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Abstract—In this work, we prove that a positive secure degree
of freedom is achievable for a large class of Gaussian channels
as long as the channel is not degraded and the channel is fully
connected. This class includes the MAC wire-tap channel, the 2-
user interference channel with confidential messages, the 2-user
interference channel with an external eavesdropper. Best known
achievable schemes to date for these channels use Gaussian
signaling. In this work, we show that structured codes outperform
Gaussian random codes at high SNR when channel gains are real
numbers.

I. I NTRODUCTION

Information theoretic security, originally proposed by Shan-
non [1], seeks the fundamental limits of reliable transmis-
sion rates when the messages must be kept secret from a
computation-power unlimited adversary whose observationof
the transmitted signals contain some uncertainty. By now, it is
well known that introducing interference into the channel in a
proper manner may increase the uncertainty observed by the
adversary and hence allow for a higher rate of secret messages
[2]–[4]. The interference should be introduced in a way such
that it is more harmful to the adversary than it is to the intended
receiver of the messages. Hence, the key is to achieve a fine
balance between secrecy against the adversary and the level
of harmful interference to the system.

For these channel models, the achieved rate obtained so
far is far from the outer bounds. For example, the genie
outer bound from [4] increases with powerP at the speed of
0.5 log2(P ) [5, (69)]. The achievable secrecy rate converges
to a constant whenP goes to∞ [4, Theorem 2]. This means
the gap between the achievable rate and the outer bound is
unbounded and the trade-off between secrecy and interference
is still not well-understood. In fact, once the channel model is
such that the intended receiver is not harmed by the introduced
interference, the achieved secrecy rate immediately comes
within 0.5 bits/channel use of the capacity region, as was
shown for the one sided interference channel in [6] and the
orthogonal MAC wire-tap channel in [7].

In this work, we consider the more general case where
introducing interference will both confuse the eavesdropper
and harm the intended receiver simultaneously. We show,

for a large class of Gaussian channels with confidential
messages where introducing interference effect both the in-
tended receiver and the eavesdropper, that signaling using
structured codes can out-perform signaling with i.i.d. Gaussian
codebooks in high SNR. This class includes the Gaussian
MAC-wiretap channel [2], the Gaussian interference channel
with confidential messages [3] and the Gaussian interference
channel with an external eavesdropper [7]. It has been a
folk conjecture that the achievable rate regions with Gaussian
codebooks in these works were likely optimal and efforts [4],
[5], [7] have been made to find outer bounds to prove this. A
direct consequence of the result we report in this paper is that
this is not so.

This insight comes from studying the secure degree of
freedom of the interference assisted wire-tap channel [4],
which falls under the three channels mentioned above when
only one source node has confidential message to send. As
mentioned before, reference [4] shows that the achieved rate
using Gaussian codebooks converges to a constant as power
increase, which implies the obtained secure degree of freedom
for this channel is0. In contrast, we find that a positive degree
of freedom is actually achievable for all channel gains as long
as the channel is not degraded. The key to getting this result
is the use of different types of structured codes for appropriate
channel gains rather than Gaussian signaling.

We note that a positive secure degree of freedom is known
to be achievable for the fading channel [8], which requires
coding over different fading states and hence does not imply
the result here.

The result here provides another example that structured
codes are useful in proving information theoretic results.A list
of examples that structured codes outperform simple random
coding arguments in non-secrecy problems can be found in [9].
Using structured code in secrecy problems was first proposed
by the authors in [10]. Up to date structured codes are found
to be useful for relay channels due to the possibility of
compute-and-forward [9], [10], or for interference channels
with more than two users due to the possibility of interference
alignment [11]–[13]. The result here provides the first example
that structured codes are indeed useful for two user Gaussian
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Fig. 1. Interference-assisted Wire-tap Channel

channels as well.

II. SYSTEM MODEL

Consider the Gaussian interference-assisted wire-tap chan-
nel [4] shown in Figure 1. In this model, nodeS1 sends a secret
messageW1 via X̃1 to nodeD1, which must be kept secret
from nodeD2. We assume the channel is fully connected,
which means that no link’s channel gain equals zero. This
assumption is obviously valid for a wireless medium. Then
after normalizing the channel gains of the two intended links
to 1, the received signals at the two receiving nodeD1 and
D2 can be expressed as

Ỹ1 = X̃1 +
√
aX2 + Z1

Y2 =
√
bX̃1 ±X2 + Z2

(1)

whereZi, i = 1, 2 is a zero-mean Gaussian random variable
with unit variance. For now, we assume

√
a and

√
b are real

numbers. The case with complex numbers will be briefly
explained in Section II-B.

