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Abstract—Current 802.11 networks do not typically achieve the
maximum potential throughput despite link adaptation and cross-
layer optimization techniques designed to alleviate many causes
of packet loss. A primary contributing factor is the difficul ty in
distinguishing between various causes of packet loss, including
collisions caused by high network use, co-channel interference
from neighboring networks, and errors due to poor channel con-
ditions. In this paper, we propose a novel method for estimating
various collision type probabilities locally at a given node of an
802.11 network. Our approach is based on combining locally
observable quantities with information observed and broadcast by
the access point (AP) in order to obtain partial spatial information
about the network traffic. We provide a systematic assessment
and definition of the different types of collision, and show how to
approximate each of them using only local and AP information.
Additionally, we show how to approximate the sensitivity ofthese
probabilities to key related configuration parameters including
carrier sense threshold and packet length. We verify our methods
through NS-2 simulations, and characterize estimation accuracy
of each of the considered collision types.

I. I NTRODUCTION AND RELATED WORK

In 802.11 WLANs, nodes cannot distinguish between packet
loss due to fading and collision because the symptoms are
the same, namely a missing acknowledgement. The situations
which result in each type of loss, however, require different
specific actions to maximize throughput. For instance,channel
errors occur when channel conditions are poor due to large
path loss or multipath fading. These errors can be mitigated
by using link adaptation (LA) to adapt the modulation and
coding levels of each transmission, or by using forward error
correction at the application layer. On the other hand, collisions
happen when multiple transmissions occur at the same time
causing interference and hence low relative signal power.
Collision avoidance in the 802.11 DCF is achieved by means
of the Binary Exponential Backoff scheme, where colliding
nodes choose a larger random backoff counter to minimize
repeat collision probability when retransmitting the packet.

In this paper we distinguish between different types of colli-
sions, based on the nature of the way they occur in the network.
Our motivation is that by estimating probabilities of each type
of collision, it should be possible to arrive at the corrective
action to minimize their impact on the future transmissions.
Specifically, we focus on two broad classes of collisions,direct
and staggered. A direct collision (DC) happens when two
nodes start transmitting a packet at the same time. These occur
in the 802.11 Distributed Coordination Function (DCF) when
two nodes finish their backoff at the same time. Co-channel
or hidden node collisions occur when multiple far-away nodes
that cannot sense each other transmit at the same time. In these

collisions, transmissions do not necessarily start at exactly the
same time. As such, we refer to these collisions asstaggered
collisions (SCs). Traditionally, staggered collisions are dealt
with by transmitting Request-To-Send (RTS) and Clear-To-
Send (CTS) messages before each data packet, since the hidden
node likely receives the CTS message and avoids collision.
This scheme however, is rarely used in practice due to the
large overhead.

We further subdivide SCs into two types, namely type 1 and
type 2. A staggered collision of type 1 (SC1) for a given node
is one in which the node under consideration transmits first
and is then interrupted by another node. Astaggered collision
of type 2 (SC2) for a given node is one in which the node under
consideration interrupts the transmission of a hidden node. To
avoid SC1s, it is possible to transmit with a higher transmit
power, or to send shorter packets. On the other hand, to avoid
SC2s, a node could decrease its carrier sense threshold, in
order to sense more nodes, thereby reducing the number of
hidden nodes at the cost of deferring channel access more
frequently. This distinction is necessary because these two
types of staggered collisions each have a different cause, and
thus each require a different modification to the link adaptation
layer or packet scheduling algorithm.

Current LA techniques based on loss statistics, such as Auto
Rate Fallback[1], perform poorly in the presence of collisions,
because collisions are misinterpreted as channel errors[2]. In
most of these algorithms, the modulation rate is lowered when
packets are lost, resulting in longer subsequent packets. If the
source of the problem is high network load and a large number
of collisions, rather than poor channel conditions, this only
exasperates the packet loss problem. Therefore differentiating
between collision and channel error is an important problem
as far as LA algorithms are concerned. To improve LA per-
formance in the presence of collisions, various schemes have
been proposed to distinguish collisions from channel errors
on a per-packet basis[3][4]. In this paper, we are primarily
interested in theprobability of each type of loss rather than
per-packet granularity in detecting collisions, since this is
sufficient to determine expected throughput. It has been shown
that an accurate estimate of the probability of collision can
significantly improve LA[5]. Once probability of collisionhas
been estimated, channel error probability can be easily inferred
by using the overall loss statistics.

In this paper, we propose an approach for estimating various
components of collision probabilities for 802.11 networks.
Our motivation is to eventually apply such a scheme to



develop LA and cross-layer optimization algorithms in order to
maximize throughput by appropriately tuning a wide range of
parameters including contention window size, modulation rate,
packet length, forward error correction, transmission power,
and sensing threshold.

