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Abstract—In wireless networks, mutual interference prevents
wireless devices from correctly receiving packages from others
and becomes one of the challenges in the design of protocols for
wireless networks. Spatial-reuse Time Division Multiple Access
(STDMA) has been used to cope with this problem. In this
scheme, links are assigned to several time slots and in each slot all
the links can transmit simultaneously. In this paper, we propose
a greedy link scheduling algorithm to find a short schedule
for a problem instance in the physical interference model. Our
scheduling algorithm is inspired by the k-MAX-CUT algorithm
in [13]. Experimental results show that our greedy algorithm can
give a better schedule compared with the greedy algorithm in [3],
with an improvement about 20%-30% when the density of links
is high.

1. INTRODUCTION

Wireless multi-hop radio networks such as ad hoc, mesh,
or sensor networks attract considerable attentions in recent
years due to their potential applications in various areas. Since
these networks use a shared communication medium, one
of the main problems in wireless networks is the decrease
of capacity due to interference among multiple simultane-
ous transmissions [4], as shown in Fig. 1. To this end,
STDMA-based link scheduling has been extensively stud-
ied [3][5][7][8][9][10][11][15]. The problem is to schedule a
set of communication requests, represented by wireless links
in general, into a number of time slots. In each time slot, only a
subset of the required communication links can be scheduled.
Clearly, it is ideal to find a schedule of minimum length in
order to maximize the network throughput.

In this paper, we assume that time is slotted and syn-
chronized(i.e. time division multiplexing). A link scheduling
is to assign each link a set of time slots in which it will
transmit. This schedule can guarantee all links in each slot can
transmit simultaneously without causing unaccepted mutual
interference.

In the literature, two main interference models have
been proposed [4]: the protocol interference model and the
physical interference model. In the former model, a commu-
nication between nodes u and v is successful if no other node
within a certain interference range from v (the receiver) is si-
multaneously transmitting. In the latter one, a communication
between u and v is successful if the Signal to Interference and
Noise Ratio (SINR) at v is above a certain threshold, whose
value depends on the desired channel characteristics. In this
paper, we consider the physical interference model because
it is more practical than the protocol interference model: two
links which are far away from each other can interfere with
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Fig. 1. A typical wireless network where there exist multiple simultaneous
communication requests

each other. In addition, this paper considers two scenarios:
unidirectional transmission and bidirectional transmission. In
the former scenario, unaccepted interference should not be
induced on directed links. In the latter one, both directions of a
undirected link should not experience unaccepted interference.

Link scheduling in the context of spacial-reuse time division
multiple access (STDMA) under the physical interference
model has been shown to be an NP-hard problem [5]. Thus,
scheduling algorithms often rely on heuristics that approx-
imately optimize the throughput. In this paper, we present
a polynomial time heuristic called k-Max-Cut-based Greedy
(MCG) Algorithm to solve this problem. Specifically, the main
contributions are as follows:

1) MCG Algorithm can be applied to both homogeneous
and heterogeneous networks.

2) MCG Algorithm can be applied to both unidirectional
and bidirectional transmission scenarios.

3) MCG Algorithm is simple, and therefore suitable for
implementation in real protocols. The complexity is
O(n3 log n), where n is the number of links.

The rest of the paper is organized as follows. In Section 2,
we give an overview of related work in the literature. Then, we
formally describe the network model and define the problem
in Section 3. In Section 4, we present an efficient greedy
algorithm for link scheduling problem. The performance of
our algorithm is evaluated in Section 5. Section 6 concludes
this paper.

2. RELATED WORK

The problem of scheduling communication links in wire-
less networks in order to achieve maximum through-
put has gained much interest in the research commu-
nity. Since the spatial-reuse time division multiple access
(STDMA) was first proposed in [12], STDMA-like algo-
rithms have been studied for the problems under both pro-
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tocol interference model [7][8][15] and physical interference
model [3][5][7][9][10][11].

In the protocol model, a transmission from node xi to node
yi is successful if and only if there are no other nodes within a
certain range R of yi transmitting at the same time. In [7], Jain
et al. proposed a conflict graph based method for computing
upper and lower bounds on the optimal throughput for given
networks. The conflict graph is constructed by having a node
represent each link. If two links conflict with each other in
the original graph, we connect the corresponding nodes in the
conflict graph with an edge. Clearly, the scheduling problem is
closely related to coloring problem in the conflict graph. In [8],
Kumar et al. obtained a constant-approximation algorithm by
assigning the links in a first-fit manner. By using fractional
coloring, Wang et al. [15] presented a 2d2π/arcsin c−1

2c e
approximation algorithm.

