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Martin Lévesque and Halima Elbiaze
Department of Computer Science
Université du Québec à Montréal
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Abstract—Burst contention is a well-known challenging problem in Op-
tical Burst Switching (OBS) networks. Contention resolution approaches
are always reactive and attempt to minimize the BLR based on local
information available at the core node. On the other hand, a proactive
approach that avoids burst losses before they occur is desirable. To reduce
the probability of burst contention, a more robust routing algorithm
than the shortest path is needed. This paper proposes a new routing
mechanism for JET-based OBS networks, called Graphical Probabilistic
Routing Model (GPRM) that selects less utilized links, on a hop-by-hop
basis by using a bayesian network. We assume no wavelength conversion
and no buffering to be available at the core nodes of the OBS network. We
simulate the proposed approach under dynamic load to demonstrate that
it reduces the Burst Loss Ratio (BLR) compared to static approaches by
using Network Simulator 2 (ns-2) on NSFnet network topology and with
realistic traffic matrix. Simulation results clearly show that the proposed
approach outperforms static approaches in terms of BLR.

I. INTRODUCTION

Optical Burst Switching (OBS) [1], [2], [3] is a promising technol-
ogy to handling bursty and dynamic Internet Protocol traffic in optical
networks effectively. In OBS networks, user data (IP for example) is
assembled as a huge segment called a data burst which is sent using
one-way resource reservation. The burst is preceded in time by a
control packet, called Burst Header Packet (BHP), which is sent on
a separate control wavelength and requests resource allocation at each
switch. When the control packet arrives at a switch, the capacity is
reserved in the cross-connect for the burst. If the needed capacity can
be reserved at a given time, the burst can then pass through the cross-
connect without the need of buffering or processing in the electronic
domain.

Since data bursts and control packets are sent out without waiting
for an acknowledgment, the burst could be dropped due to resource
contention or to insufficient offset time if the burst catches up the
control packet. Thus, it is clear that burst contention resolution
approaches play an essential role to reduce the BLR in OBS networks
[4].

Burst contention can be resolved using several approaches, such as
wavelength conversion, buffering based on fiber delay line (FDL) or
deflection routing. Since deflection cannot eradicate the burst loss,
retransmission at the OBS layer has been suggested by Torra et
al. [5] to avoid resource contention. Another approach, called burst
segmentation, resolves contention by dividing the contended burst
into smaller parts called segments, so that a segment is dropped rather
than the entire burst. All these approaches are reactive and attempt to
minimize the BLR based on local information available at the core
node. Whereas a proactive approach that avoids burst losses before
they occur is desirable.

This paper introduces a novel algorithm called Graphical Proba-
bilistic Routing Model (GPRM) for OBS networks in order to build
more effective routing tables and hence to reduce the BLR without
affecting the end-to-end delay. To the best of our knowledge, our

work is the first that proposes a graphical probabilistic model to the
problem of optimal routing in OBS networks. Reinforcement Learn-
ing algorithms for path selection and wavelength selection have been
proposed [6]. However predetermined routes are computed. GPRM
does not need any precomputed paths since a path is constructed
based on local knowledge on adjacent hops.

From the ingress node to the destination, the BHP selects at each
intermediate node the next hop by using a lookup in the routing table.
These routing tables are periodically updated by the learning process
of the bayesian network. GPRM algorithm exploits the exchange
of Positive Acknowledgement (ACK) and Negative Acknowledgement
(NACK) messages in order to update bayesian networks so that each
node learn the status of the other nodes. At each OBS node, an
agent is placed and makes dynamic updates to his routing table by
using a bayesian network. Our approach allows us to update the local
policies while avoiding the need for a centralized control or a global
knowledge of the network state.

We choose Bayesian networks [7] for our learning models because
of their expressiveness and more elegant graphical representation
compared to other black box machine learning models. Bayesian
networks, sometimes called belief networks or graphical models, can
be designed and interpreted by domain experts because they explicitly
communicate the relevant variables and their interrelationships.

