — = O = O
- app(np ) kinki=1logn

asn — oo for ky > 1.
Now consider the upper bound of,. By the Chernoff

Fig. 3. Structure of the primary TDMA frame, whetg is the time-slot bound in Lemma 11 (see Appendix), we have

duration of the primary TDMA scheme.

p(np > kielogn) <

transmitted to a designated relay node.
— The designated relay node in each primary cell

e~kilogn (ek) log n)kle logn

k1
)klelogn :

:n_

(krelogn

As long ask; > 1, by the union bound, we have

maintains a buffer to temporarily store the packetg (At least one primary cell has more th&pe log n nodeg

received from its neighboring cells, and each packet
will be transmitted to the next hop in the next active
time slot of the cell.

T 1

S
kinFi—llogn

ap

asn — oo. This completes the proof. [ ]

« At each packet slot, the TX node transmits with power
of Pya?, whereP, is a constant.

The primary protocol in this paper is similar to that in [2
but with different data paths and TDMA transmission patern
As a result, we have the following two lemmas.

Lemma 1:Let n,: denote the number of total primary °
nodes in the unit square; then we haye< n,; < en w.h.p.

Proof: Since n,, is a Poisson random variable with
parametery = n, using the Chernoff bound in Lemma 11
(see Appendix), we have

n e~ "(en)z

(%)

= (2) —0 (13) .
e

asn — oo, and
> <
p (npt = en) = (en)en
= e "—=0 (14)

asn — oo. Combining (13) and (14) via the union bound, we
obtain

D (npt < g of npt > en) <p (npt < g)—i—p (npt > en) =0

]B. Secondary Network Protocol

We divide the unit area into square secondary cells with
sizea, = £2108™ with k> 1.

We group the secondary cells into secondary clusters.
Each secondary cluster hds? = 25 cells. Similar to

the primary network protocol, the secondary network also
follows a 25-TDMA pattern to communicate. We let the
duration of each secondary TDMA frame equal to that
of one primary time slot. The relationship between the
primary TDMA frame and the secondary TDMA frame

is shown in Fig. 4, where each secondary time slot is
further divided into packet slots.

To limit the interference from the secondary nodes to
the primary nodes, we define a preservation region as a
square containing/? secondary cells around a particular
primary cell in which an active primary TX (not the RX)

is located, whereM is an integer and the value will
be defined later. No secondary nodes in the preservation
regions are allowed to transmit.

The designated relay nodes and data paths for the sec-
ondary network are defined in the same way as those
for the primary network. As shown in Fig. 5, when a
particular secondary cell outside the preservation region



Secondary buffer node Preservation region

1 2 3 24 25
| | | | |
T T T T T
- tp T time a I . . .
T T —— P
""' One secondary TDMA frame ™ N
I 1
- B
t S dary Rx o
»—o—o—v\o ~~~~~~~~ ——t— v o
Secondary packet slots
Fig. 4. Structure of the secondary TDMA frame and its refettap with the 2
primary TDMA frame, wherets is the time-slot duration for the secondary Primary 2
TDMA scheme. active cell J
is active, its designated relay node transmits a single . /; *

packet for each of the data paths passing through the
cell, and each of the secondary source nodes within the
cell takes turns to transmit a single packet. The packet is
transmitted to the next-hop relay node or the destinati%. 5
node in neighboring secondary cells along the HDP or
VDP path. Note that if the RX node is the destination
node, it may be located in the same cell, as we discussgflere

for the primary protocol. ) , N strip around the 9 primary cells in the preservation region.
« When a secondary cell falls into a preservation re§i8 Tnere is a tradeoff in choosing the value«f If we choose
Qesig_nated _relay node buffgrs the_pac_kets that it r‘:“Ce“"é‘lsiargerep, the interference from the secondary network to
It waits ur_1t|l the preservation region is cleared and thgg primary network will be less. However, the opportunity
cell is active to deliver the packets to the next hop. ¢4 the secondary network to access the spectrum will also
« At each packet slot, the active secondary TX node trangs |ess since the unpreserved area in the unit square will be