Unlike in the protocol model, the conflict relation is not
binary in the physical interference model, that is, two distinct
links might not corrupt each other, but the coexistence of a
third one might make at least one link fail in transmission.
This property makes link scheduling problems under physical
interference model much more challenging.

To handle this special property, Jain et al. [7] constructed a
weighted conflict graph, where the weight of a directed edge
from vertex li to lj is the fraction of the maximum permissible
noise at the receiver of link lj . They derived the lower and
upper bounds on the optimal throughput by finding all the
independent sets and cliques, which could have exponential
time complexity.

Brar et al. proposed a computationally efficient schedul-
ing algorithm referred to as GreedyPhysical in [3]. They
also proved it is at most a factor O(n1− 2

ψ(α)+ε (log n)
2

ψ(α)+ε )
away from the optimal schedule, where ε is an arbitrary
constant and ψ(α) is a constant depending on path loss
exponent α. In GreedyPhysical , all the links are first sorted
in decreasing order according to interference number. The
interference number of link li is defined as the number of
links, none of which can transmit simultaneously with li
without conflict. Then, all the links are scheduled in a greedy
manner. Each link is scheduled into the first wi time slots such
that each time slot is feasible, where wi is the traffic demand
on link li. If there are no such time slots, new empty ones
are added at the end of the schedule. Though GreedyPhysical
takes into account the measurement of the amount of inter-
ference generated by a link using interference number, it only
considers binary relationship.

In [9], Moscribroda and Wattenhofer derived an upper
bound O(log4 n) on the number of time slots needed for
scheduling a set of strongly connected communication requests
in an arbitrary network by assigning different power levels to
the links. Along the same line, they improved the complexity
to O(log3 n) in [10] and further to O(log2 n) in [11].

The NP-completeness of link scheduling under physical
interference models is formally proved in [5] by giving
a reduction from Partition problem. To the best of our
knowledge, this paper is also the only one that presented an
approximation polynomial algorithm with a proved meaningful
bound O(g(L)), where g(L) is the number of the magnitudes

TABLE I
NOTATIONS

L a set of communication requests
L′ a subset of L
L(i) a subset of links in L that are transmitting

simultaneously with link li
N0 ambient noise power level
n number of links in L
β SINR threshold of links
α path loss exponent

Pr(xi, yj) received power at node yj of link lj from
node xi of link li

Pt(xi) transmission power of node xi of link li
Il(lj , li) interference induced on li by lj
Is(L′, li) interference induced on li any set L′ of links

S feasible schedule
St set of links in t-th time slot
ki key value of link li
K schedule length

w(St, li) weight between link li and time slot t

of link lengths. When all the lengths of links are within a factor
of 2, the approximation ratio becomes a constant. However, the
interference model used in that paper is a modified physical
interference model, where the noise is neglected. Moreover,
the links in their model must be unidirectional.

3. NETWORK MODEL AND PROBLEM DEFINITION

In this section, we first describe the network model and
notations. Then, we formally define the problem studied in
this paper.

We consider the problem of scheduling communication re-
quests of wireless nodes randomly distributed in the Euclidean
plane. Request and link are used interchangeably in this paper.
We assume the network is static, that is all the nodes are
stationary. The set of links is denoted by L = {l1, l2, · · · , ln},
where li = (xi, yi) represents the communication request
between nodes xi and yi. For unidirectional scenario, xi is the
transmitter and yi is the receiver of link li. For bidirectional
scenario, xi and yi are two end nodes of link li. We do
not assume any specific direction of the link, because our
algorithm can be applied on both unidirectional and bidirec-
tional transmission scenarios. Also, the network model could
be either homogeneous or heterogeneous, that is, we allow
nodes to use different transmission powers and have different
SINR thresholds. We assume each node is equipped with a
single radio and there is only one available channel for all
the links. Thus, simultaneous transmissions along two distinct
links would interfere with each other. Each link li is associated
with a weight wi ≥ 1, which indicates the traffic demand on
the link. Let d(xi, yj) be the Euclidean distance between nodes
xi and yj . To be specific, d(xi, yi) denotes the length of link
li. Transmission power at node xi is denoted by Pt(xi). The
received power Pr(xi, yj) at node yj of a signal transmitted
by node xi is

Pr(xi, yj) =
Pt(xi)

dα(xi, yj)
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where α is the path loss exponent, whose value is between 2
and 4 usually [4].