This paper is organized as follows. Section II gives the motivation
of this work and in section III, we present the proposed model.
Finally, Section IV shows simulation testbed and results and Section
V contains the conclusion and future work.

II. MOTIVATION

The traffic between two cities highly depends on the population,
the number of employees and on the number of hosts [8]. Thus, the
reality is that the traffic is not uniformally distributed. So intuitively
static algorithms such as the shortest path are not effective in terms
of network utilization.

The main idea of this work is to propose an intelligent routing
mechanism for OBS Networks to adapt routing paths according to the
network environment (traffic variations, link or node failure, topology
changes). From a machine learning perspective, it is desirable for the
routing mechanism to tune itself into a systematic, mathematically-
principled way.

A probabilistic graphical model specifies a family of probability
distributions which can be represented in terms of a graph [9]. A
bayesian network is a probabilistic graphical model and a directed
acyclic graph. Nodes represent variables and links represent depen-
dencies.

For example Fig. 1 presents a very simple example of a bayesian
network composed of 3 nodes (the variables) and 2 directed links (the
dependencies). The main components of a variable are his state and
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Fig. 1. A bayesian network example

a conditional distribution (a conditional probability table). A state is
typically a possible category of values. For example let’s say we have
a variable Temperature which can be either Raining (Ra), Cloudy
(Cl) or Sunny (Su). In this case, possible states are {Ra, Cl, Su}.
In the example (Fig. 1), variable C is called an evidence since it is
a known information. Variables V and S depend on the state of the
variable C. Variable C is a parent variable of V and S. In general we
say that a variable depends on his connected parents. The conditional
distribution of a given variable gives probabilities for all combinations
of the given variable’s states and all his parents states. More formally,
the joint distribution of a bayesian network which contains a set of
N variables X1, X2, ..., XN is given by the product of each node
distribution and its parents :

P (X1, X2, ..., XN ) =

NY
i=1

P (Xi|parents(Xi)) (1)

If a variable has no parent, it is said to be unconditional. Another
important concept is the notion of inference. Resolving a probabilistic
inference is done by applying Bayes’ theorem [9]. If a given node
Xi has M evidences, the probability that variable Xi is in the state
xi is found by doing the following inference:

P (Xi = xi|E1 = e1, E2 = e2, ..., EM = eM ) (2)

This inference application is trivial. Several more advanced appli-
cations can be done [9].

A bayesian network is a model to represent the knowledge as well
as a conditional probability calculator. It is also a learning model
that can be used to learn the parameters (conditional distributions) or
the structure of the bayesian network. The proposed model presented
in Section III uses parameter learning to optimize the routing table.
The use of a bayesian network, in our study, is motivated by the
followings:
• The probabilistic formulation of a bayesian network is exploited

for performing the resource reservation. Next hop wavelength
selection is then represented by a conditional probability calcu-
lated using our model.

• The best next hop must be selected based on several metrics.
Those metrics are represented by evidences in our model. A
bayesian network inference is used to calculate the probability
to reserve the bandwidth based on several evidences (metrics).
For example, some evidences in OBS networks are: BLR, end-
to-end delay, load, offset time, etc.

• The concept of linking variables by using arrows reduces
the complexity of interrelationships between relevant variables.

Fig. 2. The Graphical Probabilistic Routing Model (GPRM) - A Bayesian
Network

Fig. 3. A very basic topology with GPRM

Thus, the studied system can be easily modelized and modified
graphically by the domain expert.

• The learning capability of the bayesian network allows the net-
work to systematically be adapted to its environment (topology
changes, traffic variation, node and link failure). The probabilis-
tic graphical model can recompute and reoptimize automatically
routing tables.

III. PROPOSED MODEL

A detailed description of the proposed model is given in this section
as well as the routing table. Then, the signaling scheme and the
notification packets are defined.

