Local Estimation of Probabilities of Direct and
Staggered Collisions in 802.11 WLANS

Michael N. Krishnan, Sofie Pollin, and Avideh Zakhor
Department of EECS, U.C. Berkeley
Email: {mkrishna, pollins, avg@eecs.berkeley.edu

Abstract—Current 802.11 networks do not typically achieve the  collisions, transmissions do not necessarily start attixtue
maximum potential throughput despite link adaptation and aoss-  same time. As such, we refer to these collisionstaggered
layer optimization techniques designed to alleviate many auses collisions (SCs). Traditionally, staggered collisions are dealt
of packet loss. A primary contributing factor is the difficulty in . L '

distinguishing between various causes of packet loss, inding ~ With by transmitting Request-To-Send (RTS) and Clear-To-
collisions caused by high network use, co-channel interfence  Send (CTS) messages before each data packet, since tha hidde
from neighboring networks, and errors due to poor channel co- node likely receives the CTS message and avoids collision.

ditions. In this paper, we propose a novel method for estimatg  This scheme however, is rarely used in practice due to the
various collision type probabilities locally at a given noa of an large overhead

802.11 network. Our approach is based on combining locally
observable quantities with information observed and broadastby ~ \We further subdivide SCs into two types, namely type 1 and

the access point (AP) in order to obtain partial spatial infamation type 2. Astaggered collision of type 1 (SC1) for a given node

about the network traffic. We provide a systematic assessmén . : : : . S e
and definition of the different types of collision, and show low to is one in which the node under consideration transmits first

approximate each of them using only local and AP information ~ @nd is then interrupted by another nodestaggered collision
Additionally, we show how to approximate the sensitivity ofthese  Of type 2 (SC2) for a given node is one in which the node under
probabilities to key related configuration parameters incuding consideration interrupts the transmission of a hidden ndde
carrier sense threshold and packet length. We verify our métods  5y0ig SC1s, it is possible to transmit with a higher transmit
through NS-2 simulations, and characterize estimation aagacy power, or to send shorter packets. On the other hand, to avoid
of each of the considered collision types. . . .
SC2s, a node could decrease its carrier sense threshold, in
order to sense more nodes, thereby reducing the number of

o ] hidden nodes at the cost of deferring channel access more
In 802.11 WLANS, nodes cannot distinguish between packefoqyently. This distinction is necessary because these tw

loss due to fading and collision because the symptoms ar@,pes of staggered collisions each have a different cause, a

the same, namely a missing acknowledgement. The situationg, each require a different modification to the link adtipta
which result in each type of loss, however, require d|ffdaren|ayer or packet scheduling algorithm.

specific actions to maximize throughput. For instarmmbennel ) o
errors occur when channel conditions are poor due to largécurrent LA techniques based on loss statistics, such as Auto

path loss or multipath fading. These errors can be mitigateff@te Fallback[1], perform poorly in the presence of callis,

by using link adaptation (LA) to adapt the modulation angbecause collisions are m|smterpreted. as chapnel ertois[2
coding levels of each transmission, or by using forwardrerroMost of these algorithms, the modulation rate is loweredwhe
correction at the application layer. On the other handjsiolis ~ Packets are lost, resulting in longer subsequent pacKetse |
happen when multiple transmissions occur at the same tim@gource of the problem is high network load and a large number
causing interference and hence low relative signal poweff collisions, rather than poor channel conditions, thidyon
Collision avoidance in the 802.11 DCF is achieved by mean§Xasperates the packet loss problem. Therefore diffetergi

of the Binary Exponential Backoff scheme, where collidingP€tween collision and channel error is an important problem
nodes choose a larger random backoff counter to minimiz&S far as LA algorithms are concerned. To improve LA per-

repeat collision probability when retransmitting the petck formance in the presence of collisions, various schemes hav
been proposed to distinguish collisions from channel srror

Ir_1 this paper we distinguish between different types ofieoll 5, 4 per-packet basis[3][4]. In this paper, we are primarily
sions, based on the nature of the way they occur in the networlt, o reteqd in theprobability of each type of loss rather than

Our motivation s that by estimating probgbllltles of ea;zbet. per-packet granularity in detecting collisions, sincestlis

of F:O"ISIOI’],.It. should l:.)e.possmle to arrive at the corm@:u sufficient to determine expected throughput. It has beewsho

action to minimize their impact on the future ransmissionS hat an accurate estimate of the probability of collisiom ca