Choosing interference model has a strong impact on the
complexity of link scheduling problem. For the primary inter-
ference model, where two links interfere with each other only
when they share a common endpoint, Hajek and Sasaki [6]
proposed polynomial time algorithms using LP formulation.
For the K-hop interference model defined by Sharma et al. in
[14], the authors proved that the scheduling problem can be
solved in polynomial time when K = 1. On the other hand,
it has been proved that this problem is NP-hard under the
K-hop model (when K > 1) [14], the protocol model [7],
and the physical model [5]. In order to capture important
aspects of real wireless networks, we adopt the Physical
Interference Model (also called Signal-to-Interference-plus-
Noise-Ratio (SINR) model sometimes) [4] in this paper. In
this model, a message received by a node yi can be correctly
decoded if and only if the following condition is satisfied:

Pr(xi, yi)
N0 +

∑
lj∈L(i) Pr(xj , yi)

≥ β (3.1)

where N0 is the ambient noise power level, L(i) is a subset
of links in L that are transmitting simultaneously with link li,
and β is the minimum SINR required for a successful message
decoding.

This paper considers two scenarios:
1) Unidirectional transmission: This transmission mode is

often used in sensor networks and some video/voice ser-
vice systems. This mode is also used in [5][9][10][11].
For this mode, the interference induced on li by lj is
given by Il(lj , li) = Pr(xj , yi), and the total interfer-
ence induced on li by all the links in L′ is given by
Is(L′, li) =

∑
lj∈L′ Il(lj , li).

2) Bidirectional transmission: This is the most common
transmission mode. Bidirectional application data
transmission or reverse feedback (such as ACK and
automatic retransmission request) requires systems
to support bidirectional transmission. This mode is
also used in [3]. For this mode, the interference
induced on li by lj is given by Il(lj , li) =
max{Pr(xj , yi), Pr(yj , yi), Pr(xj , xi), Pr(yj , xi)},
and the total interference induced on li by
all the links in L′ is given by Is(L′, li) =
max{∑lj∈L′ max{Pr(xj , yi), Pr(yj , yi)},∑

lj∈L′ max{Pr(xj , xi), Pr(yj , xi)}}
Now we formally define the problem to be studied in this

paper.

Definition 3.1. A schedule is represented by S =
{S1,S2, · · · ,ST }, where St, 1 ≤ t ≤ T , is a subset of links
in L that are assigned into time slot t. We say a schedule S is
feasible if and only if the following conditions are satisfied:
• For each li ∈ L, it appears in at least wi time slots and

at most one time in each set St.
• For each link li ∈ St, the constraint (3.1) is satisfied.

The cardinality |S| of a schedule S is called schedule length.
A schedule length K is feasible if we can guarantee that there
exists a feasible schedule of length K.

Definition 3.2. Scheduling Problem aims to find a feasible
schedule S∗ such that it has the minimum schedule length
among all the feasible schedules.

For purpose of clarification, we assume that the traffic
demand wi is 1 for any link li ∈ L. We will show that our
algorithm can be easily extended to the case where the traffic
demand is greater than 1. Table I lists all the frequently used
notations in this paper.

4. GREEDY SCHEDULING ALGORITHM

In this section, we present a computationally efficient
heuristic algorithm referred to as k-Max-Cut-based Greedy
Algorithm (MCG) for Scheduling Problem under the physical
interference model. This algorithm uses bisection scheme to
find a feasible scheduling length of as small value as possible.
For each possible value K, MCG Algorithm tests if K
is feasible using Algorithm Test(L,K), which is listed as
Algorithm 1. If we can get a feasible schedule of length
K following our algorithm, we know that there must exist
a feasible schedule of length less than or equal to K. Our
Algorithm Test(L,K) outputs Y ES. Otherwise, it outputs
NO. However, in this case, we cannot say that there does
not exist a feasible schedule such that its length is less than
or equal to K. Based on the returned value of Test(L,K),
our algorithm refines the upper bound or the lower bound,
and recalculates a tentative schedule length. This bi-section
operation repeats until the tentative length is equal to either the
upper bound or the lower bound. Note that this upper bound is
always the upper bound of the optimal schedule length, while
this lower bound is not always the lower bound of the optimal
schedule length. The reason for the latter is that even if a
feasible schedule can not be found by Algorithm 1, it does
not necessarily indicate this length is infeasible.