——
Mfa,  PrmAIYTX pyked data path Secondary Tx

Preservation region and examples of secondary dsle.p

» > 0 defines the width of the protective secondary

mits with power ofP1as’, whereP; is a constant. reduced. In the following discussion, we sgt = ,/a; for
Similarly as in the primary network case, we have theimplicity. Accordingly, the minimum value a¥/ can be set
following two lemmas for the secondary network. as
Lemma 3:Let n, denote the total number of secondary
nodes in the unit square; then we hafe< n,; < em w.h.p. M = LMJ
Proof: The proof is similar to that of Lemma 1. = Vs
Lemma 4:For ks > 1, each secondary cell contains at least = |3 %J +2
one but no more thakhse logm secondary nodes.h.p. as
Proof: The proof is similar to that of Lemma 2. = nf—1
Regarding the cluster size, note that the valugsgfis not ~ 3 5 (17)

necessarily the same as that &f,. Here we choosé{, =

K, for simplicity. Without loss of generality, we also choosgyhere|.| denotes the flooring operation. In the last equation
k1 = ko in the following discussion. of (17), we appliech, = kll’sgn, a, = k2 l;:fm, k= ko,

Now, let us discuss how to choose the valueldf i.e., and (1), assuming that is large enough. In the following
the size for the preservation region. Considering the faat t discussion, # is large” or “n is large enough” means that,
the primary TX may only transmit to a node in its adjacerfbr a fixed 3, n is chosen to satisfy,, < a,. For example,
cells or within the same cell, the preservation region sthoulvhenk; = ko, 8 = 2, n = 1000, we havern = 1000000 and
accommodate at least 9 primary cells to protect the pofentia — »” ' _ 5.
primary RX. Since the primary RX may be located closé’ . ] ] ]
to the outer boundary of the 9-cell region, we should add Npte that the preservation region defined here is Iar_ger than
another layer of protective secondary cells. As such, aHjatin [29] due to the fact that we only know the locations of
active secondary TXs outside the preservation region areP&imary TXs. If a secondary node falls inside a preservation
least certain-distance-away from the potential primary. RX€gion, it will be silenced. If not, it may become active arash

Therefore, we define the side length of the preservationrsqun OPPOrtunity to transmit its packets. Accordingly, wel ta
region as unpreserved region as the “active region”. Since the looati

of preservation regions change periodically accordinght® t
active time slots in the primary TDMA frame, from the point
Myas 2 3/ap + 2ep, (16) view of a specific secondary node, it is periodically located
in the active region. We define the following terminology to
INote that the secondary nodes located in the preservatiponscan still measure the fraction of time in which a Secondary cell is

receive packets from TXs outside the preservation regialtispugh they are . . .
not permitted to transmit packets. located in the active region.




Primary TX Primary cell Best places Primary cell

Worst places
Preservatign region

| H n

| | | | 4 }&
] »

Ja, Ja, 2

Fig. 6. Preservation regions and worst places in one prirkster. Fig. 7. The best places in one primary cluster.

Definition 4: The opportunistic factorof a secondary cell

active region. _ _ the secondary network also deploys a TDMA scheme with
We use the following lemma to show that, with the protocolgdjacent-neighbor transmission. The sufficient condition

defined previously, each individual secondary source noggsure that each individual secondary node has a finite ehanc

has a finite opportunity to transmit its packets to the choseftransmit packets is that the secondary cell in which thdeno

destinationw.h.p. is located will be assigned with at least one active secgndar
Lemma 5:With the proposed transmission protocol, WerDMA slot within each secondary frame, whenever the cell
have the following results: is in the active region. Since in each primary time slot, we
1) The opportunistic factor for a secondary celljs < have one complete secondary TDMA frame in our protocol,

n < % for n is large enough. the above sufficient condition is indeed satisfied.

2) Each individual secondary node has a finite opportunity

o TR Based on the above discussions, during each period of
to transmit its packets to the chosen destination, i.eq zer . f h d I h fini
outage w.h.p. a primary TDMA frame, each secondary cell has a finite

: . . opportunity to be located in the active region with an op-
Proof: Consider one primary cluster of 25 primary, PP y g P

7 _ _ ortunistic factor ofx < n < 1%, and each of them is
cells as shown in Fig. 6, where the preservation regions %

25
Ssigned with dary TDMA slot. According to th
illustrated as the shaded area when the upper-left primelty SIgned witn & seconcary >0 georing to e
is active in this and neighboring clusters. The primarys:e?E

econdary protocol, when a secondary cell is active, each
will take turns to be active over time (see Fig. 1) and th

acket buffered in this cell will be assigned with a packet

. . . . ' N§ot w.h.p to be transmitted, since the total number of data
locations of the preservation regions will change accayigin
We can easily verify that any point in the cluster has

paths that pass through or originate from each secondadry cel
- : i i : _ 3 upper-bounded.h.p.(see Lemma 10 in Section V). Thus,
finite opportunity to be in the active region whenis large.

