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Abstract—In this paper, a novel maximum Doppler spread
estimation algorithm is presented for OFDM systems with the
comb-type pilot pattern. The least squared estimated channel
frequency responses (CFR’s) on pilot tones are used to generate
the auto-correlation matrices with/without a known lag, from
which the time correlation function can be measured. The
maximum Doppler spread is acquired by inverting the time
correlation function. Since the noise term will bias the estimator,
the estimated CFR’s are projected onto the delay subspace of
the channel to reduce the bias term as well as the computation
complexity. Furthermore, the subspace tracking algorithm is
adopted to automatically update the delay subspace. Simulation
results demonstrate the proposed algorithm can quickly converge
to the true values for a wide range of SNR’s and Doppler spreads
in Rayleigh fading channels.

Index Terms—Doppler spread, Estimation, Subspace tracking,
OFDM, Time correlation, Comb-type pilot.

I. I NTRODUCTION

In order to cope with various radio transmission scenarios,
adaptive strategies, for example, adaptive modulation and
coding and dynamic resource allocation, are widely employed
by many orthogonal frequency division multiplexing (OFDM)-
based wireless standards, e.g., TAB, TVB, IEEE 802.11/16
and 3GPP LTE [1]. Adaptive schemes automatically adjust the
system configurations and transmission profiles according to
some criteria to accommodate the varying radio environments.

The maximum Doppler spread is one of the key parameters
of criteria for adaptive strategies. It determines the fading
rate of the radio channel and its reciprocal is a metric of the
coherent time of the channel. With the knowledge of it, wire-
less systems can change the depths of interleavers to reduce
coding/decoding latencies, decrease unnecessary handoffs and
adjust the rate of power control to reduce signalling overhead.
More important, for OFDM systems, when the Doppler spread
is comparable to the tone spacing, the orthogonality between
tones would be corrupted, which would arise the inter-carrier
interference (ICI) and consequently deteriorate the system
performance. However, if the Doppler spread can be estimated,
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it will facilitate the adaptive schedule/control algorithms to
appropriately tune systems to alleviate ICI.

Most of existing methods of estimating the maximum
Doppler spread are categorized into two classes [2]: level
crossing rate (LCR)-based and covariance (Cov)-based tech-
niques. Since the algorithms reviewed in [2] were not specif-
ically designed for OFDM systems, they did not exploit
the special signal structure of OFDM systems. For OFDM
systems, most literatures are Cov-based. [3] determined the
maximum Doppler spread through estimating the smallest
positive zero crossing point. In [4], Cai proposed to obtain
the time auto-correlation function (TACF) in time domain by
exploiting the cyclic prefix (CP) and its counterpart. However,
Yucek [5] pointed out that for scalable OFDM systems whose
CP sizes were varying over time, [4] was difficult to offer a
sufficient estimation of TACF, which would degrade its estima-
tion accuracy significantly. On the contrary, Yucek proposed
to estimate the Doppler spread through the channel impulse
responses (CIR’s) which were estimated from the periodically
inserted training symbols.

Although the method in [5] seems to be more robust than in
[4], its shortcomings are also evident. For example, in order to
reduce system overheads, training symbols are arranged to be
far from each other, and typically transmitted as preamblesto
facilitate the frame timing and carrier frequency synchroniza-
tion. Once the duration of frame is longer than the coherent
time of the channel, the maximum Doppler spread cannot be
attained because TACF turns to irreversible. Moreover, for
sparse training symbols, the converging speed of [5] would
be very slow, which hinders its employment.

In this paper, we propose to estimate TACF by exploiting
the comb-type pilot tones [6] which are widely adopted in
wireless standards. In order to reduce noise perturbation,the
estimated channel frequency responses (CFR’s) are projected
onto the delay subspace [7] to obtain CIR’s, and the subspace
tracking algorithm [8] is adopted as well to track the drifting
delay subspace.

This paper is organized as follows. In Section II, the OFDM
system and channel model are introduced. Then, the maximum
Doppler spread estimation algorithm is presented in Section
III. Simulation results and analyses are provided in Section
IV. Finally, Section V concludes the paper.
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II. SYSTEM MODEL

Consider an OFDM system with a bandwidth ofBW =
1/T Hz (T is the sampling period).N denotes the total
number of tones, and a CP of lengthLcp is inserted before
each symbol to eliminate inter-block interference. Thus the
whole symbol duration isTs = (N + Lcp)T . In each OFDM
symbol,P (< N ) tones are used as pilots to assist channel
estimation. In addition, optimal pilot pattern, i.e., equipowered
and equispaced [9], is assumed. Pilot indexes are collectedin
the setIP , i.e., IP = {φ+ p× θ}, (p = 0, ..., P − 1), where
φ andθ are the offset and interval, respectively.