SinceW1 must be kept secret fromD2, we require

lim
n→∞

1

n
H (W1) = lim

n→∞
1

n
H (W1|Y n2 ) (2)

The achieved secrecy rateRe is defined aslimn→∞
1

nH (W1)
such that the condition (2) is fulfilled andW1 can be reliably
received byD1.

Let X1 =
√
bX̃1 andY1 =

√
bỸ1. Then from (1), we have

Y1 = X1 +
√
abX2 +

√
bZ1

Y2 = X1 ±X2 + Z2

(3)

In the sequel, we will focus on this scaled model instead, as
we find it more convenient to use it to explain our results.

Let the average power constraint of nodeSi on Xi be P̄i.
The secure degree of freedom of the secrecy rate is defined as

lim sup
P̄i→∞,i=1,2

Re

1

2
log2

(

2
∑

i=1

P̄i

) (4)

It is clear that the secure degree does not change, whether the
model is described via (1) or (3).

A. Relationship with Other Channels

The significance of the interference-assisted wiretap channel
is that it can be considered as a special case of a large class of
channel models with confidential messages, as shown below:

1) If nodeS2 has a confidential messageW2 for D1, which
must be kept secret fromD2, then the channel is the
MAC-wiretap channel considered in [2].
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Fig. 2. Interference-assisted Wire-tap Channel as a Special Case of the
Interference Channel with an External Eavesdropper

2) If node S2 has a confidential messageW2 for D2,
and the message must be kept secret fromD1, then
the channel is the interference channel with confidential
message considered in [3].

3) As shown in Figure 2, we can add another receiving
nodeD0 to Figure 1, to which nodeS2 wants to sent a
confidential messageW2. AgainW2 must be kept secret
from D2. Then the channel becomes the interference
channel with an external eavesdropper considered in [7,
Section VI].

Hence, any secrecy rate achieved in the the interference-
assisted wire-tap channel is an achievableindividual rate for
all the three multi-user channels mentioned above.

Remark 1: The results here also strengthen a result the
authors derived previously for theK-user interference channel
with confidential messages, whereK ≥ 3 [11]. In [11], it is
not known if, for sum secrecy rate, a positive secure degree of
freedom is achievable forarbitrary channel gains. Since the
interference-assisted wire-tap channel is also a special case of
theK-user channel, we see the answer to this question is yes
unless the channel is degraded for any pair of theK users.

B. Complex Channel Gains

More general than the channel with real channel gains is
the channel with complex channel gains. The reason that we
focus on the real case in the sequel is that the complex case
is actually easier in terms of achieving positive secure degree
of freedom, as explained below.

Since the channel is fully connected, after normalization of
the channel gains and variable substitution, the received signals
at nodesD1 andD2 can be expressed as [14]:

Y1 = X1 +
√
abejψX2 +

√
bZ1

Y2 = X1 +X2 + Z2

(5)

whereZi, i = 1, 2 are rotational invariant complex Gaussian
random variables with unit variance. Then we have:

Theorem 1: A secure degree of freedom of1 is achievable
if ψ 6= 0 or π mod 2π.

Proof Outline: Let ImXi = 0, i = 1, 2. Let cotx =
cosx/ sinx. Then sinceImY2 = ImZ2, ImY2 does not provide
any information aboutW1 to the eavesdropper. Hence we
can assume the eavesdropper receivesReY2 only. NodeD1

computesg(Y1) = ReY1 − cotψImY1. Then the channel can



be expressed as

g(Y1) = ReX1 +
√
b (ReZ1 − cotψImZ1)

ReY2 = ReX1 +ReX2 +ReZ2

(6)

The channel then becomes an one-sided interference channel.
By transmitting a i.i.d Gaussian noise viaReX2, the channel
is equivalent to a Gaussian wire-tap channel. It is known that
the following secrecy rate is achievable [15]:

C

(

P1

(b csc2 ψ)/2

)

− C

(

P1

P2 + 1/2

)

(7)

where C(x) = 1

2
log2(1 + x). Pi is the average power

constraint onXi. Hence a secure degree of freedom of1 is
achievable for this channel.