A. GPRM description

The proposed model is a bayesian network composed of known
information (evidences) and decision nodes (Fig. 2). There is one
bayesian network for each network node within the OBS topology
(Fig. 3). The main functionality of GPRM is the selection of the next
hop for the forwarding process. Obviously, the forwarding process
must be fast and a typical fast routing table lookup is computed

Fig. 4. GPRM updating the routing table



Fig. 5. Low, medium and high traffic delimitations by using the goodput

periodically by the proposed model (Fig. 4). This routing table is
used when the BHP attempts (in the electronic domain) to reserve
the resource for the data burst.

GPRM is composed of four evidences and one decision node
for each possible next hop. A lookup to the routing table is done
according to evidences in order to successively get the best next hop
in terms of probability of success to reach the destination. GPRM
includes the following evidences:

• Offset time (O): The offset time has a significant impact on
burst loss since if the offset time is insufficient, the burst will
be dropped. Consequently the offset time is a relevant metric
to be considered in order to select the next hop. The states of
this evidence are based on the number of hops to reach the
destination from the source (we used 0 to 15). Knowing the
path length, the offset time can be easily calculated.

• BLR (B): The BLR is used to categorize statistics. In our study,
we consider three possible states for this variable : Low, Medium
and High (Fig. 5).

• Number of hops (NB): The states of this variable depends on
the destination. However it has been added as an input variable
for decision nodes.

• Destination (D): Possible states of this variable are the OBS
node identifiers.

GPRM also includes one decision node per possible next hop. Each
decision node has two possible states: Success (noted ⊕) and Failure
(noted 	).

Let k be an OBS node identifier, DNHk expresses the bayesian
decision node of the OBS next hop k, the joint probability function
of the proposed model is given by:

P (O,B,NB,D,DNH1, ..., DNHN ) = 
NY
i=1

P (DNHi|O,B,NB,D)

!
∗

P (O) ∗ P (B) ∗ P (NB|D) ∗ P (D) (3)

The maximum a posteriori of DNHk is defined by:

MAPDNHk = arg max
ϕ

P (ϕ|o, b, nb, d) (4)

where ϕ ∈ {⊕,	} which is a possible value of node DNHk and
where o, b, nb, d are possible values of the evidences in the bayesian
network (o is a possible state of the Offset time variable, etc.).

MAPDNHk = arg max
ϕ

P (ϕ)P (o, b, nb, d|ϕ)

P (o, b, nb, d)
(5)

MAPDNHk = arg max
ϕ

P (ϕ)P (o, b, nb, d|ϕ) (6)

If we assume that the evidences are independent, the maximum a
posteriori can be approximated as follows:

MAPDNHk ≈ arg max
ϕ

P (ϕ)P (o|ϕ)P (b|ϕ)P (nb|ϕ)P (d|ϕ) (7)

Let SP (DNHk, o, b, nb, d) (Success Probability, DNHk = ⊕)
be the approximation of MAPDNHk when DNHk = ⊕.

B. Routing table

The proposed model uses a different routing table compared to
the typival approaches such as the shortest path in order to consider
GPRM’s bayesian network. In most routing approaches, metrics used
in the routing table are < Destination,Next hop, Cost >. How-
ever GPRM’s routing table uses < Evidences,Next hop, Cost >
where evidences add granularity in order to route the traffic more
effectively. GPRM’s routing table is a fast routing table defined as
follows:

TABLE I
GPRM ROUTING TABLE

Evidences Next hop Cost
{o1, b1, nb1, d1} NH1

1 1− SP (DNHNH1
1
, o1, b1, nb1, d1)

...
...

NH1
β1

1− SP (DNHNH1
β1

, o1, b1, nb1, d1)

...
...

...
...

...
...

{oγ , bδ, nbη , dθ} NHEP
1 1− SP (DNHNHEP1

, oγ , bδ, nbη , dθ)

...
...