Specifically, we focus on two broad classes of collisiafiect  gjgificantly improve LA[S]. Once probability of collisiohas

and staggered. A direct collision (DC) happens when two hoan estimated, channel error probability can be easityried
nodes start transmitting a packet at the same time. Thesg occby using the overall loss statistics

in the 802.11 Distributed Coordination Function (DCF) when ] o .
two nodes finish their backoff at the same time. Co-channdn this paper, we propose an approach for estimating various

or hidden node collisions occur when multiple far-away rde components of collision probabilities for 802.11 networks
that cannot sense each other transmit at the same time sia the@ur motivation is to eventually apply such a scheme to

|. INTRODUCTION AND RELATED WORK



develop LA and cross-layer optimization algorithms in ariile  to mean that there is some transmission with received energy
maximize throughput by appropriately tuning a wide range ofabove the carrier sensing threshold of the node or AP, and
parameters including contention window size, modulatette,r  idle to mean that there is no such transmission. We call
packet length, forward error correction, transmission @ow this the busy-idle process at that node or AP. Because the
and sensing threshold. sensing of transmissions requires a much lower SNR than the
Il. THE BASIC APPROACH decodlng_, t_he busy-idle signal is much more robust tq fading
S . . than statistics about successfully received packets.dotige,
Unlike in wired networks, each node in a wireless network

observes a different medium depending on its location. As a r f[he collection of this signal may be imperfect because there

. : is a non-zero chance of misclassifying the medium as busy
sult, standard local sensing alone cannot allow a sendidg no

. . . or idle at any given time; however, errors caused by random
to determine network traffic levels at the intended recelver : 4
; hy : . noise are uncorrelated over samples, and can be filtered out
a node to estimate the probability that its next packet dedj . o .
. - : X using knowledge of the minimum packet length and interframe
it needs spatial information about network traffic. ? .
spacing. For the purposes of this paper, we assume a perfect
Our approach to estimating collision probabilities is lBse signal to be obtainable.

on obtaining partial spatial traffic information. Our setigp The signal of interest is the vector valued sigal(f) —

an 802.11 network in infrastructure mode, with many nOdeﬁBISTA(t) Blap(1)], where BIgra(t) and Blap(t) denote

send|ng u_pl_lnk tratffic to _the AP. Our goal is to estlmgte thethe busy-idle signals at the station and AP, respectivehe T
uplink collision probabilities for all nodes. As such, we@e . . . . .
station has access to its own busy-idle signal, but it must

downlink traffic since there are fewer APs than nodes, ang theacquireBIAp(t) from the AP. Transmission of this complete

tenq .to be more spa‘ually_ spread. out; hence there are few?/\gaveform from the AP to the nodes could result in a significant
collisions between downlink traffic as compared to uplink.

. . . ; .. amount of overhead. However, perfect resolution is not eded
Downlink traffic from one AP can potentially also collide tvit S :
. : ) : .. for reasonable estimation accuracy. It is only necessanave
uplink traffic to another AP; however, since these collision

. . . . Fxt least one sample per backoff slot time, since nodes check t
involve uplink transmissions, we assume the problem istdea

. ) . : status of the medium at this resolution to determine when to
with by the nodes sending the uplink traffic. We also assumé : . .

: . . : ., send. Furthermore, since the information needed by albstt
the traffic to be stationary over the period of time over which;

. - . ' is the same, the AP can simply broadcast this information so
collision probabilities are being computed, and that tladfitr :
. that the overhead does not scale with the number of nodes or
of all nodes are independent. We dot assume the nodes to

have any knowledge about packet lengths or traffic shape Oe%mount of traffic.
other nodes. For an estimate of the number of bits that must be sent by the

The outline of our proposed scheme is as follows: All nodesAP’ we assume there are at most 1000 non-colliding packets

collect local statistics, to be described shortly, abow th per second heard by the AP. This results in 2000 edges in

traffic they sense. The AP then broadcasts the statisticasit h the busy-idle process per se(;ond. Fo-p d@esolution, we can
i . i o .. upper-bound the amount of information by a 2-state discrete
collected to all of its associated nodes. Since this is aofari

broadcast from the AP, the overhead does not scale with thtleme Markov chain with transition probability 0.02. The en-

number of nodes or the number of packets. By comparintmpy rate of this process is 0.141 bits per sample, or 14bskp

its own statistics with those from the AP, a iocal station is o Cause there is also regular transmission overhead fsr thi

able to obtain a clearer picture of the spatial occupanchef t data, the precise overhead will depend on how frequently it
is sent, but if the AP were to send this information every few

medium in order to estimate the probabilities of the differe . : :
. . seconds at the lowest possible modulation rate, i.e. 1 Maps f
types of collisions. In the remainder of the paper, we refer
. . . 802.11b, the overhead would be on the order of 2%.
to the node under consideration for the computation of the

collision probability as “the station”, and refer to gerlerades IV. ESTIMATING COLLISION PROBABILITIES

as “nodes”. To compute the probability that its next packet experiereces
1. TRAFEIC STATISTIC COLLECTION AND TRANSMIssIon  collision, each node uses the available statistics to coenifs
The transmission of packets by the station is governed bprobability of each type of collision, and combines thermgsi

the state of the medium which it can sense. In particularthe relation:
it can only send when it senses the local medium as idle. (1 — Pc) = (1 — Psc2) X (1 — Ppe) X (1 — Psc1) (1)