II. T HE BASIC APPROACH

Unlike in wired networks, each node in a wireless network
observes a different medium depending on its location. As a re-
sult, standard local sensing alone cannot allow a sending node
to determine network traffic levels at the intended receiver. For
a node to estimate the probability that its next packet collides,
it needs spatial information about network traffic.

Our approach to estimating collision probabilities is based
on obtaining partial spatial traffic information. Our setupis
an 802.11 network in infrastructure mode, with many nodes
sending uplink traffic to the AP. Our goal is to estimate the
uplink collision probabilities for all nodes. As such, we ignore
downlink traffic since there are fewer APs than nodes, and they
tend to be more spatially spread out; hence there are fewer
collisions between downlink traffic as compared to uplink.
Downlink traffic from one AP can potentially also collide with
uplink traffic to another AP; however, since these collisions
involve uplink transmissions, we assume the problem is dealt
with by the nodes sending the uplink traffic. We also assume
the traffic to be stationary over the period of time over which
collision probabilities are being computed, and that the traffic
of all nodes are independent. We donot assume the nodes to
have any knowledge about packet lengths or traffic shape of
other nodes.

The outline of our proposed scheme is as follows: All nodes
collect local statistics, to be described shortly, about the
traffic they sense. The AP then broadcasts the statistics it has
collected to all of its associated nodes. Since this is a periodic
broadcast from the AP, the overhead does not scale with the
number of nodes or the number of packets. By comparing
its own statistics with those from the AP, a local station is
able to obtain a clearer picture of the spatial occupancy of the
medium in order to estimate the probabilities of the different
types of collisions. In the remainder of the paper, we refer
to the node under consideration for the computation of the
collision probability as “the station”, and refer to general nodes
as “nodes”.

III. T RAFFIC STATISTIC COLLECTION AND TRANSMISSION

The transmission of packets by the station is governed by
the state of the medium which it can sense. In particular,
it can only send when it senses the local medium as idle.
However, the reception of the packets depends on the state
of the medium around the destination, the AP. Therefore to
estimate the probability of collision, the station must be able
to compare the occupancy of the medium locally to that at the
AP.

We model the traffic state of the medium at each node or
AP as a zero-one process over time taking the value 0 when
the channel isidle, and 1 when it isbusy. We define busy

to mean that there is some transmission with received energy
above the carrier sensing threshold of the node or AP, and
idle to mean that there is no such transmission. We call
this the busy-idle process at that node or AP. Because the
sensing of transmissions requires a much lower SNR than the
decoding, the busy-idle signal is much more robust to fading
than statistics about successfully received packets. In practice,
the collection of this signal may be imperfect because there
is a non-zero chance of misclassifying the medium as busy
or idle at any given time; however, errors caused by random
noise are uncorrelated over samples, and can be filtered out
using knowledge of the minimum packet length and interframe
spacing. For the purposes of this paper, we assume a perfect
signal to be obtainable.

The signal of interest is the vector valued signalBI(t) =
[BISTA(t), BIAP (t)], whereBISTA(t) andBIAP (t) denote
the busy-idle signals at the station and AP, respectively. The
station has access to its own busy-idle signal, but it must
acquireBIAP (t) from the AP. Transmission of this complete
waveform from the AP to the nodes could result in a significant
amount of overhead. However, perfect resolution is not needed
for reasonable estimation accuracy. It is only necessary tohave
at least one sample per backoff slot time, since nodes check the
status of the medium at this resolution to determine when to
send. Furthermore, since the information needed by all stations
is the same, the AP can simply broadcast this information so
that the overhead does not scale with the number of nodes or
amount of traffic.

For an estimate of the number of bits that must be sent by the
AP, we assume there are at most 1000 non-colliding packets
per second heard by the AP. This results in 2000 edges in
the busy-idle process per second. For 10µs resolution, we can
upper-bound the amount of information by a 2-state discrete
time Markov chain with transition probability 0.02. The en-
tropy rate of this process is 0.141 bits per sample, or 14.1 kpbs.
Because there is also regular transmission overhead for this
data, the precise overhead will depend on how frequently it
is sent, but if the AP were to send this information every few
seconds at the lowest possible modulation rate, i.e. 1 Mbps for
802.11b, the overhead would be on the order of 2%.