To make this paper self-contained, we give the definition of
k-Max-Cut in the following.

Definition 4.3 (k-Max-Cut). Given an undirected graph
G(V, E, w), where V denotes the set of vertices in the graph,
E denotes the set of edges and w is an edge weight function so
that wuv ≥ 0 is the weight of edge (u, v) for any (u, v) ∈ E.
k-Max-Cut problem is to find k disjoint sets, {V1, . . . , Vk},
such that

⋃k
i=1 Vi = V and

∑
(u,v)∈E,u∈Vi,v∈Vj ,i<j wuv is

maximized.

Scheduling problem with a given schedule length is similar
to k-Max-Cut to a certain extent. In the k-Max-Cut problem,
the total weight of all the edges is a constant. Maximizing
the edge weight among the k disjoint sets is equivalent to
minimizing the edge weight within the vertex sets. Scheduling
links into k time slots also implicitly makes the interference
within each time slot as small as possible. Nevertheless, the
interference is not necessarily minimized. The similarity above
inspires our MCG Algorithm.

Before we formally describe our greedy algorithm, we need
the following definitions.

Definition 4.4. A time slot St is feasible for a link li, if
and only if after we add link li into St, all the links can
transmit successfully at the same time. In other words, the
constraint (3.1) is satisfied for any link lj ∈ {li} ∪ St.
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Definition 4.5 (Link Tolerance). The tolerance τi of a link li
indicates how much interference can be tolerated before the
SINR falls below the threshold β. It can be calculated by

(Unidirection) τi =
Pr(xi, yi)

β
−N0 (4.1)

or

(Bidirection) τi =
min{Pr(xi, yi), Pr(yi, xi)}

β
−N0 (4.2)

Definition 4.6 (Residual Link Tolerance). The residual tol-
erance τ ′i of a link li indicates that in the case link li is
experiencing interference from all the links in L′, how much
interference can be tolerated before the SINR falls below the
threshold β. It can be calculated by

(Unidirection) τ ′i = τi −
∑

lj∈L(i)

Il(lj , li) (4.3)

or

(Bidirection)
τ ′i = min{Pr(xi,yi)

β −∑
lj∈L(i) max{Pr(xj ,yi),Pr(yj ,yi)}−N0,

Pr(yi,xi)
β −∑

lj∈L(i) max{Pr(xj ,xi),Pr(yj ,xi)}−N0} (4.4)

Now we are ready to present the greedy algorithm in this
paper.

Algorithm 1 Test(L, K)
1: Input: A set of communication requests L and the number

of time slots K.
2: Output: Feasibility of a schedule S of length K.
3: Initialize:
4: St = ∅ for each time slot t;
5: for each link li ∈ L do
6: Compute Is(L \ {li}, li);
7: Compute the tolerance τi using Equation (4.1) or (4.2);
8: Compute ki = τi/ log(1 + Is(L \ {li}, li));
9: end for

10: Add all links in a queue Q in nondecreasing order;
11: while Q is not empty do
12: Pop the head link li in Q ;
13: for t = 1 to K do
14: if St is feasible for link li then
15: w(St, li) = Is(St, li);
16: else
17: w(St, li) = ∞;
18: end if
19: end for
20: if not all w(St, li) = ∞ then
21: Add link li into the time slot St with least w(St, li);
22: else
23: RETURN NO;
24: end if
25: end while
26: RETURN Y ES.

The basic idea of Algorithm 1 is as follows. First, given
a set L of communication requests and a tentative schedule

length K, Line 3 to 9 initialize the interference induced by
all the other links in L, the tolerance and key value for all
links. The fraction in the calculation of key’s value comes from
the intuition that a smaller tolerance or a larger interference
indicates the link is more vulnerable. Additionally, we use log
function to prevent the key from being too large when the
interference is small. Note that 1

log(1+x) is a monotonically
decreasing function on the range (0,∞). Based on their key
values, Line 10 puts all links in a queue Q in nondecreasing
order, i.e. links which are more vulnerable are scheduled first.
Then Line 12 pops the head link li from this queue. Line 14
checks whether link li can be added into any of these K time
slots. If time slot St is feasible for link li, we set the weight
between St and li to the interference induced by all the links
in St. Otherwise, we let the weight be equal to infinity. If there
exists at least one feasible time slot, Line 21 adds link li into
time slot St with least w(St, li). Otherwise, it returns NO at
Line 23. We repeat this procedure from Line 11 to 25 for each
link until Q is empty or one link cannot be scheduled. After
all the links are scheduled, Line 26 returns Y ES.