The discrete complex baseband representation of a multi-
path CIR of lengthL can be described by [10]

h(n, τ) =

L−1
∑

l=0

γl(n)δ (τ − τl)

where τl is the delay of thel-th path, normalized by the
sampling periodT , andγl(n) is the corresponding complex
amplitude. Due to the motion of users,γl(n)’s are wide-sense
stationary (WSS) narrowband complex Gaussian processes,
and uncorrelated with each other based on the assumption
of uncorrelated scattering (US). In the sequel,P ≥ L and
P × θ = N are assumed for determinability and simplicity,
respectively.

Furthermore, we assume the uniform scattering environment
introduced by Clarke [11], thusγl(n)’s have the identical
normalized TACFJ0(2πfdt) for all l’s, where fd is the
maximum Doppler spread andJ0(·) is the zeroth order Bessel
function of the first kind. Hence, the discrete TACF is

rt,l(m) = σ2
l J0 (2π|m|fdT ) (1)

whereσ2
l is the power of thel-th path. Additionally we assume

the power of channel is normalized, i.e.,
∑L−1

l=0 σ2
l = 1.

Assuming a sufficient CP, i.e.,Lcp ≥ L, the signal model
in the time domain can be expressed as

ym(n) =

L−1
∑

l=0

hm(n, τl)xm(n− τl) + wm(n)

wherexm(n) and ym(n) are then-th samples of them-th
transmitted and received OFDM symbols, respectively,wm(n)
is the sample of additive white Gaussian noise (AWGN),
i.e., E[wm(n)w∗

m(n + q)] = σ2
nδ(q), and hm(n, τl) is the

corresponding sample of the time-varying CIR. Through some
simple manipulations, the signal model in the frequency do-
main is written as

Ym = HmXm +Wm (2)

where Xm,Ym,Wm ∈ CN×1 are the m-th transmitted
and received signal and noise vectors in the frequency do-
main, respectively, andHm ∈ CN×N is the channel trans-
fer matrix whose(ν + k, k)-th element, i.e.,[Hm]ν+k,k, is
1
N

∑N−1
n=0

∑L−1
l=0 hm(n, τl)e

−j2π(νn+kτl)/N , wherek denotes
subcarrier whileν denotes Doppler spread. Apparently, asHm

is non-diagonal, ICI is present. However, when the normalized

maximum Doppler spread, i.e.,fdTs, is less than 0.1, the
signal-to-interference ratio (SIR) is over 17.8 dB [12], which
enables us to discard non-diagonal elements ofHm with a
negligible performance penalty.

As the comb-type pilot pattern is adopted, only pilot tones,
denoted asYP ;m ∈ CP×1, are extracted fromYm. By
approximatingHm to be diagonal, (2) is modified to

YP ;m = XP ;mHP ;m +WP ;m (3)

where XP ;m ∈ CP×P is a pre-known diagonal ma-
trix, and HP,m ∈ CP×1 consists of diagonal elements
of Hm. Hence, by denoting the instantaneous CFR as
Hm(n, k) =

∑L−1
l=0 hm(n, τl)e

−j2πkτl/N , we have[HP ;m]p =
1
N

∑N−1
n=0 Hm(n, φ + p × θ). Denote the Fourier transform

matrix on the pilot tones asFP ∈ CP×N , that is, [FP ]p,n =
1√
N
e−j2π(φ+p×θ)n/N , thenWP ;m = FPwm, wherewm =

[wm(0), . . . , wm(N − 1)]T , so,E[WP ;mW
H
P ;m] = σ2

nIP .

III. M AXIMUM DOPPLERSPREAD ESTIMATION

At the receiver, the least-squared (LS) channel estimation
on pilot tones is carried out firstly, i.e.,

ĤP ;m = X
−1
P ;mYP ;m = HP ;m +VP ;m (4)

where ĤP ;m ∈ CP×1 is the estimated CFR, andVP ;m ∈
CP×1 is the noise vector expressed asVP ;m = X

−1
P ;mWP ;m,

hence,VP ;m ∼ CN (0, σ2
nIP ) when X

H
P ;mXP ;m = IP for

PSK modulated pilot tones with equal power.
In the following, we will introduce a method of estimating

the maximum Doppler spread based on TACF measured from
significant paths of the channel obtained by projecting the LS
estimated CFR onto the delay subspace.

