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Abstract— It is known that the capacity of parallel
(multi-carrier) Gaussian point-to-point, multiple access and
broadcast channels can be achieved by separate encoding
for each subchannel (carrier) subject to a power allocation
across carriers. In this paper we show that such a separa-
tion does not apply to parallel Gaussian interference chan-
nels in general. A counter-example is provided in the form
of a 3 user interference channel where separate encoding
can only achieve a sum capacity oflog(SNR)+o(log(SNR))
per carrier while the actual capacity, achieved only by joint-
encoding across carriers, is3/2 log(SNR)) + o(log(SNR))
per carrier. As a byproduct of our analysis, we propose a
class of multiple-access-outerbounds on the capacity of the
3 user interference channel.

I. I NTRODUCTION

The study of parallel Gaussian channels is motivated
by the frequency-selective or time-varying nature of the
wireless channel. With multi-carrier modulation, (as-
suming no inter-carrier interference (ICI)) a frequency
selective channel can be viewed as a set of parallel
channels with channel coefficients that vary from one
carrier to another but may be assumed constant (flat-
fading) over each carrier. Similarly, if inter-symbol-
interference (ISI) is absent, the time-varying channel
gives rise to parallel channels whose values are fixed
during each symbol but vary from one symbol to another.
In this paper, we will use the terminology of frequency-
selective channels and multi-carrier modulation to refer
to parallel Gaussian channels. It is understood that the
model is equally applicable to the time-varying channel
as well.

It is well known that over the parallel Gaussian point-
to-point channel, coding separately over the individual
subchannels (carriers) achieves the capacity subject to
optimal power allocation. Thus the capacity of the par-
allel Gaussian point-to-point channel is equal to the
sum of the capacities of the point-to-point Gaussian
subchannels with corresponding powers chosen through
the water-filling algorithm. Similarly, it has also been
shown that separate coding over each carrier is opti-
mal for parallel Gaussian multiple access (MAC) and
broadcast (BC) channels [1], [2]. The separability of

parallel Gaussian point-to-point, MAC and BC is use-
ful because it provides a direct connection between
the single-carrier channel models studied extensively in
classical information theory and the frequency-selective
(or time varying) channels that may be more relevant
in practice. Coding schemes designed for the classical
(single carrier) models can be applied directly to multi-
carrier systems subject to a power allocation across
carriers. A key question that remains open is whether
such a separation holds for other Gaussian networks, and
in particular, if separate encoding is optimal for multi-
carrier interference networks.

Much work on multi-carrier interference networks
(e.g. in the context of DSL [3]–[11]) has focused on
optimal power allocation across carriers under the as-
sumption ofseparate codingover each carrier. For the
two user parallel interference channel with strong inter-
ference it is shown in [11] that indeed the sum capacity
is the sum of the rates that can be achieved by separately
encoding over each carrier subject to an overall power
optimization. For the case where more than2 users
are present or when the channels are not restricted to
the strong interference case, since the capacity of even
the single-carrier interference channel is not known,
usually the rate optimization is carried out under the
practically motivated assumption that all interference is
to be treated as noise. Both centralized and distributed
algorithms, some of which are based on game-theoretic
formulations, have been proposed for this “dynamic
spectrum management” problem and the optimality and
convergence properties of these algorithms have been
established under the separate encoding assumption.

Joint encoding of multiple-carriers has been used
recently in [12] to characterize the sum capacity per
carrier, of theK user multi-carrier Gaussian interference
channel. The sum capacity (per carrier) is found to be