However, the reception of the packets depends on the St%erePscg is the probability the next packet experiences a

of Fhe meﬁmm at:og_?d thf d(lelgt_lnat|ohn, the .AP' TherE;c;re tc%taggered collision of type Zp¢ is the probability the next
estimate the probability of collision, the station must a  packet experiences a direct collision given that it does not

to compare the occupancy of the medium locally to that at th xperience a staggered collision of type 2, dhgh; is the

AP. probability that it experiences a staggered collision giety
We model the traffic state of the medium at each node ofl given it does not experience either of the other types of
AP as a zero-one process over time taking the value 0 wheeollision. The order in which the probabilities occur in Ej)

the channel iddle, and 1 when it isbusy. We define busy matches with the natural order of events. Specifically, a@ SC



TABLE | traces of the station and the AP since the transmission of the

ABSOLUTE ERROR PERCENTAGE FOR’sC2 AS A FUNCTION OF SAMPLING  gtatinn jtself will cause the AP to become busy, and theris n
PERIOD, AVERAGED OVER 300NODES

tersample tmegs) | T [ 2 [ 4 [ 10 [ 15 [ 20 | 30 way for it to know whether there is also another node sending.
mean absolute error (%) 0.4 | 0.6 | 0.9 | 1.6 | 1.7 | 3.8 | 34.07

However, if some simplifying assumptions are made about
occurs when the channel is busy at the AP before the statiothe behavior of nodes, its is possible to arrive at a good
starts to send, a DC occurs when another node starts at tlagproximation. For our approximation, we assume that all
same time, and an SC1 occurs when another node interrupt@des are equally likely to send at any time in which they
the station after the transmission has begun. The remainingense the channel as idle. In [6], Bianchi shows that nodes
lost packets are the result of channel errors. in a single collision domain with saturated traffic behave in
this way when each time step is the length of a backoff slot.
Increasing the time resolution does not significantly cleang
this behavior. However, changing the rate of applicatigreta
traffic so that the transmit queue is not always backlogged
can affect this behavior. We will show via simulations that

o N our assumption results in reasonable estimates givenhbat t
A. Probability of staggered collision of type 2 application layer traffic is poisson.
An SC2 for the station occurs when the station starts sendin

during a time in which the channel is already busy at the AP.'(.'lor a direct collision to occur at timg the AP must sense

If the station has access to the full busy-idle process at thi1€ channel as idle at time— 1, and then hear the start of
AP, it can identify the times when SC2s occur because thesg@nsmissions by both the station and another node. If the
are times when it starts sending while the AP is already busy>tation is assumed to be equally likely to send at any time
Even if the statistics do not cover all times or are impetfectWhen the channel is idle around it, the probability of direct
the station can identify all of the times it could possiblywaa collision can be computed as the probability that some other
started sending, and count what proportion of these wouldode begins to send at timtavhen the channel is idle at both

have experienced SC2s by examining the state of the bus)t,lje station and the AP at tinte-1. To compute this probability,
idle process at the AP at those times. the station must exclude the timesvhich it itself sends, since

_it cannot determine if another node is sending. £@ft) denote
Table | shows the absolute value of percentage error ifne indicator that the station is sending at timéhen, using
estimating Psc2 as a function of sampling period of the ,q busy-idle signals, the station can estimBig- as
busy-idle signal at the AP, averaged over 300 nodes from
30 different NS-2 simulations. As seen, the mean absolute p,, , — > H{BI(t—1)=1[0,0], Blap(t) = 1,5(t) = 0}
error is below 3% for resolutions higher than,20 i.e. one 72 {BI(t —1) =0,0],5(t) = 0}
sample per idle slot time. As expected, beyond®fesolution, . . o (@)
the error becomes increasingly large. For the remaining2Ns-WhereT'is the length of a backoff slot arid -} is the indicator

simulations in this paper, we use a sampling period gfsl0 function. The numerator gives the number of times another
’ node starts to transmit when the station could have statged i

Further, if the binary-valued busy-idle signal at the statis  {ansmission, and the denomenator gives the total number of
replaced by a continuous-valued signal indicating the llevegnnortunities the station had to transmit. The is needed in
of power sensed on the channel, the station can determinge genominator because the station will only attempt talsen

its potential busy-idle processes for different carrensing 1 of every7 time steps — those at the start of a backoff slot.
thresholds. Note that finer quantization of this signal does

not affect the overhead, since it is not transmitted. Witis th C. Probability of staggered collision of type 1

increased information, the station can determine the teiysi  Psc1 is the most difficult probability to estimate because it
of its probability of SC2 to its current sensing thresholdr F  depends on the action of hidden nodes with respect to the
example, if the continuous-valued version of the busy-idlestation while the station is sending. But since the transiois
signal at the station takes on a value slightly below theesurr  Of the station causes the medium to be busy at both the station
sensing threshold immediately before the station sendskepa and the AP, there is no way to observe this behavior.