However, during each period of a primary TDMA frame

the packets from any secondary source node have a finite

] . . opportunity to be transmitted along the predefined data path
the fractions of time for different secondary nodes to be b y g b P
the active region are not the same. The worst places are

the chosen destinatiomh.p. This completes the proof for

squares with side length @f/a, around the vertices of each € zero outage property. "
primary cell, as shown by those deeply-shaded small sqirares There is a significant difference between our result here
Fig. 6. The opportunistic factor of the secondary cells isth and that in [29]. The authors in [29] defined preservation
squares is. The best places are the squares with side leng#ygions of 9 secondary cells around each primary node, &nd th
of \/a, — 2,/a; inside each primary cell, as shown by theositions of the preservation regions are fixed. If the sdaon
deeply-shaded squares in Fig. 7. The opportunistic fa¢titveo nodes are located in the preservation regions, they wilenev
secondary cells in these squares g#e When the secondary be active. Therefore, the secondary network in [29] usually
cell lies in other places, the opportunistic factor is bfﬂw% suffers from a non-zero outage probability, even though the
and % outage probability is upper-boundadh.p. In our case, each

The condition that a secondary node is located in the actisecondary node has a finite opportunity to be active such that
region is not sufficient to ensure that it can transmit packewe have zero outage.h.p.



IV. DELAY AND THROUGHPUTANALYSIS FOR THE B. Throughput Analysis for the Primary Network
PRIMARY NETWORK
For the primary network, the throughput per S-D pair and

In this section, we discuss the delay and throughput scalifigh sum throughput scaling laws are given in the following
laws as well as the delay-throughput tradeoff for the primat,aorem.

network. The main results are given in three theorems. We firs
present the delay and throughput scaling laws, then eshablliII
the delay-throughput tradeoff for the primary network.

Theorem 2:With the primary protocol defined in Section
, the primary network can achieve the following througitp
per S-D pair and sum throughpwth.p:

A. Delay Analysis for the Primary Network 1
Ap(n) =0 (20)
The packet delay for the primary network is given by the nlogn

following theorem.
Theorem 1:According to the primary network protocol inand

Section Ill, the packet delay is given by n
Ty(n) =0 ( ) . (21)
logn
Dy(n) =© 1 . whop. (18) Before we give the proof of the above theorem, we first give

ap(n) two lemmas, then use these lemmas to prove the theorem.
Proof: We first derive the average number of hops forhe main logical flows in the proofs of these lemmas and the
each packet to traverse along the primary S-D data path, titheorem are motivated by that in [29] and [15].
use the fact that the time for each primary packet to spend aj emma 6: With the primary protocol defined in Section i1,
each hop is a constaritji,, as shown in Fig. 3, and finally each TX node in a primary cell can support a constant data

calculate the average delay for each primary S-D pair . rate of K, wherek; > 0 is independent of.
Since each primary hop spans a distancé&)c<f\/ ap(n) Proof: In a given primary packet slot, suppose we have

w.h.p, the number of hops for a primary packet along the S-B,, active primary cells and), active secondary cells. The
data pathi is © dp (i) w.h.p, whered, (i) is the length data rate supported for a TX node in th¢h active primary

. ap(?) , cell can be calculated as follows:
of the primary S-D data path Hence, the number of hops

traversed by a primary packet, averaged over all S-D pairs, i Po()g(11 Xy (i) = Xpex (D))
p p,IX p,rx