C. Gaussian Signaling

In [4], an achievable rate is derived with Gaussian code-
books and power control. One implication of this achievable
rate is the high SNR behavior as described by Theorem 2
therein. We re-state this result below:

Theorem 2: With Gaussian codebooks, the achievable se-
crecy rateR1 converges to a constant when the power con-
straint of nodeD1 andD2 goes to∞.
This means the achieved secure degree of freedom by the
coding scheme in [4] is0.

III. T HE ACHIEVABLE SCHEME

A. Results on Structured Codes

1) Nested Lattice: A nested lattice code is defined as an
intersection ofN -dimensional fine latticeΛ and the fundamen-
tal region of anN -dimensional “coarse” latticeΛc, denoted
by V(Λc). We require thatΛc ⊂ Λ. Let uNi be uniformly
distributed overΛ ∩ V(Λc). Let the dithering noisedNi be
a continuous random vector which is uniformly distributed
overV(Λc). Define modulus operation such thatx mod Λc =
x − argminu∈Λc

‖x− u‖. Then the values ofXi over N
channel uses are computed as

XN
i = (uNi + dNi ) mod Λc (8)

uNi , d
N
i , i = 1, 2 are independent. We also assumedNi , i = 1, 2

are known by all receiving nodes. Hence they are not used to
enhance secrecy.

As will be shown later, we are interested in lower-bounding
the expressionI(uN1 ;XN

1 ±XN
2 , d

N
1 , d

N
2 ), which corresponds

to the rate of information leaked to the eavesdropper. To do
that, we need the following result. Its proof follows from the
representation theorem introduced in [10] and is given in [14].

Theorem 3: There exists an random integerT , such that
1 ≤ T ≤ 2N , andXN

1 ± XN
2 is uniquely determined by

{T,XN
1 ±XN

2 mod Λc}.
Using Theorem 3, we have

I(uN1 ;XN
1 ±XN

2 , d
N
1 , d

N
2 )

=I(uN1 ;XN
1 ±XN

2 mod Λc, T, d
N
1 , d

N
2 ) (9)

≤I(uN1 ;XN
1 ±XN

2 mod Λc, d
N
1 , d

N
2 ) +H(T ) (10)

=I(uN1 ;uN1 ± uN2 mod Λc) +H(T ) (11)

=H(T ) ≤ N (12)

This means at mostN bit per channel use is leaked to the
eavesdropper overN channel uses.

2) Integer Lattice: An integer lattice code with parameter
Q is composed of points in the set[0, Q)∩ Z whereZ is the
set of all integers. As will be shown later, in this case, the rate
of information leaked to the eavesdropper is given byf(Q)
defined as:

f(Q) = I(X1;X1 ±X2) (13)

whereXi, i = 1, 2 is uniformly distributed over[0, Q) ∩ Z.
f(Q) can be lower bounded by the following lemma:

Lemma 1: For a positive integerQ,

f(Q) ≤ 1

2
log2(2πe(

1

6
− 1

12Q2
)) <

1

2
log2(

πe

3
) < 0.8 (14)

The proof follows from [13, Lemma 12] and is given in [14].
We next use these results to derive achievable secure degree

of freedom for the interference assisted wire-tap channel.

B. When
√
ab is algebraic irrational

Theorem 4: A secure degree of freedom of1/2 is achiev-
able when

√
ab is an algebraic irrational number.

Proof: We use the lattice codebook used in [13, Theorem
1]. Let ΛP,ε be the scalar lattice defined as:

ΛP,ε =
{

x : x = P 1/4+εz, z ∈ Z

}

(15)

The codebookCP,ε is given by:

CP,ε = ΛP,ε ∩
[

−
√
P ,

√
P
]

(16)

whereP = min{P̄1, P̄2}. It then can be verified that, for large
enoughP , we have

log2 |CP,ε| ≥ log2

(

2P 1/4−ε − 1
)

≥ log2

(

P 1/4−ε
)

(17)

The codebook is used for both nodeS1 and nodeS2. The
codeword transmitted by nodeS1 is chosen based on the secret
messageW1. The codeword transmitted by nodeS2 is chosen
independently according to a uniform distribution.