which experiences an SC2, then use of a lower thresholgfy ynderstand how to estimaféyc:, we start by considering
would have resulted in the station sensing the channel ag simple scenario consisting of a single AP which hears all
busy immediately before its transmission; in this case 162 S traffic, and two sets of grouped nodes which we call “local”
would have been avoided. Knowledge of this sensitivity doul g4 “hidden”. The nodes in each set can all hear members of
potentially lead to better LA algorithms than knowledge of their own set, but no nodes in one set can hear any of the nodes
Psc, alone. in the other. We then examine the additional phenomena we
B. Probability of direct collision have to account for in the more general case where there are
A direct collision for a station occurs when another nodemultiple APs, and a more complex connectivity graph between
begins its transmission at the same time as the station. Thisdes, so that the set of hidden nodes to any given node may
event cannot be directly observed by comparing the bugy-idlbe unique to that node.

In the subsections that follow, we will describe the estiorat
of each of the probabilites in Eq. (1). Once the station
computesPscq, Ppe, andPsc1, it combines them via Eq. (1)
to estimate its total probability of collision. The estireatare
verified via NS simulations in Section V.




In the simple scenario, we assume there are two sets of
nodes which cannot sense packets from each other. Thus, the
processes determining the times the nodes from each set send
packets are independent. Letdenote the rate at which local
nodes begin to send given that they observe the channel to be
idle, and letr;, denote the rate at which hidden nodes begin
to send given that they observe the channel to be idle.

Then, 7, the total probability that there is a packet heard by

the AP given that the channel was idle in the previous time izg'g' 1. The silencing of competing nodes: While node A is sgdonly

odes in the shaded region can send, because the other remfeadue A

given by 1 ) 3 and are silenced.
_ T___ — (=7 - 7). _ ) the station and its hidden nodes causes a phenomenon we call
From its local statistics, a local station can estimatas the “coupling of transmission times”. We discuss theseethre
S I{BIsra(t —1) =0, Blsra(t) = 1} 4 issues in the following three subsections.
T =
7 > {BIsra(t) = 0} C1. Time-variation of 7,
Similarly, from the statistics broadcast from the AP, thealo FOr @ general network topology, we defing(t) as the
station can estimate as probability that at least one of the hidden nodes with respec
to the station starts to transmit in the next time instandgés T
{BIap(t—1)=0,Blsp(t)=1 RO _ .
= 21 1AP( I B)I " _A;( ) ! (5)  quantity is time-varying because the hidden nodes aretaffec
7 2 {BlLap(t) = 0} by other nodes which are not in the set of hidden nodes.

Combining (3), (4), and (5), the station can estimatefrom

. . : The greatest difficulty with estimating, (¢) is that from the
the pair of busy-idle signals.

busy-idle signals, the station can only directly determtime
The probability that a packet sent by the station avoids ametwork behavior while it is not sending. This is becausemwhe
SC1 is the probability that no hidden nodes send during théhe node itself is sending3(t) = [1,1] regardless of what
station’s packet. This probability is given §y — 7,)*, where  the hidden nodes are doing, since the AP and station both
L is the effective length of the packet for the hidden nodes, hear the station’s transmission. In order to estim&tg,
that is the number of opportunities the hidden nodes have tthe station needs to estimatg(t) while it is sending. We
send during the successful transmission of the packet. approximate this value as a constant which we denote;by
Similarly, we denote by-¢l¢ the average value af, () while
1the medium is idle at both the AP and the station. This value
é's straightforward to observe from the busy-idle signals as

(7)

This is strongly related to the notion efrtual dots in [6].
In [6], Bianchi shows that a single collision domain 802.1
network with saturated traffic can be thought of as operatin
in discrete time where the ‘virtual’ time slots are of vat@b Lidle _ > {BI(t—1)=[0,0],BI(t) =[0,1]}
length, i.e. either a short slot which is the length of a béicko o T >, BI(t) =[0,0]

slot when no one is sending, or a long slot which is the length L
of a full transmission, ACK, and inter-frame spacing when aAS seen shor_tly, °”r.appr°§}§£‘ for estimating anq hence
node sends a packet. In our scenario, there are two separa@éol’ IS to fII’S.t estimater; ¢, and t.her*1 scale it by an
collision domains, each with independent notions of virtua appropriate scaling factof > 1 to obtainTy.

time. The station’s transmission will have a length of oneThe primary factor which causes to be greater tham/®'* is
virtual slot in its own collision domain, but will last for me  what we call the silencing of competing nodes. An example of
virtual slots in the other collision domain. this is shown in Fig. 1 where the circles around nodes A and
B represent their respective sensing/sensed ranges. We defi
the sensing range of node A as range of nodes which A can

the length of its transmission — including inter-frame spgc .
and ACK — divided by length of a backoff slot, since in order S€NSE, and the sensed range as the range of nodes which can
y ense node A. For simplicity, in this discussion we assume

for the transmission to be successful, all hidden nodes mu% . q d t0 be th If node A i
remain silent, making all the virtual slots short backofitsl € sensing and sensed ranges to be the same. It node A 1