1
npt/2  dy(i R,(i) = —=log 1+ . - )
0 (%Zi_/ —;ﬁ(iﬂ) w.h.p. o) =55 g< No + I, (i) + Lo () >(22)
The data path lengtid, (i) Isa random variable, with 4 whereL denotes the rate loss due to the 25-TDMA transmis-
maximum value of 2. According to the law of large numbers, ~ 25 . . :
: . Sion in the primary network. Note that since there is only
asn, — oo, the average distance between primary S-D pairs . . L : .
i one active primary link initiated in each primary cell at a
given time, we index the active link initiated in thig¢h active
e /2 primary cell as thei-th active primary link in the whole
pt

9 . : .
= Z d,(i) = O (1). network. In Fig. 8, we show the primary interference sources
Pt =1

to the primary RX of thei-th active primary link, where the
shaded cells represent the active primary cells based on the
Therefore, the average number of hops for a primary packe3-TDMA protocol. From the figure, we see that we have
1 w.h.p. Since we use a fluid 8 primary interferers with a distance of at leasya,, 16

ap(n) _ ) rimary interferers with a distance of at leasya,, and so
model such that the packet size of the primary network scal§s Thus 1,(i) is upper-bounded as

proportionally to the throughput,(n), each packet arrived at
a primary cell will be transmitted in the next active timetslo

to traverse is©

. . . Qp
of the cell. As such, the maximum time spent at each primary N .
hop for a particular packet i85¢,. Hence, the average delay L) = Z }P”(k)g(HX (k) = Xpo())
for each primary packet is given by kzl’:fl
< PRy 8t(dt—1)"*
25t 1 =t
Dy(n) =0 ( L ) =06 <7> ,  w.h.p, (19) = I, < oo, (23)
ap(n) ap(n)
which completes the proof. B where we used the relationship thBf(k) = Poaf for all

The above proof follows the same logic as the proof df's and the fact that the seri€s ,”, 8¢(4t — 1)~ converges
Theorem 4 in [2]. The two differences are that we use HDRs a constant forx > 2 (see Lemma 12 in Appendix). Due
and VDPs as the packet routing paths instead of the direct Sdthe preservation regions, a minimum distange, can
links and we use a different TDMA transmission pattern. be guaranteed from all secondary active TXs to any active



primary RXs. Thus/,,(¢) is upper-bounded as }rﬁﬁ7”7}7"”77”77"7” T TWW? 73
2. 1 | | | | i

Ly(i) = Y Pu(R)g(l Xow(k) — Xp(B)])

=1 : | | | | |

k=3 —a f T T T T |

+P1(l52 (\/a_) 1 : :J | Wao st-i:as RX of the i-'!lhu ary cell ;

> L _[TX[in the i-thyprimary pell| \f3a,| | | L[ [ [ 4 | | T[]

< P Stdt—1)""+ P, | e ! ! ! 1

i ] | | ]

- I, < oo, (24) | i i e [ |

where we used the fact thd (k) = P1a? for all k¥'s and ; : : : = 3
Lemma 12. Therefore, we have 1 ! ! ! 73, !
| | | | | |

, 1 Py(v/5)~ BEEEEEEEEEEE AN

R > —1 1+ —"~2 | =K; >0, 25 ! ! ! ! ! |
P(Z) 25 Og( + N0+Ip+15p 1 ( ) | : : : : 1

: ; ; ; ; 1

where the relationship thatX, w(i) — X, (i)| < \/5a, is 1 O A

used (see Fig. 8). This completes the proof. ]
Lemma 7:For ap(n) = ki logn/n, the number of primary Fig. 8. Interference from the concurrent primary transioiss to the worst-
S-D paths (including both HDPs and VDPs) that pass throufit® Pimary RX of the transmission from thén primary cell.

or originate from each primary cell @ (n\/ap(n)) w.h.p.
Proof: See the proof of Lemma 3 in [29] or the proofC. Delay-throughput Tradeoff for the Primary Network

of Lemma 2 in [15]. ] - :
X Combining the results in (18) and (27), the delay-throughpu
Now we give the proof for Theorem 2. tradeoff for the primary network is given by the following
Proof: Consider the proof of the per-node throughp heorem
in (20). According to the definit_iqns_ in Section II, we nee Theorem 3:With the primary protocol defined in Section
to show that there are deterministic constans> 0 and lll, the delay-throughput tradeoff is
c1 < +oo to satisfy