IV. ESTIMATING COLLISION PROBABILITIES

To compute the probability that its next packet experiencesa
collision, each node uses the available statistics to compute its
probability of each type of collision, and combines them using
the relation:

(1 − PC) = (1 − PSC2) × (1 − PDC) × (1 − PSC1) (1)

wherePSC2 is the probability the next packet experiences a
staggered collision of type 2,PDC is the probability the next
packet experiences a direct collision given that it does not
experience a staggered collision of type 2, andPSC1 is the
probability that it experiences a staggered collision of type
1 given it does not experience either of the other types of
collision. The order in which the probabilities occur in Eq.(1)
matches with the natural order of events. Specifically, an SC2



TABLE I
ABSOLUTE ERROR PERCENTAGE FORPSC2 AS A FUNCTION OF SAMPLING

PERIOD, AVERAGED OVER 300NODES

inter-sample time (µs) 1 2 4 10 15 20 30
mean absolute error (%) 0.4 0.6 0.9 1.6 1.7 3.8 34.07

occurs when the channel is busy at the AP before the station
starts to send, a DC occurs when another node starts at the
same time, and an SC1 occurs when another node interrupts
the station after the transmission has begun. The remaining
lost packets are the result of channel errors.

In the subsections that follow, we will describe the estimation
of each of the probabilities in Eq. (1). Once the station
computesPSC2, PDC , andPSC1, it combines them via Eq. (1)
to estimate its total probability of collision. The estimates are
verified via NS simulations in Section V.

A. Probability of staggered collision of type 2
An SC2 for the station occurs when the station starts sending
during a time in which the channel is already busy at the AP.
If the station has access to the full busy-idle process at the
AP, it can identify the times when SC2s occur because these
are times when it starts sending while the AP is already busy.
Even if the statistics do not cover all times or are imperfect,
the station can identify all of the times it could possibly have
started sending, and count what proportion of these would
have experienced SC2s by examining the state of the busy-
idle process at the AP at those times.

Table I shows the absolute value of percentage error in
estimating PSC2 as a function of sampling period of the
busy-idle signal at the AP, averaged over 300 nodes from
30 different NS-2 simulations. As seen, the mean absolute
error is below 3% for resolutions higher than 20µs, i.e. one
sample per idle slot time. As expected, beyond 20µs resolution,
the error becomes increasingly large. For the remaining NS-2
simulations in this paper, we use a sampling period of 10µs.

Further, if the binary-valued busy-idle signal at the station is
replaced by a continuous-valued signal indicating the level
of power sensed on the channel, the station can determine
its potential busy-idle processes for different carrier-sensing
thresholds. Note that finer quantization of this signal does
not affect the overhead, since it is not transmitted. With this
increased information, the station can determine the sensitivity
of its probability of SC2 to its current sensing threshold. For
example, if the continuous-valued version of the busy-idle
signal at the station takes on a value slightly below the current
sensing threshold immediately before the station sends a packet
which experiences an SC2, then use of a lower threshold
would have resulted in the station sensing the channel as
busy immediately before its transmission; in this case the SC2
would have been avoided. Knowledge of this sensitivity could
potentially lead to better LA algorithms than knowledge of
PSC2 alone.

B. Probability of direct collision
A direct collision for a station occurs when another node
begins its transmission at the same time as the station. This
event cannot be directly observed by comparing the busy-idle

traces of the station and the AP since the transmission of the
station itself will cause the AP to become busy, and there is no
way for it to know whether there is also another node sending.

However, if some simplifying assumptions are made about
the behavior of nodes, its is possible to arrive at a good
approximation. For our approximation, we assume that all
nodes are equally likely to send at any time in which they
sense the channel as idle. In [6], Bianchi shows that nodes
in a single collision domain with saturated traffic behave in
this way when each time step is the length of a backoff slot.
Increasing the time resolution does not significantly change
this behavior. However, changing the rate of application layer
traffic so that the transmit queue is not always backlogged
can affect this behavior. We will show via simulations that
our assumption results in reasonable estimates given that the
application layer traffic is poisson.

For a direct collision to occur at timet, the AP must sense
the channel as idle at timet − 1, and then hear the start of
transmissions by both the station and another node. If the
station is assumed to be equally likely to send at any time
when the channel is idle around it, the probability of direct
collision can be computed as the probability that some other
node begins to send at timet when the channel is idle at both
the station and the AP at timet−1. To compute this probability,
the station must exclude the timest which it itself sends, since
it cannot determine if another node is sending. LetS(t) denote
the indicator that the station is sending at timet. Then, using
the busy-idle signals, the station can estimatePDC as

PDC =

∑
t I{BI(t − 1) = [0, 0], BIAP (t) = 1, S(t) = 0}

1
T

∑
t I{BI(t − 1) = [0, 0], S(t) = 0}

(2)
whereT is the length of a backoff slot andI{·} is the indicator
function. The numerator gives the number of times another
node starts to transmit when the station could have started its
transmission, and the denomenator gives the total number of
opportunities the station had to transmit. The1/T is needed in
the denominator because the station will only attempt to send
1 of everyT time steps – those at the start of a backoff slot.

C. Probability of staggered collision of type 1
PSC1 is the most difficult probability to estimate because it
depends on the action of hidden nodes with respect to the
station while the station is sending. But since the transmission
of the station causes the medium to be busy at both the station
and the AP, there is no way to observe this behavior.