: ; sending, nodes C and D are silenced, since they can sense
Thus the station can easily compuh@gfl as A. Therefore, the only nodes that can transmit are thoseen th
Psci=1-(1-m)" (6)  shaded region. As a result, node B experiences less coiopetit
for the channel when A is sending than when A is not sending,
since in the latter case B has to compete with all nodes within

In this simple scenario, the station can compltéocally as

In a more general network topology with multiple AP’s not
hearing everything, and unconstrained node locationsgthe )
are multiple hidden nodes which hear different subsets ef th!ts sensing range.

other nodes, making the problem more difficult. There is ndWe now elaborate on this process for a given hidden nodes B
longer a single number, which characterizes the behavior of as shown in Fig. 1. To begin with, assuming a sufficientlydarg
all the nodes of interest, nor is there a singléor all of these  number of nodes spaced uniformly at random, the number of
nodes. Further, the presence of nodes which are heard by batlodes competing with node B for the channel roughly scales



C2. Non-uniformity of L

The other key parameter used for the estimationPgf; is
the effective length of the packet for the hidden nodgs,
Recall that for a hidden node with respect to the station,
the effective lengthL of a packet sent by the station is the
number of opportunities for the hidden node to interrupt it,
or equivalently, the number of virtual slots that elapsetfer
hidden node during the transmission of the station’s packet
Fig. 2. The silencing of hidden nodes: If node G starts sepdwdes B |f there are no nodes which are sensed by the hidden nodes
through D are silenced and cannot cause a SC1 with A. Eftdgtithey but not by the AP.L would straightforward to compute as
observe a shorter packet, in virtual slots, than nodes E and F . ! .

eEg\entloned above. However, in an actual network, there may

with the area within B's sensing range for which the chann e nodes exposed to the hidden nodes which are not sensed
y the AP, but which silence some of the hidden nodes for a

iE)eriod of time; this gives these hidden nodes less oppdiggni

Wf'th‘ Plétt'%g thelse t_ogethelr, wgtrcl:(:rr:clude that th%s_tep(ht@h_r hto interrupt the packet sent by the station, making L eféedyi
ot anode b scales Inversely wi € area around ILTor WhIChL, o for those hidden nodes. An example of this is shown
the channel is clear. The crescent-shaped shaded region

Fig. 1 4s 1o th » f node B’ : i Fig. 2 where the circles around nodes A and G represent

'g. - corresponds 1o the portion of node BS Sensing rangg, range for which they can be sensed, and the circle around
for Wh'Ch.the channel is potentlally cle_a_r while the §tat@n the AP represents its interference range. The shaded region
IS transml_ttmg. When A is not transmitting, the en_tlre tarc denotes the region of hidden nodes with respect to the statio
around B is p_otentlally clear. Lat(d;) denote the ratio of the A, namely nodes B through F, which are within the interfeeenc
area of the circle arouné to the area of the shaded region, range of the AP yet outside the sensed range of A. If node G
which is a function ofdg, the distance between A and B.

Then th te at which node B ds whil de A di starts sending, hidden nodes B, C, and D are silenced, aad thu

_nen ebre.l € at which node b sends whiie hode A 1S sen In%xperience fewer transmission opportunities than expeee

'S given by: 5 =78 R(dR) (8) by hidden nodes E a_md F, making As packet effectively sh10r_te

whereridle denotes the rate at which nodesends when the for t.hose nodes. It.|s usefu_l to th|.nk of each node as having
a different perception of virtual time. In this example, the

station 4 is not sending. transmission of node G causes nodes B, C, and D to freeze the
A similar effect occurs for each of the hidden nodes withyirtual time in one long slot while virtual time continues to

respect to the station. Thereforg), the average probability elapse in many short slots for nodes E and F. Thus, depending
that a hidden node sends in a given virtual slot while théstat on the position and activity of exposed nodes such as G, there

is sending, is given by: is a time- and space-varying scaling between effect packet
= Z ridle R(d;) ~ ridle R 9) length and real-time packet length at the hidden nodes.
i€H For the station, A, the probability that a given hidden node,
where’ is the set of hidden nodes to the station A, dads B, causes an SC1 can be expressed as
the average oRR(d) over all these nodes. Pé?l =1—(1-75)ke® (10)

The approximation in Eq. (9) assumes that there are no hidden

nodes with significantly different distances and sendirtgsra where/ IS the length of the packet in real time, aﬂ_ i;(.l) 'S
’ . oo the effective length of the packet sent by the station iruirt
from the others, as this would potentially necessitateirsgal

one portion of the total transmission probability by a diczdly slots as observed by nodg The difficulty in directly applying

different value. In practice, this is a reasonable asswmpti Eq. (10) is that virtual time,L(l), does not necessarily