NHEP
βEP

1− SP (DNHNHEP
βEP

, oγ , bδ, nbη , dθ)

where βi expresses the number of different next hops depending
on the evidences of the i permutation, γ, δ, η, θ are the number of
possible states for evidence variables. NHj

i represents the ith next
hop of the jth evidence permutation. NHj

1 represents the minimum
cost of the jth evidence permutation. For example if we have the
evidence permutation {o1, b1, nb1, d1} and β1 = 3, we could have
the following next hops: {1, 3, 7}. The column Evidences represents
the combinations of all states of all evidences. The number of
evidence permutations is defined by:

EP = γ ∗ δ ∗ η ∗ θ (8)

Thus, the number of rows in the routing table is defined by:

NRows =

EPX
i=1

βi (9)



The cost is expressed by:

Cost(NH, o, b, nb, d) = 1− SP (NH, o, b, nb, d) (10)

We note that for a given evidence permutation, next hops are sorted
as follows:

∀Ni=1∀βi−1
j=1 Cost(NHj , o, b, nb, d) ≤ Cost(NHj+1, o, b, nb, d)

(11)
The following algorithm defines the lookup mechanism to get the

best next hop:

Algorithm 1: Look up in the routing for the best next hop
according to evidences.
Data: N , a set of all OBS node identifiers.
At each node i ∈ N1
foreach BHP do2

Extract evidences {o, b, nb, d}3
Find the corresponding row (k) in the routing table.4
Select NH1

k .5
end6

The following algorithm maps the bayesian network to a fast
routing table periodically:

Algorithm 2: Maps the bayesian network to a fast routing table
periodically.
Data: N , a set of all OBS node identifiers.
Data: T , time interval update.
At each node i ∈ N1
At every T2
foreach Evidence permutation jth {o, b, nb, d} do3

Locate {o, b, nb, d} in the routing table.4
Get next hop identifiers (ids) according to {o, b, nb, d}.5
index← []6
foreach id ∈ ids do7

Add (id, 1− SP (DNHid, o, b, nb, d)) by order of cost8
in index.

end9
Associate {o, b, nb, d} to index in the routing table.10

end11

C. Signaling scheme and notification packets

The proposed model uses the well-known JET signaling scheme
[2]. However notification packets are used in order to update GPRM’s
bayesian network. A positive acknowledgement (ACK) is sent when
a BHP reaches the destination (Fig. 6). A negative acknowledgement
(NACK) is sent when a BHP can not reserve the bandwidth for the
data burst (Fig. 7). We note that these notification packets can also be
used in an OBS scheme where retransmission is available in order
to free buffered bursts. Also, evidences are stored in BHP and in
notification packets in order to update GPRM’s bayesian network.
When an OBS node receives a notification packet, GPRM’s bayesian
network is updated and the routing table is refreshed at the next
update period.

The following algorithm (Algorithm 3) describes the reception of a
notification packet and the update of the bayesian network according

Fig. 6. Signaling scheme without contention

Fig. 7. Signaling scheme with contention

to evidences.
Algorithm 3: Reception of a notification packet and update of
the bayesian network according to evidences.

Data: N , a set of all OBS node identifiers.
At each node i ∈ N1
foreach ACK/NACK do2

Extract evidences {o, b, nb, d}3
Extract the last hop (LH).4
Extract the notification packet type (NPT ).5
SP ← SP (DNHLH , o, b, nb, d)6
SP ′ ← αSP + (1− α)A7
Where α ∈ [0..1] and A is given by:8

9

A =


1 if NPT = ACK
0 if NPT = NACK

Update the bayesian node DNHLH such that SP ′ is the10
new value in the conditional distribution according to
evidences.

end11

IV. SIMULATION RESULTS

Simulations are performed with NSFnet (Fig. 8) topology by
using Network Simulator 2 (ns-2) [10] with an extra module for
OBS. The C++ library Structural Modeling, Inference, and Learning
Engine (SMILE) [11] is used for the bayesian network. GPRM
is compared to the well-known Shortest Path algorithm for the
performance comparison. The shortest path algorithm always selects



Fig. 8. NSFnet topology

Fig. 9. GPRM learning NSFnet topology without initial routing information

paths minimizing the number of hops. The proposed model (GPRM)
defined in Section III is used, which tends to select paths in order to
maximize link utilization and in order to decrease the BLR.