To understand how to estimatePSC1, we start by considering
a simple scenario consisting of a single AP which hears all
traffic, and two sets of grouped nodes which we call “local”
and “hidden”. The nodes in each set can all hear members of
their own set, but no nodes in one set can hear any of the nodes
in the other. We then examine the additional phenomena we
have to account for in the more general case where there are
multiple APs, and a more complex connectivity graph between
nodes, so that the set of hidden nodes to any given node may
be unique to that node.



In the simple scenario, we assume there are two sets of
nodes which cannot sense packets from each other. Thus, the
processes determining the times the nodes from each set send
packets are independent. Letτl denote the rate at which local
nodes begin to send given that they observe the channel to be
idle, and letτh denote the rate at which hidden nodes begin
to send given that they observe the channel to be idle.

Then,τ , the total probability that there is a packet heard by
the AP given that the channel was idle in the previous time is
given by

τ = 1 − (1 − τl)(1 − τh). (3)

From its local statistics, a local station can estimateτl as

τl =

∑
t I{BISTA(t − 1) = 0, BISTA(t) = 1}

1
T

∑
t I{BISTA(t) = 0}

(4)

Similarly, from the statistics broadcast from the AP, the local
station can estimateτ as

τ =

∑
t I{BIAP (t − 1) = 0, BIAP (t) = 1}

1
T

∑
t I{BIAP (t) = 0}

(5)

Combining (3), (4), and (5), the station can estimateτh from
the pair of busy-idle signals.

The probability that a packet sent by the station avoids an
SC1 is the probability that no hidden nodes send during the
station’s packet. This probability is given by(1− τh)L, where
L is the effective length of the packet for the hidden nodes,
that is the number of opportunities the hidden nodes have to
send during the successful transmission of the packet.

This is strongly related to the notion ofvirtual slots in [6].
In [6], Bianchi shows that a single collision domain 802.11
network with saturated traffic can be thought of as operating
in discrete time where the ‘virtual’ time slots are of variable
length, i.e. either a short slot which is the length of a backoff
slot when no one is sending, or a long slot which is the length
of a full transmission, ACK, and inter-frame spacing when a
node sends a packet. In our scenario, there are two separate
collision domains, each with independent notions of virtual
time. The station’s transmission will have a length of one
virtual slot in its own collision domain, but will last for more
virtual slots in the other collision domain.

In this simple scenario, the station can computeL locally as
the length of its transmission – including inter-frame spacing
and ACK – divided by length of a backoff slot, since in order
for the transmission to be successful, all hidden nodes must
remain silent, making all the virtual slots short backoff slots.
Thus the station can easily computerPSC1 as

PSC1 = 1 − (1 − τh)L. (6)

In a more general network topology with multiple AP’s not
hearing everything, and unconstrained node locations, there
are multiple hidden nodes which hear different subsets of the
other nodes, making the problem more difficult. There is no
longer a single numberτh which characterizes the behavior of
all the nodes of interest, nor is there a singleL for all of these
nodes. Further, the presence of nodes which are heard by both

Fig. 1. The silencing of competing nodes: While node A is sending, only
nodes in the shaded region can send, because the other nodes hear node A
and are silenced.

the station and its hidden nodes causes a phenomenon we call
the “coupling of transmission times”. We discuss these three
issues in the following three subsections.

C1. Time-variation of τh

For a general network topology, we defineτh(t) as the
probability that at least one of the hidden nodes with respect
to the station starts to transmit in the next time instance. This
quantity is time-varying because the hidden nodes are affected
by other nodes which are not in the set of hidden nodes.

The greatest difficulty with estimatingτh(t) is that from the
busy-idle signals, the station can only directly determinethe
network behavior while it is not sending. This is because when
the node itself is sending,BI(t) ≡ [1, 1] regardless of what
the hidden nodes are doing, since the AP and station both
hear the station’s transmission. In order to estimatePSC1,
the station needs to estimateτh(t) while it is sending. We
approximate this value as a constant which we denote byτ∗

h .
Similarly, we denote byτ idle

h the average value ofτh(t) while
the medium is idle at both the AP and the station. This value
is straightforward to observe from the busy-idle signals as

τ idle
h =

∑
t I{BI(t − 1) = [0, 0], BI(t) = [0, 1]}

1
T

∑
t BI(t) = [0, 0]

. (7)

As seen shortly, our approach for estimatingτ∗
h , and hence

PSC1, is to first estimateτ idle
h , and then scale it by an

appropriate scaling factor,̄R > 1 to obtainτ∗
h .