C(SNR) =
K

2
log(SNR) + o(log(SNR)),

where SNR represents the signal to noise power ratio. In
other words, theK user interference channel hasK/2
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degrees of freedom1 per orthogonal time and frequency
dimension. The key to the capacity characterization is
the idea of interference alignment (see [14] and the ref-
erences therein) - a construction of signals such that they
cast overlapping shadows at the receivers where they
constitute interference while they remain distinghishable
at the receivers where they are desired. The interference
alignment constructions proposed in [12] are based on
joint encodingover multiple frequencies. Due to inter-
ference alignment, the joint encoding scheme of [12]
outperforms the dynamic spectrum management schemes
of [4]–[8] in terms of degrees of freedom2. However,
it has not been shown that this joint encoding isnec-
essaryto achieve capacity. Interestingly, another recent
work in [15] has provided examples where interference
alignment is achieved over a single-carrier interference
channel, i.e., with separate encoding. Thus, it remains
unclear whether the capacity of multi-carrier interference
channels can be achieved by separate encoding over each
carrier and a power allocation across carriers. It is this
open problem that we address in this paper.

The main result of this paper is that unlike the
point-to-point, multiple-access and broadcast channels,
in general separate codingdoes not sufficeto achieve
the capacity of the interference channel. We establish
this result by constructing a counterexample - a3-user
frequency-selective interference channel where separate
coding can only achieve a sum rate oflog(SNR) +
o(log(SNR)) per carrier while the capacity is shown to
be 3/2 log(SNR) + o(log(SNR)) per carrier. Thus, par-
allel interference channels are, in general, inseparable.

As a byproduct of our analysis we also propose a
class of outerbounds on the capacity of the3 user inter-
ference channel. These outerbounds share the property
that one receiver (possibly aided by a genie and/or noise
reduction) is able to decode all messages - so that
the multiple-access channel capacity to the genie-aided
receiver becomes an outerbound on the sum capacity of
the 3 user interference channel. The MAC outerbounds
can be viewed as a generalization of Carliel’s outerbound
[16] on the 2 user interference channel to the case of
more than2 users. These outerbounds play an important
role in identifying singularity conditions for interference
channels that do not achieve theK/2 degrees of free-
dom. However, the bounds are generally loose in the
degrees of freedom sense and tighter bounds at high
SNR may be obtained by an application of Carlieal’s
outerbound on each of the2 user channels contained
within theK user interference channel.

1Also known as multiplexing-gain (See [13]) or capacity pre-log.
2Interestingly, in both cases interference is treated as noise, so no

multiuser detection is involved.
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Fig. 1. The3 user interference channel

We start with the classical (single-carrier) Gaussian3
user interference channel.

II. T HE GAUSSIAN 3 USER INTERFERENCE CHANNEL

We study the3 user (single-carrier) Gaussian interfer-
ence channel whose input-output relations are described
as follows

Yi(n) =

3
∑

j=1

hi,jXj(n) + Zi(n), i = 1, 2, 3

where at thenth symbol,Yi(n) andZi(n) respectively
represent the received signal and the noise at theith
receiver, andXj(n) represents the signal transmitted
by the jth transmitter.hi,j represents the channel gain
between transmitterj and receiveri. All channel gains
are assumed to be non-zero and known to all the nodes in
the network. Transmitteri has messageWi for receiver
i for i = 1, 2, 3. The noiseZi(n) is a zero-mean additive
white Gaussian noise (AWGN), assumed independent
identically distributed (i.i.d.) across users and symbols.
With the noise power at each receiver normalized to
unity, the total transmit power can be expressed as

E

[

1

N

3
∑

i=1

N
∑

n=1

|Xi(n)|
2

]

≤ SNR, whereN is the length

of the codeword. The rate of theith user is defined as
Ri(SNR) = log(|Wi|)

N
where |Wi| is the cardinality of

the message set corresponding to messageWi. A rate
vector R(SNR) = (R1(SNR), R2(SNR), R3(SNR)) is
said to beachievableif messagesWi, i = 1, 2, 3, can
be encoded at ratesRi(SNR), i = 1, 2, 3 so that the
probability of decoding error can be made arbitrarily
small by choosing an appropriately largeN . The capac-
ity region C(SNR) represents the set of all achievable
rate vectors in the network. The sum capacityCΣ(SNR)
of the network is defined as

CΣ(SNR) = max
R(SNR)∈C(SNR)

3
∑

i=1

Ri(SNR)

The number of degrees of freedom of the network is
defined as

dΣ = lim
SNR→∞

CΣ(SNR)
log(SNR)



Equivalently, dΣ is the total number of degrees of
freedom of the network if and only if we can write

CΣ(SNR) = dΣ log(SNR) + o(log(SNR)).