Since the input fromS2 is i.i.d., the channel is then
equivalent to a memoryless wire-tap channel [16]. According
to [16], any secrecy rateR such that

R < I (X1;Y1)− I (X1;Y2) (18)

is achievable. Hence we need to find a lower bound to the
right hand side of (18).

According to [13, Theorem 1],p(X1) is chosen to be a
uniform distribution overCP,ε. Under this input distribution,
following a similar derivation to [13, Theorem 1], it can be
shown that whenP > 1

α2β2 , we have

I (X1;Y1) ≥
(

1− 2 exp

(

−P
2ε

8b

))

log2 (|CP,ε|)− 1 (19)



For I (X1;Y2), we have

I (X1;Y2) ≤ I (X1;Y2, Z2) = I (X1;X1 ±X2) ≤ 0.8 (20)

where (20) follows from Lemma 1. Using (19) (20), and (17),
we find (18) is lower bounded by

(

1− 2 exp

(

−P
2ε

8b

))(

1

4
− ε

)

log2 (P )− 1.8 (21)

for sufficiently largeP . From (17), ε can take any value
between(0, 1/4). Hence we have completed the proof.

Remark 2: When
√
ab = 1 and all channel gains are

positive, the channel is degraded and from the outer bound
in [4], the secure degree of freedom is 0. Since algebraic
irrational numbers are dense on the real line, it follows that
the secure degree of freedom is discontinuous at

√
ab = 1.

The result in Section III-B only applies when
√
ab is

algebraic irrational, which is a set of measure0 on the real
line. In the sequel we consider the case where

√
ab is either

rational or transcendental.

C. When
√
ab ≥ 2 or 1/

√
ab ≥ 1/2

Here we use theQ-bit expansion scheme similar to the one
in [17]. LetQ =

√
ab if

√
ab ≥ 2. Otherwise, letQ = 1/

√
ab.

Let ⌊Q⌋ denote the largest integer≤ Q.
Theorem 5: The following secure degree of freedom is

achievable:

1

2

log2 ⌊Q⌋
log2Q

− f(⌊Q⌋)
2 log2Q

(22)

wheref(Q) is defined in (13). (22) is lower bounded by

1

2

log2 ⌊Q⌋
log2Q

−
log2

(

2πe
(

1

6

)

− 1

12⌊Q⌋2
)

4 log2 (Q)
(23)

ForQ = 2, (22) equals0.25.
Proof: We begin by considering the case when

√
ab ≥ 2.

Xk =
√

P0

M−1
∑

i=0

ak,iQ
2i, k = 1, 2 (24)

whereP0 is a constant scaling factor.ak,i is uniformly dis-
tributed over[0, ⌊Q⌋−1]∩Z, henceak,i is uniquely determined
by Xk.

The signal received by nodeD1 is given by

Y1 =
√

P0(

M−1
∑

i=0

a1,iQ
2i +

M−1
∑

i=0

a2,iQ
2i+1) +

√
bZ1 (25)

We then derive a lower bound toI(X1;Y1)− I(X2;Y2) as
we did for Theorem 4.

Following a similar derivation to [13, Theorem 1], with
Fano’s inequality, it can be shown thatI(X1;Y1) is lower
bounded as:

I (X1;Y1) ≥
(

1− 2 exp

(

−P0

8b

))

H (X1)− 1 (26)
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Fig. 3. Secure degree of freedom

For I(X1;Y2), we have:

I(X1;Y2) ≤ I(X1;X1 ±X2) (27)

≤
M−1
∑

i=0

I(a1,i; a1,i ± a2,i) =Mf(⌊Q⌋) (28)

Therefore, the following secrecy rate is achievable

Re =M(1− 2 exp(−P0

8b
))(log2 ⌊Q⌋)− 1−Mf(⌊Q⌋)

(29)

It can be verified that the transmission power is given by:1

V ar [Xi] = P0

(

⌊Q⌋2 − 1

12

)

Q4M − 1

Q4 − 1
i = 1, 2 (30)

The secure degree of freedom is hence given by by:

lim
M→∞

((

1− 2 exp
(

−P0

8b

))

log2 ⌊Q⌋ − f(⌊Q⌋)
)

M
1

2
log2 (Q

4M )
(31)

=
1

2

(

1− 2 exp

(

−P0

8b

))

log2 ⌊Q⌋
log2Q

− f(⌊Q⌋)
2 log2 (Q)

(32)

which can be made arbitrarily close to (22) by choosing a
large enoughP0. (23) then follows from (22) via Lemma 1.