The primary factor which causesτ∗
h to be greater thanτ idle

h is
what we call the silencing of competing nodes. An example of
this is shown in Fig. 1 where the circles around nodes A and
B represent their respective sensing/sensed ranges. We define
the sensing range of node A as range of nodes which A can
sense, and the sensed range as the range of nodes which can
sense node A. For simplicity, in this discussion we assume
the sensing and sensed ranges to be the same. If node A is
sending, nodes C and D are silenced, since they can sense
A. Therefore, the only nodes that can transmit are those in the
shaded region. As a result, node B experiences less competition
for the channel when A is sending than when A is not sending,
since in the latter case B has to compete with all nodes within
its sensing range.

We now elaborate on this process for a given hidden nodes B
as shown in Fig. 1. To begin with, assuming a sufficiently large
number of nodes spaced uniformly at random, the number of
nodes competing with node B for the channel roughly scales



Fig. 2. The silencing of hidden nodes: If node G starts sending, nodes B
through D are silenced and cannot cause a SC1 with A. Effectively, they
observe a shorter packet, in virtual slots, than nodes E and F.

with the area within B’s sensing range for which the channel
is currently clear. Furthermore, the sending rate of node B
is inversely proportional to the number of nodes it competes
with. Putting these together, we conclude that the sending rate
of a node B scales inversely with the area around it for which
the channel is clear. The crescent-shaped shaded region in
Fig. 1 corresponds to the portion of node B’s sensing range
for which the channel is potentially clear while the stationA
is transmitting. When A is not transmitting, the entire circle
around B is potentially clear. LetR(dB) denote the ratio of the
area of the circle aroundB to the area of the shaded region,
which is a function ofdB , the distance between A and B.
Then the rate at which node B sends while node A is sending
is given by:

τ∗
B = τ idle

B R(dB) (8)

whereτ idle
B denotes the rate at which nodeB sends when the

stationA is not sending.

A similar effect occurs for each of the hidden nodes with
respect to the station. Therefore,τ∗

h , the average probability
that a hidden node sends in a given virtual slot while the station
is sending, is given by:

τ∗
h =

∑

i∈H

τ idle
i R(di) ≈ τ idle

h R̄ (9)

whereH is the set of hidden nodes to the station A, andR̄ is
the average ofR(d) over all these nodes.

The approximation in Eq. (9) assumes that there are no hidden
nodes with significantly different distances and sending rates
from the others, as this would potentially necessitate scaling
one portion of the total transmission probability by a drastically
different value. In practice, this is a reasonable assumption
since due to the geometry constraints, hidden nodes have a
limited range of possible distances from the station. Specifi-
cally, they must be far enough to not sense the station, but close
enough to interfere at the AP. Since the station must be within
about half of an interference range from the AP, the admissible
region for hidden nodes with respect to the station is typically
a slim, crescent-shaped region, similar to the shaded region in
Fig. 2.

Since R̄ is unknown, the station must estimate it as the
expectation ofR(d) taken over the distribution ofd. For the
results in this paper, we assume that nodes are distributed
according to a spatial poisson process. Depending on the
application, it may be possible to have some other distribution,
but regardless,̄R can be pre-computed and stored.

C2. Non-uniformity of L

The other key parameter used for the estimation ofPSC1 is
the effective length of the packet for the hidden nodes,L.
Recall that for a hidden node with respect to the station,
the effective lengthL of a packet sent by the station is the
number of opportunities for the hidden node to interrupt it,
or equivalently, the number of virtual slots that elapse forthe
hidden node during the transmission of the station’s packet.
If there are no nodes which are sensed by the hidden nodes
but not by the AP,L would straightforward to compute as
mentioned above. However, in an actual network, there may
be nodes exposed to the hidden nodes which are not sensed
by the AP, but which silence some of the hidden nodes for a
period of time; this gives these hidden nodes less opportunities
to interrupt the packet sent by the station, making L effectively
shorter for those hidden nodes. An example of this is shown
in Fig. 2 where the circles around nodes A and G represent
the range for which they can be sensed, and the circle around
the AP represents its interference range. The shaded region
denotes the region of hidden nodes with respect to the station
A, namely nodes B through F, which are within the interference
range of the AP yet outside the sensed range of A. If node G
starts sending, hidden nodes B, C, and D are silenced, and thus
experience fewer transmission opportunities than experienced
by hidden nodes E and F, making A’s packet effectively shorter
for those nodes. It is useful to think of each node as having
a different perception of virtual time. In this example, the
transmission of node G causes nodes B, C, and D to freeze the
virtual time in one long slot while virtual time continues to
elapse in many short slots for nodes E and F. Thus, depending
on the position and activity of exposed nodes such as G, there
is a time- and space-varying scaling between effect packet
length and real-time packet length at the hidden nodes.