I 2 <)< —L ) =1 26 1
am p W <Ap(n) < W =1 (26) D,(n) =0 (nAy,(n)), for A,(n)=0 (7Wgn) . (28)
A loose upper bound of the per-node throughput for the
primary network is achieved when the secondary network is V. DELAY AND THROUGHPUTANALYSIS FOR THE
absent. Gupta and Kumar [1] have already showed that such SECONDARY NETWORK
an upper bound given in (26) exists. We then only need toThe difference between the primary and the secondary trans-
consider the proof for the lower bound. mission schemes arises from the presence of the preservatio
Since a given TX node in each primary cell can supportragions. When their paths are blocked by the preservation
constant data rate df; (see Lemma 6), each primary S-D paifegions, the secondary relay nodes buffer the packets aitd wa
can achieve a data rate of at leaSt divided by the maximum until the next hop is available. Due to the presence of the
number of data paths that pass through and originate from fh@servation region, the secondary packets will expeeienc
primary cell. From Lemma 7, we know that the number dkrger delay compared with the primary packets. However, th
data paths that pass through or originate from each primafyerage packet delay per hop for each secondary S-D data
cellisO (n\/ap(n)) w.h.p..Therefore, the throughput per S-path is still a constant as we discussed later. Thus, we can
) ) ) show that the throughput scaling law and the delay-throughp
D pair A, (n) is lower-bounded by? <#p(n)> w.h.p, i.€., tradeoff for the secondary network are the same as those in th
the lower bound i< 1 ) wh.p. primary network. In the following discussion, we first arnady

Vnlogn : o the average packet delay, then discuss the throughpuhgcali
From Lemma 1, the number of primary S-D palirs is "?WGWaw, and finally describe the delay-throughput tradeoff.
bounded by’ w.h.p. Thus, the sum throughpui,(n) is

lower-bounded by%\,(n) w.h.p, i.e., the lower bound is
Q( n ) w.h.p. The upper bound ofS,(n) is already

logn
established in [1]. This completes the proof.
From the proof of Theorem 2, the throughput per S-D pair f

the primary network can be written as

A. Delay Analysis for the Secondary Network

The average packet delay for the secondary network is given
é)ry the following theorem.

Theorem 4:According to the proposed secondary network
protocol in Section lll, the packet delay is given by

1
A,,(n)_@(W), w.h.p. (27) Ds(m):@<;>’ whop. 29)

as(m)
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Before giving the proof of Theorem 4, we present theecondary packet slot and at thh secondary link (i.e., the
following lemma. active transmission initiated in theth secondary cell), the
Lemma 8: The average packet delay for each secondary hoyerference from all active primary TXs is upper-bounded a
is ©(1).

Proof: Let Di,h(i) denote the packet delay for the Ls(i) < p0a§ ZSt((Z&t— 1)/a,) "
secondary network over hapand S-D pairi. As shown in =1
Fig. 4, if there are no preservation regions, each secondary +P0a§ (1.5\/@)—(!
cell has one active time slot in each primary time slot. In o
another word, each secondary packet will experience a worst < P Z 8t(3t — 1)~ + Py(1.5)"
case delay of, at each hop, i.e.D’ (i) = t,. When we =1
have the preservation regions, according to Lemm@ﬁ@t(z’) = Ips < 00, (32)

is a bounded random variable. It depends on the location Oﬂere we aoplied the same technique as in the proof of
the active TX from which the secondary packet departs. AS PP q P

shown in Fig. 4 and Fig. 6, when the active TX is Iocateéemma 6 to obtain the liopper bound.l.;kew@ggz) IS upper-
) i G 1 ounded byl, = P> ,~, 8t(4t — 1)~*, which converges
in the worst places as shown in Fig. B, (i) is —t,, . .
9 : . s nmin P’ t0 a constant as shown in Lemma 12 (see the Appendix).
wheremin = 55 is the minimum value of the opportunisticehgjgering the effects of the preservation region, theefow

factor #. Similarly, When_ the_ actlvje TX_|S I?cated n thebound of the data rate that is supported in each seconddry cel
best places as shown in Fig. 7}, (i) is - —t,, where ... po \written as

Nmaz = % is the maximum value o_f the opportunistic factor
7. Hence, the ensemble averagel?f, (i) will be a constant Ry(i) > inmin log (1 +
' 2

co, where -t < cg < -ty ie, B [D;h(z‘)} = O(1).