Theorem 1: Consider the3 user interference channel
where

hi,j

hi,i

=
hk,j

hk,i

for somei, j, k ∈ {1, 2, 3}, j 6= k, k 6= i, i 6= j. Then,
this interference channel has1 degree of freedom, or
equivalently, the sum capacity of the interference channel
may be expressed as

CΣ(SNR) = log(SNR) + o(log(SNR))
Proof:

Achievability is trivial since settingW2 = W3 = φ,
we get a point-to-point Gaussian channel whose capacity
is known to be of the formlog(SNR) + o(log(SNR)).
We show the converse for the special case wherek =
1, i = 2, j = 3. i.e., we consider the case where

h2,3

h2,2
=

h1,3

h1,2
= γ, γ 6= 0.

By symmetry, the converse extends to all other cases.
Consider any achievable coding scheme. Let a genie
giveX1 to receiver2 (Figure 2(a)). Now, receiver2 can
cancel the interference from transmitter1 to obtain Ỹ2

which may be written as

Ỹ2 = h2,2X2 + h2,3X3 + Z2

Ỹ2 = h2,2(X2 + γX3) + Z2 (1)

The dependence on the symbol indexn is dropped above
for convenience. Note that any achievable scheme over
the original channel is also achievable over this genie-
aided channel and therefore, the genie does not affect the
converse argument (See for example [14]). Now, since
we started with an achievable coding scheme, receiver1
can decodeX1 reliably and therefore, cancel the effect
of X1 from Y1 to obtain

Ỹ1 = h1,2X2 + h1,3X3 + Z1

Ỹ1 = h1,2(X2 + γX3) + Z1 (2)

Note that receiver2 is able to decodeW2 from Ỹ2.
Equations (2) and (1) imply that by reducing the variance
of Z1 sufficiently, we can ensure that̃Y2 is a noisy
version of Ỹ1. Therefore, in a channel with sufficiently
reduced noise, we can ensure that receiver1 can decode
W2 as well. Note that reducing noise can only increase
the capacity of a channel and therefore the converse
argument is not affected. Thus, by reducing noise and
with the aid of a genie (Figure 2(a)), we have ensured
that any message which can be decoded at receiver2

can be decoded at receiver1 as well. Now, in this
channel, we can let transmitters1 and 2 co-operate
to form a MIMO two user interference channel as in
Figure 2(b). Again, note that allowing transmitters to co-
operate cannot reduce capacity. Thus, the MIMO inter-
ference channel of Figure 2(b) has a capacity region that
contains the capacity region of the3 user interference
channel of Figure 1. Reference [17] has shown that the
MIMO interference channel of Figure 2(b) has1 degree
of freedom meaning that its capacity is of the form
log(SNR)+o(log(SNR)). Therefore, we have shown that

CΣ(SNR) = log(SNR) + o(log(SNR))

and the converse argument is complete.

III. T HE PARALLEL GAUSSIAN 3 USER

INTERFERENCE CHANNEL

The parallel Gaussian interference channel consisting
of M parallel subchannels may be expressed as

Yi(n) =

3
∑

j=1

Hi,jXj(n) + Zi(n), i = 1, 2, 3

where, corresponding to the nth symbol
Yi(n),Zi(n),Xj(n) are M × 1 vectors whoseM
entries represent the signal received at receiveri over
the M sub-channels, the i.i.d. AWGN experienced by
receiveri over theM carriers, and the signal transmitted
by the jth transmitter over theM carriers, respectively.
Hi,j is aM ×M diagonal matrix whosemth diagonal
entry represents the channel gain between transmitterj
and receiveri corresponding to themth subchannel. All
channel gains are assumed to be non-zero and known
apriori to all nodes. Messages, achievable rates, power
constraints, capacity and degrees of freedom are defined
in the usual manner as described in the previous section.