WhenQ = 2, it can be verified thatf(⌊Q⌋) = 0.5, and
(32) can be made to be arbitrarily close to1/4.

The case of1/
√
ab ≥ 2 can be proved in a similar fashion.

Details can be found in [14].
In Figure 3, we plot the secure degree of freedom achieved

by Theorem 5. We notice as
√
ab moves away from1, the

lower bound given by (23) becomes tighter, and the secure
degree of freedom converges to0.5.

Remark 3: A coding scheme similar to the one described
in this section can be constructed with a nested lattice code.
However, theprovable secure degree of freedom turns out to
be smaller [14].

1In case it is desired forXk to have zero mean, we can simply shiftXk

by a constant, which will not change the secrecy rate.



D. When
√
ab = 1

WhenY2 = X1 + X2 + Z2, the channel is degraded. The
secure degree of freedom is known to be0 [4]. When Y2 =
X1 −X2 + Z2, we have the following result:

Theorem 6: The secure degree of freedom of0.1095 is
achievable.

Proof outline: Here we letXk =
√
P0

M−1
∑

i=0

ak,iQ
i. Q =

2. The difference is thatak,i is not uniformly distributed over
{0, 1}. Instead we choose to pick its distribution to maximize

I(a1,i; a1,i + a2,i)− I(a1,i; a1,i − a2,i) (33)

which is about 0.1095 when Pr(a1,i = 1) = 0.1443,
Pr(a2,i = 1) = 0.8557. The theorem follows by deriving a
lower bound toI(X1;Y1)−I(X2;Y2). The details are provided
in [14].

E. When 1 <
√
ab < 2 or 1/2 <

√
ab < 1

Let
√
ab = p/q + γ/q, where p, q are coprime positive

integers, and−1 < γ < 1, γ 6= 0. In this case, the channel
can be expressed as:

qY1 = qX1 + (p+ γ)X2 + q
√
bZ1 (34)

Y2 = X1 ±X2 + Z2 (35)

Theorem 7: The following secure degree of freedom is
achievable when|γ| < 1/

√
2:

log2
(

1− γ2
)

− log2
(

γ2
)

− 1

log2 (f(γ))− 2 log2 (γ
2)

(36)

where

f(γ) = (1− γ2)(q2 + (p+ γ)2) + γ4 (37)

Proof: Here we use a layered coding scheme similar
to [11]. Let the signal send by userk, XN

k , be the sum of

codewords fromM layers:XN
k =

M
∑

i=1

XN
k,i, k = 1, 2. For the

ith layer, we use the nested lattice code described in Section
III-A1. Let Λi be the fine lattice andΛc,i be the coarse lattice
used in layeri. Hence the signalXN

k,i is computed as

XN
k,i =

(

uNk,i + dNk,i
)

mod Λc,i (38)

wheredNk,i is the dithering noise anduNk,i is the lattice point:

uNk,i ∈ V (Λc,i) ∩ Λi, k = 1, 2 (39)

DefineRi as the rate of the codebook for theith layer. Define
Pi as the average power per dimension of theith layer. At
layer i, nodeD1 first decodesquN1,i + puN2,i mod Λc,i, then
decodesuN2,i. The decoder first computes

Ŷi =[
(

quN1,i + puN2,i
)

+ γXN
2,i+

i−1
∑

t=1

(

qXN
1,t + (p+ γ)XN

2,t

)

+ q
√
bZN1 ] mod Λc,i (40)

DefineAi asAi =
i−1
∑

t=1

(

q2 + (p+ γ)
2
)

Pt+ q2b. In order for

nodeD1 to correctly decodequN1,i + puN2,i mod Λc,i from Ŷi,
we require [14]:

Ri ≤
1

2
log2

(

Pi
γ2Pi +Ai

)

(41)

NodeD1 is then left with the following:

[γXN
2,i +

i−1
∑

t=1

(

qXN
1,t + (p+ γ)XN

2,t

)

+ q
√
bZN1 ] mod Λc,i

(42)

As long as

Pi > γ2Pi +Ai (43)

(42) can be approximated with high probability [14] by the
following:

γXN
2,i +

i−1
∑

t=1

(

qXN
1,t + (p+ γ)XN

2,t

)

+ q
√
bZN1 (44)

Otherwise a decoding error is said to occur. NodeD1 then
computes:

[γuN2,i +

i−1
∑

t=1

(

qXN
1,t + (p+ γ)XN

2,t

)

+ q
√
bZN1 ] mod γΛc,i

(45)

In order for nodeD1 to decodeuN2,i from this signal correctly,
we require [14]:

Ri ≤
1

2
log2

(

γ2Pi
Ai

)

(46)

Then nodeD1 can recover the following signal from (44):

i−1
∑

t=1

(

qXN
1,t + (p+ γ)XN

2,t

)

+ q
√
bZN1 (47)

which will be fed to the decoder at lower layers.
Let the right hand side of (41) equal to the right hand side

of (46):

Pi
γ2Pi +Ai

=
γ2Pi
Ai

(48)

Then, we have:

Pi = α (αβ + 1)
i−1

q2b (49)

where α = 1−γ2

γ4 ,β = q2 + (p+ γ)2. Under this power
allocation,Ai is given by

Ai = (αβ + 1)i−1 q2b (50)

Ri follows from substituting (49) and (50) into (46):

Ri =
1

2
log2

(

1− γ2

γ2

)

(51)
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Fig. 4. Secure degree of freedom

(43) requires the term inside the log in (51) to be greater than
1. This means|γ| < 1√

2
. The total power ofDi is given by

M
∑

t=1

Pt =
(αβ + 1)

M − 1

β
q2b (52)

From (12), each layer leaks at mostN bit to the eavesdropper
overN channel uses. Hence the secrecy rateRe,i contributed
by layer i is related toRi asRe,i ≥ Ri − 1. Hence a secrecy
rate ofRe =

∑M
i=1

Ri −M is achievable. The secure degree
of freedom is therefore given by

lim
P→∞

Re
1

2
log2 P

= lim
M→∞

M
∑

i=1

Ri −M

1

2
log2 P

=

1

2
log2

(

1−γ2

γ2

)

− 1

1

2
log2 (αβ + 1)

(53)

which equals (36) in Theorem 7.
Remark 4: In Figure 4, we plot the achieved secure degree

of freedom by the nested lattice coding scheme in this section.
q ≤ 20 and p is chosen to be positive integers smaller than
and coprime withq. The figure shows that the secure degree
of freedom is positive when0.5 <

√
ab < 1 or 1 <

√
ab < 2.

This, along with the results in the previous sections, proves
that the secure degree of freedom is positive everywhere except
when the channel is degraded.

Remark 5: The scheme described in this section also ap-
plies to the case where

√
ab > 2 or

√
ab < 1/2. Plotted

with dashed lines in Figure 4 is the performance of the
integer lattice from previous section. Comparing it with the
performance of the scheme in this section, we find that neither
scheme dominates the other in performance.

Remark 6: It is possible to construct a coding scheme
similar to the one described in this section using an integer
lattice, which may yield a higher secure degree of freedom.
However, it is difficult to find a uniform description of such

code for allp andq. Hence, instead we use a nested lattice code
to prove that a positive secure degree of freedom is achievable.

IV. CONCLUSION

In this work, we have proved that a positive secure degree
of freedom is achievable for the fully connected interference
assisted wire-tap channel when the channel is not degraded.
As a consequence of this high SNR result, we are able to claim
that, in contrast to common belief, Gaussian signaling is not
optimal for a large class of two user Gaussian channels.

An added practical value of our result is that it implies that
the cooperation of just one node is sufficient to achieve an
arbitrarily large secrecy rate given enough power. Since large
scale cooperation involving multiple nodes is not essential,
this fact enhances the robustness of the network in an adverse
environment.
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