The following simulation configuration is used:
• Each wavelength has 1 Gbit/s of bandwidth capacity.
• Each link has 2 control channels and 4 data channels.
• The mean burst size (noted L) equals 400 KB.
• Packet and burst generation follows a Poisson distribution for

the input packet rate and for the burst size.
• Connections are distributed over the network proportionately to

the well-known reference transport network scenario of the US
Network [8].

• Let N be the number of nodes in the topology, ξi,j the number of
OBS connections between i and j, λi,j,k the number of bursts
sent per second of the k connection between i and j, µi the
capacity available at i, the load is given by:

Load =

NX
i=1

NX
j=1

ξi,jX
k=1

λi,j,k ∗ L
µi

(12)

• No deflection, retransmission or other contention resolution
strategies are used.

A. GPRM learning NSFnet topology without initial routing informa-
tion

An implicit benefit of GPRM is the capability of an OBS node,
without initial routing information, to learn his neighbors in order to
route and distribute the traffic efficiently. It can be useful when faults
happen in a topology since an automatic fault recovery mechanism

Fig. 10. BLR

is applied. The Shortest Path algorithm has initial information about
the topology such as next hops, number of hops to reach destinations,
etc. GPRM requires less than 1 second to learn how to distribute the
traffic at least as effectively as the Shortest Path (Fig. 9).

B. Comparison of GPRM and Shortest path

For the rest of the comparison, we assume that the initial routing
information are available for both algorithms.

GPRM gives significative improvements in terms of BLR even at
high loads (Fig. 10). Let N be the number of simulations where each
simulation has a different load. The BLR gain is given by:

BLRGain =

NX
i=1

BLRSP,i −BLRGPRM,i
BLRSP,i

(13)

where BLRSP,i defines the BLR of the i simulation by using the
shortest path. The utilization gain is then defined by:

UGain =

NX
i=1

UGPRM,i − USP,i
USP,i

(14)

We can observe that when the load is less than 0.5, using GPRM
reduces the number of bursts dropped by 50 % (BLRGain) compared
to the shortest path algorithm (Fig. 11).

GPRM gives at most 1 ms more of end-to-end delay compared to
the shortest path algorithm (Fig. 12). It can be explained by the fact
that GPRM does not necessarily use the shortest path. GPRM can
select next hop which requires more hops to reach the destination
in order to use less utilized links. However, 1 ms does not have an
impact on transport protocols such as TCP.

GPRM gives significative improvements in terms of network
utilization (about 20 % of UGain) as shown in Fig. 13. We can
observe that a gain of 20 % of network utilization can decrease more
than 50 % of BLR so the routing mechanism is very important in
paradigms such as OBS where contention is an important issue.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel routing scheme called Graphical
Probabilistic Routing Model (GPRM) that selects less utilized links
by using a bayesian network. Decisions are based on local knowledge
from a bayesian network updated each time an OBS node receives



Fig. 11. BLR and utilization gains

Fig. 12. End-to-End delay

Fig. 13. Network utilization

a notification packet. The bayesian model contains one decision
node for each possible next hop from the current node. Conditional
distributions are constructed from evidences, from known metrics. A
routing table is periodically updated by using the bayesian network
in order to not penalize the forwarding process. Permutations of all
states of all evidences are included in the routing table in order to
make decisions more effective. GPRM is capable to learn an unknown
topology as well as recover network faults. Simulation results show
that the proposed model performs efficiently in NSFnet since it
decreaces significantly the BLR and increases the network utilization
without affecting considerably the end-to-end delay.

A possible future step of this research is to combine several
contention resolution strategies in a dynamic way because we believe
that the feasibility of OBS requires effective and adaptive algorithms
to overcome the burst loss issue.
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