Let C [m]
Σ (SNR) denote the sum capacity of the inter-

ference channel over themth carrier and SNRm denote
the total transmit power constraint over themth carrier.
The main question addressed in this correspondence is
the following - Can the capacity (per carrier) of the
parallel interference channel be expressed as the sum of
the capacities achieved by the constituent interference
channels over each carrier, i.e.,

CΣ(SNR) =
1

M

M
∑

m=1

C
[m]
Σ (SNRm) (3)

for some power allocation vector
(SNR1,SNR2, . . .SNRM ) such that

M
∑

m=1

SNRm ≤ SNR. (4)
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Ŵ2
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Fig. 2. The converse argument of Theorem 1

The existence of a power vector satisfying the above
equations would imply that a capacity-optimal scheme
is to code separately over each carrier with power
SNRm allocated to themth carrier. We will use the
result of Theorem 1 to construct a parallel interference
channel where independent coding over its subchannels
is suboptimal. Specifically, we construct a multi-carrier
interference channel where,

1) Interference alignment achieves 3/2 degrees of
freedom so that the capacity of the channel is
3/2 log(SNR)) + o(log(SNR)) per carrier.

2) Each subchannel has only1 degree of freedom
meaning that separate encoding over each carrier
is suboptimal since it can only achieve a capacity
of log(SNR) + o(log(SNR)) per carrier.

This is easily done as follows. Consider the case where
we have2 carriers, soM = 2. Let

Hi,j =

[

1 0
0 1

]

, ∀i 6= j, i, j ∈ {1, 2, 3} (5)

H2,2 = H1,1 =

[

1 0
0 −1

]

(6)

H3,3 =

[

−1 0
0 1

]

(7)

It can be easily verified that each subchannel in this
above channel satisfies the conditions of Theorem 1
so that each subchannel has1 degree of freedom. Fur-
thermore, it can also be verified that by beamforming
messages along vector[1 1]T at each user ensures that
at all receivers, interference aligns along[1 1]T . The
desired messages can be decoded along the zero-forcing
vector[1− 1]T at each receiver and thus3/2 degrees of
freedom are achievable over this network. We now state
this result formally in a theorem.
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Fig. 3. A comparison of the performance of joint coding versus
separate coding on the parallel3 user interference channel

Theorem 2: Parallel Gaussian interference channels
are in general, not separable. Equivalently, in general
there do not exist coding schemes such that

CΣ(SNR) =
1

M

M
∑

m=1

C
[m]
Σ (SNRm)

M
∑

m=1

SNRm ≤ SNR

The above theorem clearly implies the sub-optimality
of separate coding over each carrier of the3 user
interference channel in general.

Figure 3 illustrates the suboptimality of separate cod-
ing over each carrier in comparison with the interference
alignment based joint coding scheme for the channel



described in equations (5)-(7). The outerbound for the
rate achievable by separate encoding (plotted in Figure
3) is derived later in Section IV (See example1 in
the referred section). Note that in Figure 3 the separate
encoding outerbound isnot limited to schemes that treat
interference as noise. The outerbound is for the sum of
the Shannon capacities of the interference channels over
each carrier, and thus allows arbitrary encoding/decoding
schemes, possibly including multi-user detection, with
the only restriction that independent data is sent through
separate codebooks over separate carriers. Thus, separate
encoding schemes that treat interference as noise may
perform much worse than the separate encoding outer-
bound. Thejoint encodingachievable rate in Figure 3
on the other hand, is based on treating interference as
noise and is only an innerbound on the rates achiev-
able with joint encoding. Thus, even the simple joint
encoding scheme which uses Gaussian codebooks (not
known to be optimal) and treats interference as noise
is able to achieve higher rates than could be achieved
with the best separate encoding schemes. Further, while
our counterexample is based on a degrees of freedom
argument which is meaningful only at high SNR, the plot
in Figure 3 shows that the capacity with joint encoding
can be substantially higher than with separate encoding
even at moderate to low SNRs. Lastly, note that no such
example can be constructed for the parallel Gaussian
point to point, multiple access and broadcast channels
because in all those cases separate coding over each
carrier is capacity-optimal forany channel realization.