A. Measurement of the Time Auto-Correlation Function

First, by defining the Fourier transform matrix asFP,τ ∈
CP×L with [FP,τ ]p,l = e−j2π(φ+p×θ)τl/N , HP ;m can be
expressed as

HP ;m =
1

N

N−1
∑

n=0

HP ;m(n) =
1

N

N−1
∑

n=0

FP,τhm(n)

where HP ;m and hm(n) are CFR and instantaneous CIR
vectors, respectively. Regardless of noise, the 0-lag auto-
correlation matrix ofHP ;m is

RHP
(0) = E

[

HP ;mH
H
P ;m

]

=
1

N2

N−1
∑

n=0

N−1
∑

q=0

FP,τAm(n, q)FH
P,τ (5)

whereAm(n, q) = E[hm(n)hH
m(q)], and based on the as-

sumption of WSSUS and Clarke model, its(l1, l2)-th element
is [Am(n, q)]l1,l2 = σ2

l1
rt(n − q)δ(l1 − l2), wherert(n) is

the normalized TACF, henceAm(n, q) is diagonal. Denoting
D = diag(σ2

l ), l = 0, . . . , L− 1, we have

Am(n, q) = rt(n− q)D (6)



Substitute (6) into (5) and with some manipulations

RHP
(0) = ξ(0)FP,τDF

H
P,τ (7)

ξ(0) =
1

N2

N−1
∑

n=0

N−1
∑

q=0

rt(n− q) (8)

Similarly, theβ-lag auto-correlation matrix ofHP ;m (β ≥ 0),
defined asRHP

(β) = E[HP ;m+βH
H
P ;m], can be written as

RHP
(β) = ξ(β)FP,τDF

H
P,τ (9)

ξ(β) =
1

N2

N−1
∑

n=0

N−1
∑

q=0

rt(n− q + (N + Lcp)β) (10)

Then, with (7) and (9), we have

η =

√

||RHP
(β)||2F

||RHP
(0)||2F

=
ξ(β)

ξ(0)
(11)

where||·||F denotes the Frobenius norm. When the normalized
Doppler spreadfdTs ≤ 0.1, referring to (1), we can make an
approximation (which we will examine later) as

η ≈ J0(2πβ(N + Lcp)fdT ) (12)

Since whenβ(N+Lcp)fdT = βfdTs ≤ 0.38, J0(·) is positive
and reversible, meanwhile, in order to hold the orthogonality
between subcarriers,fdTs is usually smaller than 0.1, thus
β ≤ 3 is the feasible range. Thenfd can be estimated by

f̂d =
J−1
0 (η)

2πβTs
(13)

Now we consider the effect of noise. When noise is present,
(7) and (9) are rewritten into

R̂HP
(0) = ξ(0)FP,τDF

H
P,τ + σ2

nIP (14)

R̂HP
(β) = ξ(β)FP,τDF

H
P,τ (15)

Correspondingly, (11) changes into

η =

√

||R̂HP
(β)||2F

||R̂HP
(0)||2F

=

√

ξ(β)2

ξ(0)2 + ρ2
(16)

whereρ is defined as

ρ =

√

Pσ4
n

||FP,τDFH
P,τ ||2F

(17)

As pilot tones are equispaced,F
H
P,τFP,τ = P IL, then

||FP,τDF
H
P,τ ||2F = P 2

L−1
∑

l=0

σ4
l

therefore, (17) is

ρ =

√

σ4
n

P
∑L−1

l=0 σ4
l

(18)

Note
∑L−1

l=0 σ4
l ≤ (

∑L−1
l=0 σ2

l )
2, we have

ρ ≥ 1√
P × SNR

(19)

whereSNR = σ−2
n for the normalized power of the channel

and pilot tones.

B. Improving the Estimation Accuracy by the Delay Space

Although the maximum Doppler spread can be evaluated
from (16) and (13), the effect of noise will bias the result
of estimation heavily whenP is small and SNR is low.
On the other hand, whenP is large, the effect of noise is
negligible, but the sizes of̂RHP

(0) and R̂HP
(β) turn to be

so large that evaluating their Frobenius norms would require a
large amount of calculations, which hinders the employment
of this method in real applications. Therefore, we introduce
the delay subspace onto which the auto-correlation matrices
are projected to reduce the effect of noise as well as the
computation complexity.