Algorithm 2 MCG Algorithm
1: Input: A set of communication requests L.
2: Output: A feasible schedule S under physical interference

model.
3: Initialize: LB = 1, UB = n, K = UB/2;
4: while K 6= LB and K 6= UB do
5: if Test(L,K)=YES then
6: UB = K;
7: else
8: LB = K;
9: end if

10: K = (LB + UB)/2;
11: end while
12: RETURN the last feasible schedule S.

Based on Algorithm 1, Algorithm 2 uses bisection method
to find a feasible schedule length K with as small value as
possible. At first, it sets LB = 1, UB = n, and K = UB/2.
Then, Lines 4-11 search for the smallest value of K. If
Test(L,K) = Y ES, it means the upper bound of the optimal
number of slots should be less than or equal to K. Thus
we set UB to K. Otherwise LB is set to K. Now, we set
K = LB+UB

2 . We repeat this test until K = LB or K = UB,
since that means K is the smallest value.

To illustrate the idea on how the MCG Algorithm works,
we present a simple example of 5-link network. We only
consider unidirectional transmission in this example. For ease
of exposition, we assume all the links have uniform power
and same length. Set both N0 and β to be 1. Let the received
power at the receiver of each link be 6. Thus, we know that
link tolerance for each link is 5. The interference between each
pair of links is shown in the following matrix:

IM =




6 2 1 3 1
4 6 5 1 1
2 2 6 3 1
1 6 1 6 1
5 1 2 1 6



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(a) (b) (c)

(d) (e)

Fig. 2. A 5-link example

where IMij = Il(li, lj), if i 6= j; IMij = Pr(xi, yj),
otherwise. We can easily compute Is(L \ {li}, li) for each
link, which are 12, 11, 9, 8 and 4 for links l1, l2, l3, l4 and
l5, respectively. Having all these values calculated, we sort the
links in nondecreasing order in terms of the key value ki. We
get l1, l2, l3, l4 and l5. Now, we show how our algorithm
works step by step. We initialize LB to be 1 and UB to be
5. First, we set K to be 5/2 = 2. Obviously, l1 and l2 should
be scheduled into time slots S1 and S2 respectively. For link
l3, we compute the weights w(S1, l3) and w(S2, l3) as in Fig.
2(a). We assign link l3 into time slot S1. Next, we note that S1,
which has links l1 and l3, is not feasible for link l4, because
the SINR of link l4 is 6

1+(3+3) < 1. If we put link l4 into
time slot S2, the SINR of link l2 becomes 6

1+6 < 1, which
is not enough to decode the message. Both the edge weights
are set to ∞ as shown in Figure 2(b). Test(L, 2) returns NO.
LB is updated to 2. We need to increase the value of K to
LB+UB

2 = 3. The first three links, l1, l2 and l3, are assigned
to time slots S1, S2 and S3, respectively. To schedule link l4,
we compute the weights w(S1, l4), w(S2, l4) and w(S3, l4)
as shown in Figure 2(c). Since there is a tie between time
slots S1 and S3, we arbitrarily schedule l4 into S1. Similarly,
the weights w(S1, l5), w(S2, l5) and w(S3, l5) are shown in
Figure 2(d). Finally, we schedule link l5 into time slot S2. We
have a feasible schedule {{l1, l4}, {l2, l5}, {l3}}. This time,
UB is updated to 3. Since K = LB+UB

2 = 3 = UB, our
algorithm terminates.

Theorem 4.1. Given a set L of communication links, let n
be the number of links. Then the time complexity of MCG
Algorithm is O(n3 log n). 2

PROOF. In Algorithm 1, it takes O(n) time to initialize
St, τi and ki respectively, and O(n2) time to initialize Ii.
O(n log n) time is required to sort links in Line 10. Now
consider the time complexity of Line 4-11. A vector is used
to hold all τ ′is. During each execution of the while-loop, it
checks at most n time slots. For each time slot, Line 14 takes
at most O(n) operations to test whether some τ ′i falls below
0. Thus, each execution of the while-loop takes O(n2) time.
Obviously, the while-loop is executed at most n times, as there
are n links. Therefore, the time complexity of Algorithm 1 is

O(n + n2 + n log n + n3) = O(n3).
Algorithm 2 uses bisection scheme to test whether a tenta-

tive schedule length is feasible by invoking Algorithm 1, which
executes at most O(log n) iterations. Thus the complexity of
MCG Algorithm is bounded by O(n3 log n).