An interesting interpretation of the counterexample
presented above is the following. Consider a game that
is played between two players. The players will pick the
channel coefficient values for a (single-carrier)3 user
interference channel. Player1 intends to maximize the
number of degrees of freedom of the channel. Player2
wants to minimize the number of degrees of freedom of
the channel. In this game, player1 moves first and player
2 moves second. During his turn, player1 is allowed to
select the values of all the channel coefficients. Player2
can only change the value of1 channel coefficient after
the values have been chosen by player1. Which channel
coefficient player2 is allowed to change is also decided
by player1. There is a constraint that all channel co-
efficients (diagonal terms of the channel matrix) must
be non-zero. First, consider the constant interference
channel. Note that [15] has already shown that there exist
3 user channels with close to3/2 degrees of freedom.
Therefore, in absence of player2, player1 can design
a channel that will achieve close to3/2 degrees of
freedom. However, if player2 can control any one of the
channel co-efficients, he can use the result of Theorem

Y2

Y3

X1

X2

X3

Y1W1

W2

W3
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Fig. 4. Multiple access outerbound for the classical3 user interference
channel

1 to win the game by reducing the number of degrees of
freedom to unity. For example, if player2 has control of
h1,2, he can choose the channel co-efficient to be equal
to h1,3h2,2

h2,3
to ensure that the channel has only1 degree

of freedom. Thus, in a constant single-carrier channel,
player2 wins the game.

Now, suppose the channel coefficients vary with time,
i.e., we have a parallel Gaussian channel. At each time
instant the players take turns to design the channel
coefficients according to the rules described above. Cor-
responding to each sub-channel, player2 has control
of one of the channel co-efficients. In this case, player
2 can kill the degrees of freedom of the individual
subchannels by using Theorem 1. However, player1
still wins the game since3/2 degrees of freedom are
achievable through the interference alignment scheme of
[12] which codes across all parallel channels. Thus, in
the time-varying case, player1 wins the game.

Note that, it is important that user2 has control ofdif-
ferent channel co-efficients overdifferent sub-channels.
If user 2 controls the same channel co-efficient of all
the subchannels, it can, in fact, use Theorem 1 to kill
the degrees of freedom of the channel. For example,
consider the case where if user2 has control of all the
entries ofH1,2 over all subchannels, then it can choose
H1,2 = H1,3H2,2(H2,3)

−1.

IV. M ULTIPLE ACCESS OUTERBOUNDS FOR THE

CAPACITY OF 3 USER INTERFERENCE CHANNEL

In this section, we provide an interesting application
of the result of Theorem 1 in the form of a class
of outerbounds for the classical (single-carrier)3 user
interference channel. The outerbound argument goes as
follows. Consider any achievable coding scheme. Using
this coding scheme, receiver1 can decodeW1. Our aim
is to enhance receiver1 with enough information so that
it can decodeW2 andW3 as well (see Figure 4). Then
the capacity region of the multiple access channel(MAC)
formed by the three transmitters and the (enhanced)



receiver1 forms an outerbound for the capacity region of
the interference channel. The improvements to receiver
1 are described in the following steps