Firstly, the eigenvalue decomposition (EVD) is performed

R̂HP
(0) = Uτ

[

ξ(0)Λ+ σ2
nIP

]

U
H
τ (20)

R̂HP
(β) = Uτ [ξ(β)Λ]UH

τ (21)

Since the number of channel taps isL, rank(Λ) = L ≤ P ,
the lastP − L eigenvalues of̂RHP

(0) and R̂HP
(β) areσ2

n

and 0, respectively. OnceL is available,Uτ can be divided
into two parts named as the ”signal” and ”noise” subspaces,
respectively, i.e.,Uτ = [Uτ,s,Uτ,n], whereUτ,s ∈ CP×L,
and so doesΛ, i.e.,Λ = diag(Λs,0P−L), whereΛs ∈ CL×L.
Hence,

U
H
τ,sR̂HP

(0)Uτ,s = ξ(0)Λs + σ2
nIL (22)

U
H
τ,sR̂HP

(β)Uτ,s = ξ(β)Λs (23)

Based on (22) and (23), (16) can be refined as

η =

√

√

√

√

||UH
τ,sR̂HP

(β)Uτ,s||2F
||UH

τ,sR̂HP
(0)Uτ,s||2F

=

√

ξ(β)2

ξ(0)2 + ρ2r
(24)

whereρr is defined as

ρr =

√

Lσ4
n

||Λs||2F
(25)

From (14)(15)(20)(21),

||FP,τDF
H
P,τ ||2F = ||Λs||2F

Hence, comparing (25) with (17), the bias term is reduced
because

ρr
ρ

=

√

L

P
≤ 1 (26)

Actually, in the real circumstance, the number of significant
taps of wireless channels is far less than of pilot tones, thereby
projecting auto-correlation matrices onto the delay subspace,
like (22) and (23), can effectively reduce the bias term and
ease the calculation ofη.

C. Tracking the Delay Subspace – the Proposed Algorithm

When the user is moving, the tap delays of the channel, i.e.,
τl’s, are slowly drifting [13] [7], which causesFP ;τ to vary
and so doesUτ,s. To accommodate this variation, the subspace
tracking algorithm is adopted to automatically update the delay
subspace. In addition, if the number of significant taps of



the channel is unknown, minimum description length (MDL)
[14] is employed to estimate it. The proposed algorithm is
summarized as follows.

Initialize: (n = 0)

Q0(0) = Qβ(0) = [ILm
,0T

Lm,P−Lm
]T

A0(0) = Aβ(0) = 0P,Lm

C0(0) = Cβ(0) = ILm

Run: (n = n+ 1)

Input: ĤP (n)

1) Updating for the 0-lag auto-correlation

matrix:

Z0(n) = Q0(n− 1)ĤP (n)

A0(n) = αA0(n− 1)C0(n− 1) + (1− α)ĤP (n)Z0(n)
H

A0(n) = Q0(n)R0(n) : QR-factorization

C0(n) = Q0(n− 1)HQ0(n)

L̂(n) = MDL (diag(R0(n)))

2) Updating for the β-lag auto-correlation

matrix:

Zβ(n) = Qβ(n− 1)ĤP (n− β)

Aβ(n) = αAβ(n− 1)Cβ(n− 1) + (1− α)ĤP (n)Zβ(n)
H

Aβ(n) = Qβ(n)Rβ(n) : QR-factorization

Cβ(n) = Qβ(n− 1)HQβ(n)

3) Estimating η according to (24):

η̂ =

√

√

√

√

∑L̂(n)

l=1
| [Rβ(n)]l,l |

2

∑L̂(n)

l=1
| [R0(n)]l,l |

2

4) Estimating fd according to (13).

Remark: α is a positive exponential

forgetting factor close to 1. Lm is the

maximum rank to be tested. MDL(·) denotes

the MDL detector and diag(R) denotes the

diagonal elements of R. In the simulation,

we set α = 0.995 and Lm = 10.

D. Other Considerations

In this subsection, several further discussions about the
proposed algorithm are presented.

First, numerical results are shown in Table I to examine
(12) whenN = 512, Lcp = 64 andβ = 1. From Table I, we
find (12) is a good approximation whenβfdTs is small. It is

worth noting thatJ0(2πβfdTs) ≤ η, hencefd ≥ J−1

0
(η)

2πβTs
, in

other words, (12) tends to over-estimate the maximum Doppler
spread a bit.