X . : progress linearly with real time]. If this were the case,
since due to the geometry constraints, hidden nodes have dtting Per: versusl would vield an exponential accordin
limited range of possible distances from the station. Speci P g 7sc1 y P 9

cally, they must be far enough to not sense the station, beécl to Eq. (10). Through NS-2 simulation, we have empirically

enough to interfere at the AP. Since the station must be mvithiShown this not to be the case.

about half of an interference range from the AP, the adniissib Specifically, Fig. 3 shows a plot of an example cumulative

region for hidden nodes with respect to the station is tyjsica histogram of the “real” timel, between the start of the station’s

a slim, crescent-shaped region, similar to the shadedmégio packet and the start of the next packet sent by any of its

Fig. 2. hidden nodes. To obtain this plot we run NS-2 simulations for

a network with 7 APs at fixed locations covering hexagonal

cells, and 50 nodes placed at random according to a spatial
: X I isson process. We fix the modulation rate of all nodes to 11

results in this paper, we assume that nodes are distribut

according to a spatial poisson process. Depending on t bps and send packets of maximum length for 802.11b, i.e. 2
raing 1c P bo P : P ng, hkeB or 161Qus. For each instant the station starts a transmission,
application, it may be possible to have some other disiobuyt

but regardlessR can be pre-computed and stored. we record the time until its next hidden node starts to transm

Since R is unknown, the station must estimate it as the
expectation ofR(d) taken over the distribution of. For the



similar to G in Fig. 2 starts sending when the station, A,
is sending.

04f e 2) If the station begins its transmission when node B observe
— == the channel as busy, then it is equally likely that the statio

1 has started its transmission at any time during the long; bus

0.5

0.3r

|
|
02) ; | slot. In this case[ g is initially constant, and eventually
y | increases rapidly when the current busy slot expires and
| jrical | | . . .. .
o1r hb%k I idle slots resume. However, since this increase is equally
| I

likely to happen at any time, averaging over all of these

L
cases yields the same average valé&” for all I.

. . . . . . . |
0 200 400 600 800 1000 1200 1400 1600

Fig. 3. Plot of the cumulative histogram of the real tiniein us between

the start of the station’s packet and the start of the nexkgiagent by any of Combining the above two cases, we conclude that the random
its hidden nodes. function L)

. . - o~ has a higher expected value for smathan
Fig. 3 is an example cumulative histogram of these values fof,; arge 1. “The actual value of this expectation depends on
a particular station.

how often the channel is busy on average at the hidden node
The significance of Fig. 3 is that the duration of the packetB, because this gives the weighting of the two cases as well as
sent by the station in real timé, can be used as the value on the actual value of each. A reasonable proxy for how often the
the horizontal axis in order to look uPsc; for the station on  channel is busy at the hidden node B is the proportion of time
the vertical axis from the shown empirical curve. In patdey  the busy-idle signal at the AP is busy, denoted B{B4p).

Psc1 is the probability that the next packet sent by any of This quantity can be readily computed at the station, as the
the station’s hidden nodes arrives before timéur overall mean ofBIsp.

approach to computingsc is for the station to use the busy- the empirical curve of Fig. 3 shows the aggregate effect of
idle signals at the station and _AP to estimate this curve, ang;; ag_glg) for all hidden nodes for the station. Specifically,
then to Iook_upPSCl based on |_ts pac_ket Ie_ngth_. Specifically, taking all hidden nodes into consideration, Eq. (11) can be
we model this curve as a two-piece piecewise linear curve angpproximated as

estimate the slopes using the busy-idle signals.

0 OL(l
For a single hidden node, B, the slope of the curve in Fig. 3 EPSCI ~ —[In(1 - 77;)](1 - TZ)L(”% (12)
can be estimated as the derivative -1 with respect tol
in Eq. (10), where L(l) denotes the average length of station’s packet in
5 OLp(1) virtual slots as observed by all the hidden nodes. Similar to
aPéjg)l = —[In(1 —75)](1 - rg)LB(”TBZ, a1) 2220 we expect?sY and hence? Psc: to have a higher
expected value for smallthan for largd. This is in agreement
The key issue is that the rate at V\(/r)lich virtual time elapsesvith the shape of the empirical curve in Fig. 3.
. . . oL p(l .
with respect to real timg, i.e. =5, is a not constant. Based on the above analysis, which predi@g@ to have

This is be(_:ause .Of the nature of the virtual slqt _Iengths. In, higher value for small than for largel, it is reasonable
essence, virtual time can be thought of as consisting of ma approximate the empirical curve in Fig. 3 with a 2-piece

consecutive short, idle, slots together with isolated |dngy, piecewise linear function, with a steeper initial slope for

slots. I < lpreak, @and a less steep slope for> ly..q.r. We have
It is useful to think ofaLa—Bl(l) as a random function of To empirically foundiy,..x = 400us to result in fairly accurate
compute the expectation CQ‘L(;%U), we split the realizations estimates of the curve in Fig. 3 in NS-2 simulations of 80B.11
into two cases, depending on the state of the channel awetworks. Future work involves investigating ways for the

observed by node B when the station begins its transmissiorstation to estimate the break point based on local and AP