1) To help receiver1 decodeW2 : Let a genie provide
receiver1 with a S1 = a1X1 + a2X2 + a3X3 + Z̃1

whereZ̃1 is an AWGN term independent ofXi, i =
1, 2, 3. Note that this side information effectively
acts as an additional antenna at receiver1. The
noise termZ̃1 can possibly be correlated with other
noise variablesZi, i = 1, 2, 3. Now, receiver1 can
linearly combine its received signal with its side
information to formU1 = αY1 + βS1 to form
another (noisy) linear combination of the codewords
Xi, i = 1, 2, 3. α and β can be chosen such that
the co-efficients ofX1 and X2 in U1 satisfy the
conditions of Theorem 1. Note that if these channel
co-efficients already satisfy the condition of 1, then
side information ofS1 is not needed. Now, the proof
of Theorem 1 implies that by sufficiently reducing
the noise at receiver1, we can ensure that receiver
1 decodesW2 as well. Thus, with the aid of a genie
and possibly reducing the noise, we have ensured
that receiver1 can decodeW2. Note that neither
the genie information, nor the reduction of noise
reduce the capacity of this channel and therefore
do not affect the outerbound argument.

2) To help receiver1 decodeW3 : Receiver1, en-
hanced as described in the previous step, can now
decodeW1 and W2. We can now choosēα, β̄, γ̄
such that

V1 = ᾱX1 + β̄X2 + γ̄Y
′

1

= h3,1X1 + h3,2X2 + h3,3X3 + γ̄Z
′

1.

Note that receiver1 can formV1. We useY
′

1 and
Z

′

1 above rather thanY1 andZ1 since the previous
step involves reducing the noise at receiver1.
Statistically,V1 differs fromY3 only in the variance
of the noise term. Therefore, by further reducing the
noise if required, receiver1 can also decodeW3. As
in the previous step, it is important to note that the
reduction of noise does not affect the outerbound
argument

Steps 1 and 2 above imply that the capacity region
of the 3 user Gaussian interference channel is outer-
bounded by the capacity region of the single-input-
multiple-output (SIMO) Gaussian MAC which receiver
S1 on one antenna and a reduced-noise version ofY1

on the other. This class of bounds can be optimized
over ai, i = 1, 2, 3 and the statistics of̃Z1. Further,
similar outerbounds can be found by enhancing receiver
2 or receiver3 rather than receiver1. Note that, since
a MAC with two antennas has2 degrees of freedom,

this class of outerbounds is loose from the perspective
of degrees of freedom. Using the Carliel’s outerbounds
on each of the two user channels contained within the3
user interference channel obtains a degrees of freedom
outerbound of3/2 (See [12], [18]). We now provide2
examples of this class of outerbounds.

Example 1:Here, we consider the interference channel
formed on the first carrier of the parallel Gaussian
interference channel described in Equations (5)-(7) in
the previous section. In this channel,hi,j = 1, i 6=
j, i, j ∈ {1, 2, 3}. Also h11 = h22 = 1, h33 = −1. With
AWGN power at each receiver normalized to unity, the
total transmit power at all the transmitters is defined as
SNR. Consider any achievable coding scheme. Note that
this channel already satisfies the conditions of Theorem
1. Therefore, we do not need the aid of a genie. In
fact, both receiver1 and receiver2 receive signals of
the form X1 + X2 + X3 + Z whereZ is an AWGN
term of unit variance. Therefore, any message that can
be decoded at receiver2 can also be decoded at receiver
1 (and vice-versa). Receiver1 can hence decodeW2.
Furthermore, receiver1 can computeX1 +X2 − Y1 =
h3,1X1 + h3,2X2 + h3,3X3 − Z1. Since (−Z1) is a
AWGN term having the variance asZ3, receiver1 can
decodeW3 without requiring any noise reduction. Thus,
the capacity region of this channel is bounded by the
capacity region of the multiple access channel formed at
receiver1. The sum-capacity of this interference channel
is therefore bounded by

CΣ ≤ 1/2 log (1 + SNR)

It can be easily verified that the sum-capacity of the
interference channel corresponding to the second carrier
of the parallel channel described by Equations (5)-(7)
can also be bounded as above.