For the station, A, the probability that a given hidden node,
B, causes an SC1 can be expressed as

P
(B)
SC1 = 1 − (1 − τ∗

B)LB(l) (10)

wherel is the length of the packet in real time, andLB(l) is
the effective length of the packet sent by the station in virtual
slots as observed by nodeB. The difficulty in directly applying
Eq. (10) is that virtual time,LB(l), does not necessarily
progress linearly with real time,l. If this were the case,
plotting PSC1 versusl would yield an exponential according
to Eq. (10). Through NS-2 simulation, we have empirically
shown this not to be the case.

Specifically, Fig. 3 shows a plot of an example cumulative
histogram of the “real” time,l, between the start of the station’s
packet and the start of the next packet sent by any of its
hidden nodes. To obtain this plot we run NS-2 simulations for
a network with 7 APs at fixed locations covering hexagonal
cells, and 50 nodes placed at random according to a spatial
poisson process. We fix the modulation rate of all nodes to 11
Mbps and send packets of maximum length for 802.11b, i.e. 2
kB or 1610µs. For each instant the station starts a transmission,
we record the time until its next hidden node starts to transmit.
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Fig. 3. Plot of the cumulative histogram of the real time,l, in µs between
the start of the station’s packet and the start of the next packet sent by any of
its hidden nodes.

Fig. 3 is an example cumulative histogram of these values for
a particular station.

The significance of Fig. 3 is that the duration of the packet
sent by the station in real time,l, can be used as the value on
the horizontal axis in order to look upPSC1 for the station on
the vertical axis from the shown empirical curve. In particular,
PSC1 is the probability that the next packet sent by any of
the station’s hidden nodes arrives before timel. Our overall
approach to computingPSC1 is for the station to use the busy-
idle signals at the station and AP to estimate this curve, and
then to look upPSC1 based on its packet length. Specifically,
we model this curve as a two-piece piecewise linear curve and
estimate the slopes using the busy-idle signals.

For a single hidden node, B, the slope of the curve in Fig. 3
can be estimated as the derivative ofPSC1 with respect tol
in Eq. (10),

∂

∂l
P

(B)
SC1 = −[ln(1 − τ∗

B)](1 − τ∗
B)LB(l) ∂LB(l)

∂l
. (11)

The key issue is that the rate at which virtual time elapses
with respect to real timel, i.e. ∂LB(l)

∂l
, is a not constant.

This is because of the nature of the virtual slot lengths. In
essence, virtual time can be thought of as consisting of many
consecutive short, idle, slots together with isolated long, busy,
slots.

It is useful to think of ∂LB(l)
∂l

as a random function ofl. To
compute the expectation of∂LB(l)

∂l
, we split the realizations

into two cases, depending on the state of the channel as
observed by node B when the station begins its transmission:

1) If the station begins its transmission when node B observes
the channel as idle, then for smalll, ∂LB(l)

∂l
is relatively

large, namely(1 virtual slot)/(length of backoff slot).
This is because node B is observing idle backoff
slots and has LB(l) = 1 opportunity to trans-
mit per l = length of backoff slot seconds.
For larger l, eventually a silencing node, such as G
in Fig. 2, starts to transmit, decreasing∂LB(l)

∂l
to

(1 virtual slot)/(length of average busy slot). This is
because for nodeB only LB(l) = 1 virtual slot elapses
during l = length of busy slot seconds. Letlbreak, show
in Fig. 3 denote the expected time at which this decrease
occurs, i.e. the expected amount of time before a node

similar to G in Fig. 2 starts sending when the station, A,
is sending.

2) If the station begins its transmission when node B observes
the channel as busy, then it is equally likely that the station
has started its transmission at any time during the long, busy
slot. In this case,LB is initially constant, and eventually
increases rapidly when the current busy slot expires and
idle slots resume. However, since this increase is equally
likely to happen at any time, averaging over all of these
cases yields the same average value∂LB(l)

∂l
for all l.

Combining the above two cases, we conclude that the random
function ∂LB(l)

∂l
has a higher expected value for smalll than

for large l. The actual value of this expectation depends on
how often the channel is busy on average at the hidden node
B, because this gives the weighting of the two cases as well as
the actual value of each. A reasonable proxy for how often the
channel is busy at the hidden node B is the proportion of time
the busy-idle signal at the AP is busy, denoted byP (BAP ).
This quantity can be readily computed at the station, as the
mean ofBIAP .

The empirical curve of Fig. 3 shows the aggregate effect of
this ∂L(l)

∂l
for all hidden nodes for the station. Specifically,

taking all hidden nodes into consideration, Eq. (11) can be
approximated as

∂

∂l
PSC1 ≈ −[ln(1 − τ∗

h)](1 − τ∗
h)L(l) ∂L(l)

∂l
(12)

whereL(l) denotes the average length of station’s packet in
virtual slots as observed by all the hidden nodes. Similar to
∂LB(l)

∂l
, we expect∂L(l)

∂l
and hence∂

∂l
PSC1 to have a higher

expected value for smalll than for largel. This is in agreement
with the shape of the empirical curve in Fig. 3.