. L . statistics.
1) If the station begins its transmission when node B observe

the channel as idle, then for small aLé(l) is relatively Having fixedlbmak,.the piecewise linear Tunction in Fig. 3 is
large, namely(1 virtual slot)/(length of backof f slot). completely determined by 2 parameters: the slopéfari <

This is because node B is observing idle backofflbreaks denoted bymy, and the slope fOty.car <1 < lmaa,
slots and hasLz(l) = 1 opportunity to trans- denoted byms. To estimatePs¢1, the station must somehow

mit per | = length of backoff slot seconds estimate these slopes from the busy-idle signals avaitalitee
For larger I, eventually a silencingt node. such as Gstation. Obtaining a reasonable approximation for therenti
: : ' : o) curve, rather than for one value dPscy, has the added
m E|g. 2, starts to ftransmit, decreasingz; -~ to advantage of allowing the station to determine the seritsitiv
(1 virtual slot)/(length of average busy slot). This is g€ 9 1

of Pgc1 with respect to packet length from the slope of the

because for nod® only Lp(l) = 1 virtual slot elapses g ;
duringl = length of busy slot seconds. Lety,cqs, Show curve in Fig. 3. In general, the smaller the slope is at theettir

in Fig. 3 denote the expected time at which this decreasBaCket length, the less sensitifc is to packet length.
occurs, i.e. the expected amount of time before a nod®ather than estimatingn,, we opt to estimaten,.,q, the




average slope over the entire range ,ofis TABLE Il
SAMPLE VALUES OF @’SAND 'S

(mllbreak + mQZmaw - lbreak)

Mavg = (13) range of P(Bap) | ao a1 Bo B1
' lmaz .75-.8 0 5e-2 0 | 191e2
: . 8-85 0 5e-2 0 | 1.78e2
wherel,,.. is the length of the longest possible packet the 85-.88 TeZd | Se2 | Ted | 10962
station can send, i.e. 2KB in our examplez can easily be .88-9 le-4| 5e-2 | le-4] 1.30e-2
Computed frornrnl and maug- .9-.92 2e-4 | 3.96e-2| 2e-4 | 9.48e-3
.92-.94 3e-4 | 3.23e-2| 2e-4 | 8.10e-3
We have empirically found a reasonable model for the initial .94-.96 6e-4 | 2.41e-2 | 3e-4 | 4.75e-3
slope to be .96-.98 Oe-4 | 2.00e-2 | 4e-4 | 2.17e-3

_ N ffect is negligible, but for higher traffic networks withrdger

= ao(P(Bap)) — a1(P(Bap))In(1 — 1 € .

m1 = ao(P(Bap)) = ar(P(Bap)) In( i) (14) values of P(B4p) this becomes more pronounced. Thus

and for the average slope to be and 3, should increase withP(B4p) as verified shortly via
Mavg = Bo(P(Bap)) — B1(P(Bap))In(l —77).  (15)  simulations shown in Table Il of Section IV-C4.

ao, a1, fo, and 3, are functions ofP(B4p), and are looked &* Estimating ao, a1, fo, and _ ,
up from a table by the station. The first terms in Egs. (14)" 9eneral, computing closed-form analytical expressitms
and (15), i.eao and 3, are independent of’, are absentin 0. @1, o, and 5, as functions ofP(B4p) is a non-trivial

Eq. (12), and are discussed in detail in Section IV-C3. task. Instead, we pre-compute them for various ranges of
) P(Byp) via regression from simulation data using the the
From Eg. (12)82('?)‘1 Fig. 3p1 and 5, are the average values Ng.-2 simulation package, which we have modified to collect
of (1 — )" =52 for | < lprear ANL < linaz, reSpectively.  the busy-idle signal at the AP and nodes as well as record the
As noted earlier?2. depends or(B,p). Similarly, it can  fate of each packet — DC, SC1, SC2, or no collision. We use
be argued thaf1l — 7;;)“() depends onP(B,p). This is  the topology described in Section IV-A, with all nodes sei
becauser; is the average sending rate of the hidden nodespoisson application layer traffic at a fixed rate, which \arie
and L(l) depends on the sending rate of the hidden nod@ver different simulations. We use 13 different rates, magg
neighbors. Putting these together, we conclude that thetigyia from 2 kB/s to 120 kB/s, and repeat each rate 5 times with
(1- T;)L<l>ag—§”, and thusa; and 3, are also dependent on different random topologies. From each of the 65 trials, we
P(Bap). collect the measured data, namely the busy-idle waveform, a
When the average network trafficP(Bap), is low, the center AP and all the nodes in its cell. We also record

nearly all hidden nodes experience idle channel condithe empirical cumulative histograms for each station, the.