Py(v/5)~@

——— | =Ky >0, (33
NO+Ips+Is> ? ( )

This completes the proof. B wherenmin = % represents the penalty due to the presence
Now, let us prove Theorem 4. of the preservation region. Thus, we can guarantee a cdnstan
Proof: Since each secondary hop covers a distandata ratek’, > 0 for a given TX node in each secondary cell,
of © (\/as(m)) w.h.p, and similarly as in the proof of which completes the proof. n
Theorem 2, the average length of each secondary S-D datkémma 10:For as(m) = kzlogm/m, the number of
path is©(1), the average number of hops for each seconda¥§condary S-D paths (including both HDPs and VDPs)
1 that pass through or originate from each secondary cell is

acket is© w.h.p. From Lemma 8, the average
P Vas(m) . . %o m\/as(m)g w.h.p.
packet delay for each secondary hopagl). Therefore, the Proof: The proof of Lemma 10 follows the same logic

average packet delay for the secondary network is as that in the proof of Lemma 7. -
Now, let us prove Theorem 5.
Dy(m) =6 _ Proof: The proof of Theorem 5 is similar to the proof
as(m) of Theorem 2. m

Similarly as in Theorem 2, the throughput per S-D pair of

w.h.p, which completes the proof. )
H P P the secondary network can be written as

B. Throughput Analysis for the Secondary Network

1
For the secondary network, the throughput scaling law is As(m) = © (m as(m)> ,  whp. (34)
given by the following theorem.

Theorem 5:With the secondary protocol defined in Sectio%' Delay-throughput Tradeoff for the Secondary Network

lll, the secondary network can achieve the following thioug " )
put per-node and sum throughpuh.p: Combining the results in (29) and (_34)_, the delay-throughpu
tradeoff for the secondary network is given by the following

As(m) = © < 1 ) (30) theorem. _ o _
mlogm Theorem 6:With the secondary protocol defined in Section
and I, the delay-throughput tradeoff for the secondary netwis
Ts(m)_e( i ) (31)
s ) = © (mAs(m)), for Au(m) o< ! >
= mAis(m)), slm) = —_— .
Similarly as in the primary network case, we first present " vmlogm
two lemmas, then use these lemmas to prove Theorem 5. (35)
Lemma 9:With the proposed secondary protocol, each TX
node in a secondary cell can support a data rat& gfwhere VI. CONCLUSION
K5 > 0 is independent ofn. In this paper, we studied the coexistence of two wireless

Proof: Due to the presence of the preservation regionsetworks with different priorities, where the primary netk
a minimum distance ofl.5,/a, from all primary TXs to a has a higher priority to access the spectrum, and the segonda
specific active secondary RX can be guaranteed. At a giveetwork opportunistically explore the spectrum. When the



secondary network has a higher density, with our proposed

11
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throughput tradeoff as the optimal one established for rrdsta 2]
alone wireless network in [2].

[3]
APPENDIX
In the appendix, we first recall the useful Chernoff bound fof4]
a Poisson random variable from [30]; then we give a lemma to
show that the infinite series sums in Lemma 6 and Lemma @)
converge to a constant.
Lemma 11: (Theorem 5.4 in [30]het X be a Poisson
random variable with parameter

1) If z > p, then

(6]

[7]
e Mep)”

> <
PIXzo) <=0 8

2) If x < u, then
_ 9]
e (ep)”

X <a)<
p(X <2)<—2

Lemma 12:The sum> ;% at(bt — 1)~* converges to a 110
constant, wherex > 2, ¢ andb are positive integers.

Proof: [11]
> at 4 = t
Z v - 2 Z - [12]
o a 1\o
— (bt — 1) b pt (t—1)
A 1 [13]
b ; (t _ %)afl

[14]

4 - 1
+ (36)
pa+1 ; (t _ %)a

Applying the following inequality
i LR S /°° 1
- Q-5 i (t-g)°

to (36), we obtain

t=1

[15]

[16]

[17]

(18]

at
(bt — 1)e

[19]

o [20]
_ a al-4) "
b (1—1)*™t b (a—2) [21]
a a(l-4) "

Tt 1-5H)" " t(a—-1) " [22]

where the last equation is a constant when> 2. This [23]

completes the proof. [ ]
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