Based on the above analysis, which predicts∂L(l)
∂l

to have
a higher value for smalll than for largel, it is reasonable
to approximate the empirical curve in Fig. 3 with a 2-piece
piecewise linear function, with a steeper initial slope for
l < lbreak, and a less steep slope forl > lbreak. We have
empirically foundlbreak = 400µs to result in fairly accurate
estimates of the curve in Fig. 3 in NS-2 simulations of 802.11b
networks. Future work involves investigating ways for the
station to estimate the break point based on local and AP
statistics.

Having fixedlbreak, the piecewise linear function in Fig. 3 is
completely determined by 2 parameters: the slope for0 < l <
lbreak, denoted bym1, and the slope forlbreak < l < lmax,
denoted bym2. To estimatePSC1, the station must somehow
estimate these slopes from the busy-idle signals availableto the
station. Obtaining a reasonable approximation for the entire
curve, rather than for one value ofPSC1, has the added
advantage of allowing the station to determine the sensitivity
of PSC1 with respect to packet length from the slope of the
curve in Fig. 3. In general, the smaller the slope is at the current
packet length, the less sensitivePSC1 is to packet length.

Rather than estimatingm2, we opt to estimatemavg, the



average slope over the entire range ofl, as

mavg =
(m1lbreak + m2lmax − lbreak)

lmax

(13)

where lmax is the length of the longest possible packet the
station can send, i.e. 2KB in our example.m2 can easily be
computed fromm1 andmavg.

We have empirically found a reasonable model for the initial
slope to be

m1 = α0(P (BAP )) − α1(P (BAP )) ln(1 − τ∗
h) (14)

and for the average slope to be

mavg = β0(P (BAP )) − β1(P (BAP )) ln(1 − τ∗
h). (15)

α0, α1, β0, andβ1 are functions ofP (BAP ), and are looked
up from a table by the station. The first terms in Eqs. (14)
and (15), i.e.α0 andβ0, are independent ofτ∗

h , are absent in
Eq. (12), and are discussed in detail in Section IV-C3.

From Eq. (12) and Fig. 3,α1 and β1 are the average values
of (1− τ∗

h)L(l) ∂L(l)
∂l

for l < lbreak and l < lmax, respectively.
As noted earlier,∂L(l)

∂l
depends onP (BAP ). Similarly, it can

be argued that(1 − τ∗
h)L(l) depends onP (BAP ). This is

becauseτ∗
h is the average sending rate of the hidden nodes,

and L(l) depends on the sending rate of the hidden node
neighbors. Putting these together, we conclude that the quantity
(1 − τ∗

h)L(l) ∂L(l)
∂l

, and thusα1 andβ1 are also dependent on
P (BAP ).

When the average network traffic,P (BAP ), is low,
nearly all hidden nodes experience idle channel condi-
tions when the station begins to send. Thus,∂LB(l)

∂l
=

(1 virtual slot)/(length of idle slot) for small l. In this
case, it is also likely thatτ∗

h is small, so (1 − τ∗
h)L(l)

= 1 for small l. Therefore, for smallP (BAP ), α1, which
corresponds to smalll, i.e. l < lbreak, is given by
(1 virtual slot)/(length of backoff slot). As P (BAP )
increases, there are more long, busy slots, causing both(1 −

τ∗
h)L(l) and ∂L(l)

∂l
, and thusα1 to decrease. Similarly,β1 de-

creases with increasingP (BAP ) due to a similar phenomenon.
These observations are verified shortly via simulations shown
in Table II of Section IV-C4.

C3. Coupling of transmission times
We now justify the existence ofα0 and β0 in Eqs. (14) and
(15). They are related to a phenomenon which we call the
coupling of transmission times. When an intermediate node
such as node C or D in Fig. 1 is sending, it silences both
nodes A and B. As a result, while nodes A and B would
have transmitted independently in the absence of intermediate
nodes, in the presence of such a node, both of their available
transmission times are reduced to times when nodes C and D
are silent. This increases the number of staggered collisions
between nodes A and B because they are more likely to send
around the same time. The amount by which this increases
the PSC1 is dependent on how often nodes such as C or
D are sending. We have empirically foundP (BAP ) to be
a reasonable proxy for this. For lower-traffic networks, this

TABLE II
SAMPLE VALUES OF α’ S AND β ’ S

range ofP (BAP ) α0 α1 β0 β1

.75-.8 0 5e-2 0 1.91e-2

.8-.85 0 5e-2 0 1.78e-2
.85-.88 1e-4 5e-2 1e-4 1.29e-2
.88-.9 1e-4 5e-2 1e-4 1.30e-2
.9-.92 2e-4 3.96e-2 2e-4 9.48e-3
.92-.94 3e-4 3.23e-2 2e-4 8.10e-3
.94-.96 6e-4 2.41e-2 3e-4 4.75e-3
.96-.98 9e-4 2.00e-2 4e-4 2.17e-3

effect is negligible, but for higher traffic networks with larger
values ofP (BAP ) this becomes more pronounced. Thusα0

and β0 should increase withP (BAP ) as verified shortly via
simulations shown in Table II of Section IV-C4.