tions when the station begins to send. Thidse® _ solid curve in Fig. 3 to use as ground-truth. We then choose
(1 virtual slot)/(length of idle slot) for small l.mln this @ random subset of the over 400 stations from the 65 trials to
case, it is also likely thatr: is small, so (1 — T;)L(l) be used for training data. We optimize; andms for each

= 1 for small l. Therefore, for smallP(Bap), a1, which station to achieve the minimum squared distance between the
corresponds to small, i.e. | < lyear, iS given by 2-line approximation and the empirical curve. For each ef th
L e reak

(1 wirtual slot)/(length of backoff slot). As P(Bap) training stat|lons, we use the optimal; and my, as well as
increases, there are more long, busy slots, causing (Hoth thg local estimates dfi(1 _.T;) to perform a Illjear regression
T;)L(l) and aLa—El)* and thusa, to decrease. Similarlyd, de- using Egs. (14) and (15) in order to determine the values of
creases with increasing(B.4 ) due to a similar phenomenon. @0: @1 o, andf. In practice, nodes store a table of values
These observations are verified shortly via simulationsvsho 07 @. @1, o, and 3, and look them up the based on the
in Table Il of Section IV-C4. observedP(Bap).

An example portion of this table is shown in Table Il. As

C3. Coupling of transmission times ) )
expectedo; and3; decrease withP(B4p) while g and Gy

We now justify the existence afy and 3y in Egs. (14) and . g
(15). They are related to a phenomenon which we call thdCr¢aseé with it. Also, fol?(B4P) < 0.9, ay =1/(20ps) N
coupling of transmission times. When an intermediate nodé! virtual Sloﬂ/(le?}gth of backof f slot). Sinceln(1 —77)
such as node C or D in Fig. 1 is sending, it silences botHS ON the order o_ﬂO » all the terms in Egs. (14) and (15) are
nodes A and B. As a result, while nodes A and B would®f comparable size.

have transmitted independently in the absence of intemteedi Fig. 4 shows the resulting average normalized error in the
nodes, in the presence of such a node, both of their availablestimate of the curve in Fig. 3, defined a&gstimate —
transmission times are reduced to times when nodes C and gymrirical) /yempirical| “for two bins of values ofP(BI4p),

are silent. This increases the number of staggered caitisio namely 0.6 to 0.7 and 0.92 to 0.94. The averaging is done
between nodes A and B because they are more likely to sermler multiple stations in multiple topologies with similarean
around the same time. The amount by which this increaseglues of BI4p. As seen, the estimation accuracy improves
the Psc1 is dependent on how often nodes such as C owith packet length. The performance for lengths shorten tha
D are sending. We have empirically found(Bsp) to be  200us is unimportant, since this is below the minimum packet
a reasonable proxy for this. For lower-traffic networkssthi length including inter-frame spacing for 802.11b. For leng
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Having estimated the probabilities of each type of colhisio
we can now combine them to find the tofa} using Eq. (1).

V. SIMULATION RESULTS

To verify the above analysis, we use the NS-2 simulatio
package, which we have modified as described above. We pc
process the busy-idle signals generated by NS in MATLAB t
arrive at estimates of the various collision probabilitigge
repeat the 65 trials of Section IV-C4 with different randon
seeds. Each run lasts 30 seconds. The estimates are comp
using the busy-idle signals from the first 10 seconds, whil
ground truth is obtained by empirically counting the numbe
of packets incurring each fate over the full 30 seconds.

Fig. 5(a) shows a cumulative histogram of the absolute err
in estimatingP¢ for three different values oP(B4p). Data
for other traffic levels is not shown, but performance is &Emi
Figs. 5(b)-(d) show the error in each componenfpffor the
same three traffic levels. As seeRgc2 has a consistently
small error. Due the way collisions are counted, SC2s a
the dominant type of collision for higher traffic scenarios
making precise estimation aPpc and Psc; more difficult
and less important as medh{4 p) increases. In particular, for
P(BIsp) > 0.9, Psco is almost 1, and there is not a sufficient
number of packets which are not classified as SC2s for ev
the empirical count ofPp or Pg¢1 used as ground truth to
be accurate. It can be seen that while the error in estimatii
Ppe and Pscy grows as traffic increases, the total error ir
Pc does not. In general, 90% of the time, the estimate is
within 20%, and 50% of the time, it is within 10%.

V1. CONCLUSION AND FUTURE WORK

In this paper, we have presented a classification of the typ
of collisions that occur in WLANS, and proposed a methot
for accurately estimating them locally at any node via steari
spatial information about network traffic. Future work indés
implementation and verification using actual hardware a§ we
as development of algorithms that use this additional mfor
tion to improve throughput through intelligent adaptatiofn
parameters such as modulation rate, packet length, FE&rcar
sense threshold, contention window, and transmit power.
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Fig. 5. Cumulative histogram of the estimation errors inXa) (b)Psc2,
(c)Ppc, and (dPsc1 for three traffic levels.