Example 2:Consider theperfectly symmetric3 user
interference channel wherehi,i = 1∀i = 1, 2, 3 and
hi,j = h > 1, ∀i 6= j, i, j ∈ {1, 2, 3}. Also, let the total
transmit power be equal to SNR. Since the channel does
not satisfy the conditions of Theorem 1, a genie provides
receiver1 with information ofS1 = a1X1+(1−h)X2+
X3+Z̃1 whereZ̃1 is an i.i.d AWGN term correlated with
Z1 such thatE

[

(Z1 + Z̃1)
2)
]

= 1. Note that since we
started with an achievable coding scheme, receiver1 can
decodeW1 using information fromY1. Receiver1 can
subtract the effect ofX1 from S1 andY1 and to obtain
S̃1 = (1− h)X2 + Z̃1 and Ỹ1 = hX2 +hX3 +Z1. Now
receiver1 can now decodeX2 from U1hX1 + Y1 + S1

since it is of the formhX1+X2+hX3+Z
′

2 whereZ
′

2 is
a AWGN term with unit variance. Now that receiver1 is
aware ofX1 andX2, it can add appropriate terms toY1

to formV1 = h(hX1+hX2+X3)+Z1. Sinceh > 1, Y3



is a degraded version ofV1 which implies that receiver
1 can decodeW3 as well. Thus, all rates achievable in
this interference channel, are achievable in the single-
input-multiple-output (SIMO) multiple access channel
with 3 single antenna nodes respectively transmitting
X1, X2, X3 and a two-antenna node receivingY1 along
the first antenna andS1 along the second. Thus, the
capacity region of this multiple access channel is an
outer-bound for the capacity of the interference channel.
Furthermore, parametersa1 andZ̃1 are parameters which
can be used for optimization. So, for example, we
can bound the sum-capacityCΣ(SNR) of the 3 user
interference channel by

CΣ(SNR) ≤
1

2
min

(a1, Z̃1)

E
[

(Z1 + Z̃1)
2
]

≤ 1

Z̃1 ∼ N (0, σ2)

CMAC(ρ, a1, Z̃1)

where

CMAC(SNR, a1, Z̃1) = log

(

|Kz +
SNR

3
HH

†|

|Kz|

)

|A| indicates the detereminant of matrixA, Kz indicates
the covariance matrix corresponding to noise vector
[Z1 Z̃1]

T and

H =

[

1 h h
a1 (1− h) 0

]

V. CONCLUSION

We constructed a3 user interference channel with
constant (i.e., not frequency-selective or time-varying)
channel coefficients such that it has1 degree of freedom.
Furthermore, we provided a mult-carrier extension of
this channel such that separate coding over each carrier
can only achieve sum ratelog(SNR) + o(log(SNR))
per carrier, while the actual capacity is3/2 log(SNR) +
o(log(SNR)) which can be achieved only through cod-
ing across carriers. The result implies that, in general,
independent coding over the various channel states of
the parallel Gaussian interference channel is not capacity
optimal. Thus, unlike parallel Gaussian point to point,
multiple access and broadcast channels, parallel Gaus-
sian interference channels are, in general, not separable.
The key is that even though interference alignment
may not be possible over each carrier, it may still be
accomplished by coding across carriers.

An interesting question that remains open is the sep-
arability of parallel Gaussian interference channels for
two users. The counterexample provided in this work
applies to the3 user scenario and by simple extension
to K ≥ 3 users. However, since our examples rely

on interference alignment which is only known to be
relevant for interference channels with3 or more users,
we have not shown that the2 user parallel Gaussian
interference channel is inseparable. It is interesting to
note that the2 user interference channel is separable
under strong interference [11].

The inseparability of the interference channel may
have interesting implications, especially for the existence
of single-letter capacity characterizations for interference
channels. From a practical perspective, it prompts a
closer look at the performance of separate encoding
versus joint coding schemes in parallel Gaussian inter-
ference channels.
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