C4. Estimating α0, α1, β0, and β1

In general, computing closed-form analytical expressionsfor
α0, α1, β0, andβ1 as functions ofP (BAP ) is a non-trivial
task. Instead, we pre-compute them for various ranges of
P (BAP ) via regression from simulation data using the the
NS-2 simulation package, which we have modified to collect
the busy-idle signal at the AP and nodes as well as record the
fate of each packet – DC, SC1, SC2, or no collision. We use
the topology described in Section IV-A, with all nodes sending
poisson application layer traffic at a fixed rate, which varies
over different simulations. We use 13 different rates, ranging
from 2 kB/s to 120 kB/s, and repeat each rate 5 times with
different random topologies. From each of the 65 trials, we
collect the measured data, namely the busy-idle waveform, at
the center AP and all the nodes in its cell. We also record
the empirical cumulative histograms for each station, i.e.the
solid curve in Fig. 3 to use as ground-truth. We then choose
a random subset of the over 400 stations from the 65 trials to
be used for training data. We optimizem1 and m2 for each
station to achieve the minimum squared distance between the
2-line approximation and the empirical curve. For each of the
training stations, we use the optimalm1 and m2, as well as
the local estimates ofln(1−τ∗

h) to perform a linear regression
using Eqs. (14) and (15) in order to determine the values of
α0, α1, β0, andβ1. In practice, nodes store a table of values
for α0, α1, β0, and β1 and look them up the based on the
observedP (BAP ).

An example portion of this table is shown in Table II. As
expected,α1 andβ1 decrease withP (BAP ) while α0 andβ0

increase with it. Also, forP (BAP ) < 0.9, α1 = 1/(20µs) =
(1 virtual slot)/(length of backoff slot). Sinceln(1− τ∗

h)
is on the order of10−2, all the terms in Eqs. (14) and (15) are
of comparable size.

Fig. 4 shows the resulting average normalized error in the
estimate of the curve in Fig. 3, defined as|yestimate −
yempirical)/yempirical|, for two bins of values ofP (BIAP ),
namely 0.6 to 0.7 and 0.92 to 0.94. The averaging is done
over multiple stations in multiple topologies with similarmean
values ofBIAP . As seen, the estimation accuracy improves
with packet length. The performance for lengths shorter than
200µs is unimportant, since this is below the minimum packet
length including inter-frame spacing for 802.11b. For longer
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packets, errors become less than 10%.

Having estimated the probabilities of each type of collision,
we can now combine them to find the totalPC using Eq. (1).

V. SIMULATION RESULTS

To verify the above analysis, we use the NS-2 simulation
package, which we have modified as described above. We post-
process the busy-idle signals generated by NS in MATLAB to
arrive at estimates of the various collision probabilities. We
repeat the 65 trials of Section IV-C4 with different random
seeds. Each run lasts 30 seconds. The estimates are computed
using the busy-idle signals from the first 10 seconds, while
ground truth is obtained by empirically counting the number
of packets incurring each fate over the full 30 seconds.

Fig. 5(a) shows a cumulative histogram of the absolute error
in estimatingPC for three different values ofP (BAP ). Data
for other traffic levels is not shown, but performance is similar.
Figs. 5(b)-(d) show the error in each component ofPC for the
same three traffic levels. As seen,PSC2 has a consistently
small error. Due the way collisions are counted, SC2s are
the dominant type of collision for higher traffic scenarios,
making precise estimation ofPDC and PSC1 more difficult
and less important as mean(BIAP ) increases. In particular, for
P (BIAP ) > 0.9, PSC2 is almost 1, and there is not a sufficient
number of packets which are not classified as SC2s for even
the empirical count ofPDC or PSC1 used as ground truth to
be accurate. It can be seen that while the error in estimating
PDC and PSC1 grows as traffic increases, the total error in
PC does not. In general, 90% of the time, thePC estimate is
within 20%, and 50% of the time, it is within 10%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a classification of the types
of collisions that occur in WLANs, and proposed a method
for accurately estimating them locally at any node via sharing
spatial information about network traffic. Future work includes
implementation and verification using actual hardware as well
as development of algorithms that use this additional informa-
tion to improve throughput through intelligent adaptationof
parameters such as modulation rate, packet length, FEC, carrier
sense threshold, contention window, and transmit power.
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Fig. 5. Cumulative histogram of the estimation errors in (a)PC , (b)PSC2,
(c)PDC , and (d)PSC1 for three traffic levels.