Then we compare the computation complexity of the pro-
posed algorithm with (16). The computation complexity of the
subspace tracking isO(P ×L2) [8]. Since it takes a dominant
proportion of the total number of instructions required by
the proposed algorithm, we use it instead. Meanwhile, the
computation complexity of (16), which directly computes the
Frobenius norm ofP × P matrices, isO(P 2). Apparently,

TABLE I
A TABLE OF VALUES OF (12)

fdTs 0.02 0.04 0.06 0.08

J0(2πβfdTs) 0.9961 0.9843 0.9648 0.9378

η
(

=
ξ(β)
ξ(0)

)

0.9961 0.9843 0.9649 0.9381

J0(2πβfdTs)
η

1.0000 1.0000 0.9999 0.9997
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Fig. 1. Performance comparison for the CP-based [4], Frobenius-norm-
based (16) and subspace-based (24) algorithms when a 20ms frame is used
andβ = 1.

whenP > L2, which is usually the case for sparse multipath
channels, the proposed algorithm can reduce the computation
complexity considerably.

IV. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated for
an OFDM system withBW = 5 MHz (T = 1/BW = 200
ns),N = 512, Lcp = 64 andP = 64. ITU Vehicular A Chan-
nels [15] is adopted, which consists of six individually faded
taps with relative delays as[0, 310, 710, 1090, 1730, 2510] ns
and average power as[0,−1,−9,−10,−15,−20] dB. The
classic Doppler spectrum, i.e., Jakes’ spectrum [10], is applied
to generate the Rayleigh fading channel.

In Fig.1, a CP-based algorithm reported in [4] and (16),
which is based on the Frobenius norm, are compared with the
proposed subspace-based algorithm (24) withβ = 1. A 20ms
frame including 194 OFDM symbols is used to generate the
statistics.fd = 200, 400 and600 Hz are tested under a range
of SNR’s, respectively. Apparently, the CP-based algorithm
fails for all fd’s when the SNR is below 20 dB, meanwhile
(16) and (24) work very well for allfd’s and SNR’s but with
a moderate positive bias forSNR = 5 dB. In fact, when
SNR = 5 dB, resorting to (19) and (26), the lower bound
of the bias termsρ and ρr are 0.0395 for (16) and 0.0099
for (24), respectively. And whenfd = 600 Hz, according to
(8) and (10),ξ(0) = 0.9938 and ξ(β) = 0.9476. Thus, the
relative errors ofη are 0.0007 and 0.0000 for (16) and (24),
respectively, which almost have no effect on the estimationof
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the maximum Doppler spread. Therefore, (16) and (24) show
almost the same performance when SNR’s are above 5 dB.

Fig.2 shows the performance comparison between the
Frobenus-norm-based (16) and subspace-based (24) in the
low SNR regime, specifically, below 5 dB, to emphasize the
capability of noise depression of the latter. Different frame
durations are used to obtain TACF. From the figure we can find
(24) outperforms (16) for all the SNR’s and frame durations,
although both of them over-estimate the maximum Doppler
spread due to the non-negligible noise bias term in the low
SNR regime, which is also the reason why increasing the
length of observation record does not help to decrease the
bias in this regime.

The convergence of the proposed subspace-tracking-based
algorithm is shown in Fig.3. Three different maximum Doppler
spreads are tested, i.e.,fd = 200, 400 and 600 Hz, when
SNR = 15 dB. The curves are plotted from the thirtieth
OFDM symbol. It is observed from the plot that all the
three curves converge to their true values after numbers of
OFDM symbols and, further, the higher the Doppler spread
is, the faster the curve converges. This is due to the subspace
is updating faster when the Doppler spread is higher. In
addition, after converging, the estimated maximum Doppler
spread is fluctuating around its true value in a small range,
hence additional time-averaging can be employed to smooth
the curve.

V. CONCLUSIONS

In this paper, we propose a subspace-tracking-based maxi-
mum Doppler spread estimation algorithm which is applicable
to OFDM systems with the comb-type pilot pattern. It enjoys
three main advantages: i) alleviating the noise term; ii) re-
ducing the computation complexity; iii) tracking the drifting
delay subspace. Through simulations, the performance of the
proposed algorithm is demonstrated to outperform the CP-
based algorithm [4]. Moreover, since the proposed algorithm
is based on the subspace tracking, it can be easily integrated
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Fig. 3. The convergence of the proposed subspace-tracking-based algorithm
whenSNR = 15 dB andβ = 1.

into the channel estimator equipped with the subspace tracker
[7] [16], which lends a broad application promise to it.
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