Remark. Note that in the case where the traffic demand
wi is greater than one, our algorithm can be easily extended
to accommodate this change. That is, we can simply make
another wi − 1 copies of each original link and then apply
MCG Algorithm.

5. SIMULATION RESULTS

Since the GreedyPhysical Algorithm [3] is the only efficient
algorithm for Scheduling Problem under physical interference
model, we evaluate our algorithm by comparing it with
GreedyPhysical in several sets of simulations.

A. Simulation setup
In this section we evaluate the performance of MCG Algo-

rithm. We set up the simulations for both unidirectional trans-
mission mode and bidirectional transmission mode. Though
GreedyPhysical is not originally designed for unidirectional
mode, we note that it can be easily extended to apply on
this mode. For each mode, we present four sets of simulation
results. Two of them compare the schedule lengths obtained
from the two algorithms on homogeneous networks and het-
erogeneous networks as the density of links increases. The
other two compare the schedule lengths as the value of α
varies. The links were generated in the following way. All
the links were randomly distributed in a rectangular region of
1000 by 1000. The length of each link is randomly chosen
between 1 and 30. The number of nodes (twice the number
of links) varies from 1000 to 10000 with step size 1000. The
SINR threshold β was set to 10 and the environment noise
was 10−9w. The path loss exponent α was set to 3.5 for
simulations of increasing node density, and varied from 2.0
to 4.0 with step size 0.2 for simulations of increasing value of
α. For homogeneous networks, the transmit power was 200w.
For heterogeneous networks, it was one of the three values
150w, 200w and 250w. For each set of simulations, we ran
simulations ten times and averaged the results.

B. Simulation results
Figure 3(a) and 3(b) show the average schedule lengths in

the unidirectional transmission mode with the increase in the
density of nodes. When the number of nodes is greater than
2000, the lengths obtained by MCG Algorithm are less than
those by GreedyPhysical Algorithm [3] by 20%-30%. This is
because GreedyPhysical Algorithm uses interference number
as metrics. When the node density is large, this kind of metrics
will result in significant inaccuracy. In MCG Algorithm, the
interference of all nodes is considered together. This allows
MCG to choose a potentially better time slot.

Figure 4(a) and 4(b) show the average schedule lengths
in the bidirectional transmission mode with the increase in
the density of nodes. Similar with unidirectional transmission
mode, when the number of nodes is greater than 2000, the
schedule lengths produced by MCG Algorithm are less than
those by GreedyPhysical Algorithm [3] by 20%-25%.
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(a) Homogeneous networks with in-
creasing nodes density
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(b) Heterogeneous networks with in-
creasing nodes density
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(c) Homogeneous networks with in-
creasing alpha
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(d) Heterogeneous networks with in-
creasing alpha

Fig. 3. Comparison of schedule length for unidirectional transmission mode
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(a) Homogeneous networks with in-
creasing nodes density
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(b) Heterogeneous networks with in-
creasing nodes density
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Fig. 4. Comparison of schedule length for bidirectional transmission mode

Comparing Fig. 3 with Fig. 4, we can find the schedule
lengths in Fig. 3 are less than those in Fig. 4. This is
because according to the definition in Section 3, we know that
the mutual interference between two links in unidirectional
transmission scenario is smaller than that in bidirectional
transmission scenario. Thus fewer time slots are required in
the former scenario.

As shown in Fig. 3(c)(d) and Fig. 4(c)(d), we observe that,
with the increase in the value of α, the gap between these two
algorithms reduces. This is because a smaller α indicates more
interference on every link. However, considering interference
number as metrics, GreedyPhysical Algorithm introduces
more inaccuracy when the interference is large.

6. CONCLUSION

In this paper, we have studied the Link Scheduling prob-
lem under the physical interference model with the goal of
minimizing the schedule length. We analyzed the similarity
between link scheduling with fixed schedule length K and
K-Max-Cut problem. More important, we presented a simple
and efficient k-Max-Cut-based Greedy Algorithm (MCG).
Experimental results show that the improvement is about 20%-
30% compared with the Greedy Algorithm proposed in [3].
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